
Citation: Ma, Y.; Du, Q.; Zhang, W.;

Liu, C.; Zhang, H. A Miniaturized

Bandpass Filter with Wideband and

High Stopband Rejection Using LTCC

Technology. Electronics 2024, 13, 166.

https://doi.org/10.3390/

electronics13010166

Academic Editor: Reza K. Amineh

Received: 10 November 2023

Revised: 9 December 2023

Accepted: 28 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Miniaturized Bandpass Filter with Wideband and High
Stopband Rejection Using LTCC Technology
Yue Ma 1,2,3,4 , Qifei Du 1,2,3,4,*, Wei Zhang 5, Cheng Liu 1,3,4 and Hao Zhang 1,3,4

1 National Space Science Center, Beijing 100190, China; mayue21@mails.ucas.ac.cn (Y.M.);
lc@nssc.ac.cn (C.L.); zhanghao@nssc.ac.cn (H.Z.)

2 University of Chinese Academy of Sciences, Beijing 100190, China
3 Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China
4 Key Laboratory of Science and Technology on Environmental Space Situation Awareness,

Chinese Academy of Sciences, Beijing 100190, China
5 Shanghai Institute of Satellite Engineering, Shanghai 200240, China; wzhang509@126.com
* Correspondence: dqf@nssc.ac.cn

Abstract: This paper designs an L-band wide stopband bandpass filter by applying low-temperature
cofired ceramic (LTCC) technology to the global positioning system (GPS) frequency band. Taking the
Chebyshev filter as a prototype, an equivalent collector element (capacitive and inductor) structure
is adopted to fully use the three-dimensional package structure of LTCC to reduce the filter size.
The filter is integrated into an eight-layer LTCC dielectric, and the series–parallel connection of the
collector elements in the resonance unit is utilized to produce out-of-band transmission zeros, while
the input and output ports’ capacitance is adjusted to control the bandwidth. Harmonic suppression
is achieved by cascading two new compact stopband filters, while the size increase is insignificant
due to LTCC technology. The simulation results are as follows: the center frequency is 1.575 GHz,
1 dB relative bandwidth is 6.3%, insertion loss in the passband is as slight as 1.6 dB, return loss is
better than 30 dB, rejection bandwidth up to 16 GHz is more than 44 dB, and the volume of the whole
filter is 6.2 × 3.7 × 0.78 mm3.

Keywords: L-band; LTCC technology; wide stopband; narrow passband; lumped elements

.

1. Introduction

Microwave filter is a crucial part of advanced wireless communication systems. Many
microwave filters can be utilized to filter out the clutter harmonics. In recent years, given
the system miniaturization requirements, especially passive component miniaturization
requirements, low-temperature cofired ceramic (LTCC) technology as a new form of circuit
implementation has been developed very quickly. Due to the high integration and high
performance of LTCC technology, its three-dimensional encapsulation structure can be
buried in the multilayer ceramic substrate passive components, thus reducing the size of
the passive components to a large extent in the design of the system miniaturization [1].
Nowadays, various studies have been performed on microwave filter miniaturization,
like the stepped-impedance resonator unit [2], the double-layer suspended stripline res-
onator unit [3], and the spiral resonator unit [4], which can reduce the resonator unit
size to 1/4 wavelength. However, these resonant cells have a significant L-band size [5].
The LTCC three-dimensional structure has been employed to implement the lumped
capacitive–inductive [6] as a stack in the Z-direction. The capacitive–inductive coupling is
implemented between different layers, which can decrease the size of the microwave filters
and produce transmission zeros (TZs) and cascaded bandstop filters. Thus, a filter with
better attenuation performance is achieved.
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This paper designs an L-band wide stopband bandpass filter using LTCC technology
for the GPS frequency band. The filter comprises a narrow passband filter and two band-
stop filters. The narrow filter generates transmission zeros (TZs) by introducing inductors
based on a filter prototype containing an inverting converter. Compared to the existing nar-
rowband filter prototype [7], the new filter prototype has TZs on the right side of the center
frequency. The center frequency is 1.575 GHz, and the 1 dB relative bandwidth is 6.3%.
The narrowband filters are cascaded with two bandstop filters to design a new bandstop
filter. The resultant filter has three zeros in the high rejection band. It provides excellent
blocking characteristics, achieving a wide bandwidth of 15.6 GHz, with a blocking rejection
exceeding 44 dB. Compared with the recently developed wide stopband filters [8–10], this
filter provides better stopband characteristics and a narrower passband. In addition, the
size of this miniaturized narrowband filter is only 6.2 mm × 3.7 mm × 0.78 mm.

The remainder of this paper is structured as follows. The prototype circuit of the
narrowband filter is introduced in Section 2. Section 3 presents the design of the three-
dimensional structure of the filter. A novel bandstop filter structure is presented in Section 4.
Finally, the simulation results after combining the narrowband filter with the novel band-
stop filter are presented in Section 5. The advantages of the proposed filter are also described
compared with the existing filters.

2. Filter Structure Design

This paper employs the proposed filter to fabricate the LC collector element filter using
the LTCC process by fabricating the capacitors and inductors separately and embedding
them in LTCC dielectric to realize the circuit [11]. Each component is manufactured using
FerroA6M material from Ferro with a 5.9 dielectric constant, a loss angle tangent of 0.002,
and a dielectric substrate thickness of 97 µm per layer (after cofiring) [12]. The conductor
metal is gold, and the thickness of the metal line is 8 µm. The line design specifications,
such as minimum line width, minimum line spacing, and through-hole diameter, are strictly
compatible with those of the LTCC. Table 1 presents the particular efficiency requirements
of the constructed bandpass filter.

Table 1. The filter’s estimated indicators.

Feature Value

1 dB passband range 1.52–1.62 GHz
Insertion loss ≤1.65 dB

Out-of-band rejection 6.2f0 ≥ 44 dB
Return loss >30 dB
Dimension 0.036λ × 0.022λ

2.1. Filter Principle

As presented in Table 1’s metrics, since the bandwidth requirements are narrow, an
inverting converter is chosen to realize the bandpass filter design [13]. The inverting
converter can convert the prototype shown in Figure 1, including both inductors and
capacitors, into an equivalent form with only inductors or capacitors. Figure 2 [14] describes
the inverting converter.

As shown in Figure 2a, an ideal input impedance Za inversion converter acts like a
quarter-wavelength transmission line with a characteristic impedance of K at each frequency.
That is, assuming an impedance is connected at one terminal, the impedance seen at the
other terminal is as follows:

Za =
K2

k,k+1

Zb
(1)

In the same way, in Figure 2b, an ideal conductance inverting converter acts similar to
a quarter-wavelength transmission line containing a characteristic conductance of J at each
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frequency, such that the conductance is connected to one terminal, and the conductance
seen from the other terminal is as follows:

Ya =
J2
k,k+1

Yb
(2)

Also, as shown in Figure 2, the mirror phase shift of the inverting converter is an odd
multiple of plus or minus 90 degrees.
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The prototype low-pass filter circuit in Figure 1 can be transformed into two equivalent
forms using the nature of the conductance inversion converter, as shown in Figure 3,
including the same transmission characteristics as the low-pass prototype shown in Figure 1.
Figure 3 shows a modified prototype circuit using an impedance inversion converter, where
the values of GA, GB, and Crk (Cr1,...,Crn) can be taken arbitrarily. When the parameter
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Jk,k+1 of the inverting converter is obtained from Equations (3)–(5), the response will be the
same as that of the filter prototype in Figure 1.

J01 =

√
GACr1

g0g1
(3)

Jk,k+1|k=1···n−1 =

√
CrkCr(k+1)

gkgk+1
(4)

Jn,n+1 =

√
CanGB
gngn+1

(5)
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It is essential to emphasize that gk in the equation shown in Figure 3 (k = 0, 1, 2, ..., n + 1)
is the component values of the low-pass prototype circuit described in Figure 1.

Exerting the low-pass filter to bandpass conversion on the circuit shown in Figure 3
gives a generalized bandpass filter with a conductive inverting converter and a shunt-type
resonator, as shown in Figure 4.
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2.2. Filter Circuit Prototype

An inverting converter with aggregate components can be realized with different
forms, such as inductive and capacitive forms, constructed with π-type and L-type struc-
tures. Among them, the capacitive form is chosen in this paper. Figure 5 shows the
equivalent circuit of the above four inverting converters. It should be noted that a negative
inductor (capacitor) in the circuit must be absorbed by a nearby positive inductor (capac-
itor), which turns out to be all positive components. Therefore, an L-structure capacitor
converter is applied to both the first and last J-converters of the circuit and a π-structure
capacitor converter is chosen in the middle to maintain a symmetrical structure. Taking
the J inverting converter in Figure 4 as the form shown in Figure 5, a standard and specific
implementation of Figure 4 can be attained using the generalized bandpass filter circuit for
the conductive inverting converter mentioned in Section 2.1, as shown in Figure 6.
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The following formulas can determine the components of the specific circuit presented
in Figure 6:

Cr =
g

2π · BW · Zc
(6)

Lr =
2π · BW · Zc

g · ω2
0

(7)

bi = ω0 · Cri (8)

J01 =

√
Y0ω0b1

g0g1
(9)

J12 = ω0

√
b1b2

g1g2
(10)
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J23 =

√
Y3ω0b2

g2g3
(11)

C′
01 =

J0,1

ω0

√
1 −

(
J0,1
Y0

)2
(12)

C01 =
C′

01

1 +
(

ω0·C01
Y0

)2 (13)

C′
23 =

J2,3

ω0

√
1 −

(
J2,3
Y3

)2
(14)

C23 =
C′

23

1 +
(

ω0·C23
Y3

)2 (15)

where ω0 is the passband center frequency, Zc =
1

Yi(i=0,3)
is the characteristic impedance, g

is the adjustment factor, which dictates the selection of a suitable capacitor and inductor,
and BW denotes the 1 dB bandwidth. C′

01 and C′
23 are just intermediate values. gi(i=0,1,2,3)

are Chebyshev values, chosen as 1, 0.843, 0.622, and 1.3554, respectively.
Based on a conductive inverted bandpass filter, an inductor L2 is added to introduce

a deeper transmission zero in the filter. The Chebyshev type is modified to promote the
sideband rejection. The filter’s equivalent schematic is designed using the ADS software
and is presented in Figure 7.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 19 
 

 

inductor, and BW denotes the 1 dB bandwidth. 𝐶𝐶01′  and 𝐶𝐶23′  are just intermediate values. 
𝑔𝑔𝑖𝑖(𝑖𝑖 = 0,1,2,3) are Chebyshev values, chosen as 1, 0.843, 0.622, and 1.3554, respectively. 

Based on a conductive inverted bandpass filter, an inductor L2 is added to introduce 
a deeper transmission zero in the filter. The Chebyshev type is modified to promote the 
sideband rejection. The filter’s equivalent schematic is designed using the ADS software 
and is presented in Figure 7. 

 
Figure 7. Narrowband filter schematic diagram. 

The filter operating center frequency is 1.575 GHz, the 1 dB relative bandwidth is 100 
MHz, and the initial values of the components in the equivalent circuit are obtained from 
Equations (6)–(12), as follows: C3 = 0.506 pF, C2 = 0.139 pF, C1 = 7.163 pF, and L1 = 1.283 
nH. The value of L2 is derived directly from simulations, and the indices require wider 
stopband rejection. Therefore, adjusting the inductance L2 will attenuate the zero point 
near 6 GHz. The simulations indicate that the capacitances C2 and C3 adjust the band-
width, C1 and L1 can adjust the passband center frequency, and L2 can adjust the TZ in 
Figures 8–10. As shown in Figure 8, when C2 and C3 increase, the filter bandwidth in-
creases, and the insertion loss decreases. The filter bandwidth cannot be too narrow be-
cause it is limited by the insertion loss. Our target indicator’s bandwidth and insertion 
loss are obtained by optimally selecting appropriate values of C2 and C3. Figure 9 shows 
that the center frequency of the filter passband can be adjusted very simply by adjusting 
the value of the inductor L1, and the same function can be achieved by adjusting the value 
of the capacitor C1. This paper aims to select the L1 frequency point of the GPS, thus 
achieving the L2 and L5 frequency points of the GPS. Figure 10 indicates that by adjusting 
the value of inductor L2, the high-frequency transmission zero point can be adjusted with-
out changing the performance of the filter passband, thus attaining a good suppression 
effect on the high-frequency signal. This model achieves better suppression of high-fre-
quency signals compared with the existing models, in which both of their transmission 
zeros are to the right of the center frequency [7]. When the two L2 inductances are equal, 
only one transmission zero can be generated, while the depression becomes deeper, oth-
erwise, they will be splatted into two transmission zeros with a shallower depression 
depth. The former is chosen for higher suppression requirements. 

Figure 7. Narrowband filter schematic diagram.

The filter operating center frequency is 1.575 GHz, the 1 dB relative bandwidth is
100 MHz, and the initial values of the components in the equivalent circuit are obtained
from Equations (6)–(12), as follows: C3 = 0.506 pF, C2 = 0.139 pF, C1 = 7.163 pF, and
L1 = 1.283 nH. The value of L2 is derived directly from simulations, and the indices require
wider stopband rejection. Therefore, adjusting the inductance L2 will attenuate the zero
point near 6 GHz. The simulations indicate that the capacitances C2 and C3 adjust the
bandwidth, C1 and L1 can adjust the passband center frequency, and L2 can adjust the
TZ in Figures 8–10. As shown in Figure 8, when C2 and C3 increase, the filter bandwidth
increases, and the insertion loss decreases. The filter bandwidth cannot be too narrow
because it is limited by the insertion loss. Our target indicator’s bandwidth and insertion
loss are obtained by optimally selecting appropriate values of C2 and C3. Figure 9 shows
that the center frequency of the filter passband can be adjusted very simply by adjusting the
value of the inductor L1, and the same function can be achieved by adjusting the value of the
capacitor C1. This paper aims to select the L1 frequency point of the GPS, thus achieving
the L2 and L5 frequency points of the GPS. Figure 10 indicates that by adjusting the



Electronics 2024, 13, 166 7 of 17

value of inductor L2, the high-frequency transmission zero point can be adjusted without
changing the performance of the filter passband, thus attaining a good suppression effect
on the high-frequency signal. This model achieves better suppression of high-frequency
signals compared with the existing models, in which both of their transmission zeros are
to the right of the center frequency [7]. When the two L2 inductances are equal, only one
transmission zero can be generated, while the depression becomes deeper, otherwise, they
will be splatted into two transmission zeros with a shallower depression depth. The former
is chosen for higher suppression requirements.
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3. 3D Structural Design

As the needed filter is a narrow band one, every slight adjustment to the capacitance
and inductance values may influence the filter’s bandwidth. Mutual coupling is necessary
for the final realization of the filter using the LTCC technique. Therefore, 3D EM simulation
with HFSS software is crucial in the current study [15]. The frequency model is solved
using the adaptive meshing and broadband to obtain more accurate results in broadband
simulations.

3.1. Capacitors

There are two main LTCC capacitors: mental insulator mental (MIM) capacitor and
vertically interdigitated capacitor (VIC). VICs are the first choice for realizing capacitors
with large capacitance, which can make full use of the LTCC technology’s multilayer feature
to increase the capacitance by increasing the number of layers. Table 2 compares the main
performance and parameters of the two structures. As presented in Table 2, under the same
effective capacitance value, the VIC structure has a higher self-resonant frequency (SRF),
higher quality factor (Q), and a small area required for each layer while requiring many
layers. The specific design makes it a reasonable choice based on the capacitance value size
and the filter space layout.

Table 2. Comparison of two structures with the same effective capacitance value.

Structural Form MIM Capacitor VIC Capacitor

Occupied area Large Small
Self-resonant frequency Slightly low High

Q value Slightly lower High
Number of layers required less Multi

Regardless of the capacitor design framework, the relevant parameters of the capacitor
element should be extracted. The capacitor is considered a two-port network, and its
corresponding characteristic parameters are extracted, yielding a precise construction of
the capacitor framework and dimensions. Since the capacitors in the filter have small
capacitance values, i.e., C2 = 0.139 pF and C3 = 0.506 pF, the embedded MIM framework
is utilized. Considering C1 = 7.163 pF, a relatively large capacitance, an embedded VIC
framework is utilized to decrease the planar area.
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After calculating the conductance parameter Y by HFSS, the capacitance value and
quality factor parameters can be obtained as follows:

Ce f f = − Im(Y(2, 1))
2π · f req

(16)

Q = − Im(Y(1, 1))
Re(Y(1, 1))

(17)

where Ceff is the effective value of the capacitor, and freq is the self-resonant frequency.
HFSS simulation determines the physical dimensions of C1, C2, and C3. The 3D

structure of C1 is presented in Figure 11a, which has orange and green colours to distinguish
the two polarities of the capacitor and the capacitance simulation results are presented in
Figure 11b.
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3.2. Inductors

LTCC inductors generally include planar and spiral types. Since the Q value of the
inductor is much lower than the capacitance, the inductor design plays an essential role in
the filter insertion loss.

Table 3 compares the main performance and parameters of the four inductor structures.
It can be seen that with the same effective inductance value, the spiral inductor has the
advantages of a relatively higher resonant frequency and quality factor, a smaller single-
layer area, and the disadvantage of the number of required layers, followed by the stacked,
displacement, and planar structures. The specific design should choose the inductor
implementation form according to the key parameters. The inductor effective value (Leff)
determines the size of the total inductance, and the Q value determines the size of the
inductor loss. The design of LTCC inductors should focus on the effective value of the
inductance, quality factor, and self-resonant frequency SRF; the effective value of the
inductance determines the size of the inductor and the specific application of the resonance
frequency, the quality factor determines the loss of RF devices and other performance
parameters, and the self-resonant frequency SRF determines the effective use of the inductor
frequency range.

Table 3. Comparison of inductance performance of various structures with the same inductance value.

Type Structural Form Occupied Area Self-Resonant Frequency Q Value Number of Floors

Monolayer Planar Maximum Lowest Lowest least
Displacement Small High High Medium

Multilayer Stacked Medium Medium Medium Medium
Spiral Smallest Highest Highest Most
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The inductance values of L1 and L2 in the filter model are small and can be realized
by a single layer of short wires or through holes to avoid the complexity caused by mutual
coupling with other capacitors. The inductor’s width is 0.2 mm, i.e., the 50 Ω stripline’s
width. HFSS simulation is employed to determine the inductor’s length. Inductor L1 is the
main inductor in the filter and directly affects the center frequency. A planar-type inductor
is utilized to prevent mutual coupling with the other capacitors.

The LTCC’s effective inductance can be described in terms of admittance parameters
as follows [16]:

Le f f =
Im

(
1

Y(1,1)

)
2π · f req

(18)

Q = − Im(Y(1, 1))
Re(Y(1, 1))

(19)

where freq denotes the self-resonant frequency, and Y11 is the inductor’s conductance
value, calculated by HFSS. Figure 12 presents the inductor’s 3D model, with L1 = 1.82 nH.
The conductor’s width in the inductor is 0.2 mm, while the total length is 2.6 mm. Figure 12
presents the effective inductance attained through HFSS simulation.
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3.3. Simulation Results

Based on the inductor and capacitor models, all of the filter components are modeled,
simulated, and optimized in 3D. The three-dimensional structure simulation is as close as
possible to the actual situation; a FerroA6M material is selected as the substrate material, the
metal line material is set to gold, and the thickness is 8 µm. As shown in Figure 7, there are
four inductors and five capacitors with different capacitance values. These nine variables
pose a great difficulty in the modeling and optimization process. In order to facilitate
modeling and optimization, the current study employs a symmetric circuit framework.
Nine variables are reduced to five using the model’s symmetry, thus simplifying the LTCC.
Figure 13 presents the LTCC bandpass filter’s 3D model. It is worth mentioning that to
show the picture more clearly, the model layer spacing is enlarged five times, and the
other dimensions and the layer spacing are kept unchanged. The 3D model parameters are
as follows:
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Figure 13. 3D modeling of LTCC bandpass filters.

SEAM = L2 = 1.2 mm, L1 = 1.5 mm, W1 = W6 = W11 = 0.2 mm, W2 = W3 = 1.7 mm,
L4 = 3.6 mm, W4 = L13 = 1 mm, L6 = L12 = 0.3 mm, L7 = 0.5 mm, L8 = 1.8 mm, W7 = W8 =
W9 = W10 = 2.7 mm, L3 = L5 = L9 = L10 = L11 = 1.3 mm, and H = 97 µm.

By verifying the simulation outcomes of the flexible layout of inductors and capacitors
in the model, the model is continuously optimized and adjusted to obtain the optimum
simulation results, as presented in Figure 14. The simulation results indicate that in the
1.525–1.625 bandwidth, the insertion loss is relatively slight, the return loss meets the
requirements, and the TZ is near 6 GHz. However, since there is a resonance near 9.5 GHz,
a new bandstop filter should be introduced to eliminate the resonance.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 19 
 

 

modeling and optimization, the current study employs a symmetric circuit framework. 
Nine variables are reduced to five using the model’s symmetry, thus simplifying the 
LTCC. Figure 13 presents the LTCC bandpass filter’s 3D model. It is worth mentioning 
that to show the picture more clearly, the model layer spacing is enlarged five times, and 
the other dimensions and the layer spacing are kept unchanged. The 3D model parameters 
are as follows: 

SEAM = L2 = 1.2 mm, L1 = 1.5 mm, W1 = W6 = W11 = 0.2 mm, W2 = W3 = 1.7 mm, L4 
= 3.6 mm, W4 = L13 = 1 mm, L6 = L12 = 0.3 mm, L7 = 0.5 mm, L8 = 1.8 mm, W7 = W8 = W9 
= W10 = 2.7 mm, L3 = L5 = L9 = L10 = L11 = 1.3 mm, and H = 97 um. 

By verifying the simulation outcomes of the flexible layout of inductors and capaci-
tors in the model, the model is continuously optimized and adjusted to obtain the opti-
mum simulation results, as presented in Figure 14. The simulation results indicate that in 
the 1.525–1.625 bandwidth, the insertion loss is relatively slight, the return loss meets the 
requirements, and the TZ is near 6 GHz. However, since there is a resonance near 9.5 GHz, 
a new bandstop filter should be introduced to eliminate the resonance. 

 
Figure 13. 3D modeling of LTCC bandpass filters. 

 
Figure 14. LTCC bandpass filter simulation results. Figure 14. LTCC bandpass filter simulation results.

4. Wide Stopband Filter Design
4.1. Principle of the Wide Stopband Filter

The metrics in Table 1 indicate the relatively high out-of-band rejection requirement
of the filter. There are two methods to improve the filter’s out-of-band rejection when
designing the filter: increasing the filter’s order and adding the TZs. However, as the
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order increases, the filter size increases [17], which is inappropriate for designing minia-
turized filters. Therefore, transmission zeros are generally added when constructing the
miniaturized filters [18,19]. The filter’s zero frequency is the frequency that makes the
transmission equation zero. Ideally, since energy cannot pass through the zero frequency,
excellent isolation can be attained. The set parameter mode generally adopts series or
parallel resonances.

When the capacitance and inductance in a circuit are connected in series or parallel,
the impedance and conductance in a high-frequency circuit are calculated as follows:

jX(ω) = jωC +
1

jωL
(20)

jB(ω) = jωL +
1

jωC
(21)

According to Equation (20), an open circuit is obtained as the conductance in a parallel
resonant circuit is zero, entirely reflecting the energy at that frequency, thus constructing a
transmission zero. According to Equation (21), when the LC satisfies the resonance relation,
the input impedance in the series resonant circuit becomes zero, causing a short circuit.
The whole energy at the mentioned frequency is absorbed, forming a TZ.

4.2. Three-Dimensional Structural Design

This bandstop filter adopts the form of Figure 15b; the inductor is realized using a
narrow wire inductor with an over-hole, and the capacitor is only realized using a flat-plate
capacitor. Figure 16 shows the three-dimensional structural model diagram.
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4.3. Simulation Results

The band reject filter can change the resonance point by adjusting the inductor length
Lz or the flat size of the capacitor Cz, as shown in Figure 16, by changing the capacitor
width W15 and thus changing the resonance frequency point. As W15 increases, the
capacitance Cz increases, and the resonance point is shifted to a lower frequency, compatible
with the theoretical analysis. Figure 17 shows the simulation results. This simulation is
only performed for the bandstop filter. The following section presents the adjustment of
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the transmission zeros of the target filter after cascading the narrowband filter with the
bandstop filter.
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5. Overall Simulation
5.1. Simulation Results

The model diagram after cascading the bandpass filter designed in Section 3 with two
new bandstop filters, as shown in Figure 18, is designed to achieve the wide stopband
index requirement. Figure 18 shows the equivalent circuit diagrams of the corresponding
lumped elements. Figure 19 marks different lumped elements with different colors, each
corresponding to that in Figure 18, and the overall structure shows symmetry. The model
parameters are W12 = W14 = 0.2 mm, L14 = L16 = 1 mm, L15 = 2 mm, W13 = W15 = 0.5 mm,
and L17 = 1.6 mm. Figure 20 shows the exterior view of the filter when placed on an
RO4350B substrate. RO4350B can be well applied to high-frequency circuits. The substrate
thickness is h = 0.508, and the dielectric constant is ε = 3.66. The transmission line to
the filter inputs and outputs is of the CPW ground-type, matched to 50 ohms to match
the filter inputs and outputs. For better matching, tapered transmission lines are added
close to the input and output of the filter. The line width is 0.48 mm, and the line gap is
0.24 mm. As shown in Figure 21, the transmission zeros of the target filter are adjusted
by adjusting the size of the capacitor Cz. The results indicate that as L15 decreases, the
transmission zeros move to higher frequencies. When the frequency of transmission zero 3
(TZ3) is too high, the transmission zeros should be placed appropriately to successfully
suppress the harmonics. The second transmission zero 2 (TZ2) is adjusted similarly to TZ3
by controlling TZ2 and adjusting the size of the capacitance on the other side. Figure 10
illustrates the control of the first transmission zero 1 (TZ1). The filter with the best stopband
characteristics is obtained by adjusting the three transmission zeros. Figure 22 shows
the HFSS simulation of this bandpass filter. As shown in Figure 22, compared with ADS
simulation, these two simulations have relatively close transmission results, indirectly
demonstrating the feasibility of the equivalent circuit.
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5.2. Performance Comparison

Table 4 compares the efficiency of the constructed L-band bandpass filter with previ-
ously published studies.

Table 4. Comparison with previous studies.

Refs. F0 (GHz) FBW (%) IL (dB) Stopband
Bandwidth

Rejection Level
(dB) Core Size (λ2

g)
Selectivity
Factor (%)

[20] 0.835 15.8% 0.41 4.26f0 <20 dB 0.16 ∗ 0.12 32.51@20 dB
[21] 5.5 18.2% 2.46 1.02f0 <32 dB 0.058 ∗ 0.029 9.9@32 dB
[22] 0.75 12.8% 0.6 5.2f0 <20 dB 0.014 ∗ 0.02 5.87@20 dB
[23] 6.11 8.96 1.07 2.05f0 <22 dB 0.153 ∗ 0.194 32.22@20 dB
[24] 3.5 22.9% 0.5 1.64f0 <18 dB 0.09 ∗ 0.09 13.0@20 dB

This work 1.57 6.3% 1.65 6.2f0 <44 dB 0.036 ∗ 0.022
110@20 dB

75.98@40 dB
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Table 4 shows that compared with the studies performed in the last five years (the
studies [20,21,23,24]), the proposed filter occupies less space by stacking the collector
elements in the Z-direction through the LTCC process. Compared with the literature [20–24],
focusing on wide stopband bandpass filters, the designed filter provides better stopband
characteristics and narrower bandwidth, with moderate insertion loss. As shown in
Table 4, the proposed filter has an excellent selectivity factor (SF), which is crucial for wide
stopband filters.

6. Conclusions

The current study describes a bandpass filter with narrowband and considerable
out-of-band rejection for the GPS band. The filter framework can be simplified and the
simulation complexity can be alleviated using symmetry. By the new filter prototype
and cascading the new three-dimensional structure of the bandstop filter, three TZs are
produced to promote the filter’s stopband characteristics significantly. LTCC technology
has a significant advantage in realizing the filter’s miniaturization, leading to a size of
6.2 mm ∗ 3.7 mm ∗ 0.78 mm, smaller than the conventional process filter. The whole circuit
has the advantages of high performance, small size, and low cost (in the case of mass
production), making it suitable for GPS wireless communication-integrated systems and
GPS L1 frequency pre-filtering applications.

In the future development of integration technology, the requirements for the perfor-
mance and miniaturization of communication systems will also increase. Thus, creating
miniaturized filters with LTCC technology will be one of the future development trends.
In addition, with the development of wireless technology, the spectrum’s utilization is
becoming increasingly important. Therefore, filtering signals at other frequencies will also
become more and more critical.
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