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Abstract: Computer vision is a powerful technology that has enabled solutions in various fields
by analyzing visual attributes of images. One field that has taken advantage of computer vision is
agricultural automation, which promotes high-quality crop production. The nutritional status of a
crop is a crucial factor for determining its productivity. This status is mediated by approximately
14 chemical elements acquired by the plant, and their determination plays a pivotal role in farm
management. To address the timely identification of nutritional disorders, this study focuses on
the classification of three levels of phosphorus deficiencies through individual leaf analysis. The
methodological steps include: (1) using different capture devices to generate a database of images
composed of laboratory-grown maize plants that were induced to either total phosphorus deficiency,
medium deficiency, or total nutrition; (2) processing the images with state-of-the-art transfer learning
architectures (i.e., VGG16, ResNet50, GoogLeNet, DenseNet201, and MobileNetV2); and (3) eval-
uating the classification performance of the models using the created database. The results show
that the DenseNet201 model achieves superior performance, with 96% classification accuracy. How-
ever, the other studied architectures also demonstrate competitive performance and are considered
state-of-the-art automatic leaf nutrition deficiency detection tools. The proposed method can be a
starting point to fine-tune machine-vision-based solutions tailored for real-time monitoring of crop
nutritional status.

Keywords: image classification; computer vision; transfer learning; image database; plant nutrition;
leaf analysis

1. Introduction

Today, agricultural production is facing challenges to meet increasing food demand
as well as to mitigate the consequences of the gradual reduction in cultivated land area
by enhancing agricultural productivity in a sustainable manner [1]. Additionally, there is
a pressing need to meet the demand for more effective, more nutritious, and safer food
production methods to ensure the well-being of both human health and the planet [2].
Agricultural automation is being raised as a solution that can boost productivity and
improve quality and resource-use efficiency [1].

However, generating solutions for agricultural production is a complex task that
requires the consideration of several variables. One critical variable is the nutritional status
of crops, which is determined by approximately 14 fundamental nutrients that plants
require for their growth [3]. Each of these nutrients is found in specific amounts and plays
essential roles in crop metabolism. Among these nutrients, nitrogen, phosphorus, and
potassium are needed in much more significant quantities [4]. In particular, phosphorus
(P) plays a crucial role in various plant processes such as growth, reproduction, flowering,
and environmental adaptation. A plant absorbs P in the form of inorganic phosphate
(Pi). However, the concentration of Pi in the soil is typically quite low because it tends to
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strongly bind to the soil surface or form insoluble complexes, rendering more than 80%
of it immobile and inaccessible for plant uptake [5]. To maintain high productivity levels,
a continuous supply of Pi from fertilizers is required. The contribution of phosphorus,
like other nutrients, needs to be carefully regulated according to the specific growth stage
of the plant [4]. Therefore, it is crucial to assess and monitor the nutritional status of the
crop throughout its entire life cycle. Traditionally, the assessment of nutritional status
has relied on visual inspection, which has inherent limitations in terms of precision, as
it is primarily a qualitative approach [3]. Alternatively, more accurate methods involve
analyzing nutrient concentrations in either leaves or soil. However, these techniques can
be costly, as they require not only chemical processes but also the transportation of samples
and the interpretation of results [6].

Consequently, many types of technologies have been explored to overcome these prob-
lems. Given that nutritional deficiencies primarily manifest through visual characteristics,
several explored options are based on automatic methods via image processing [7]. Within
these options, artificial vision stands out as a competitive choice due to its versatility and
autonomy. Specifically, deep learning techniques employing convolutional neural networks
(CNNs) have shown remarkable performance, surpassing traditional approaches based on
texture or color analysis of images [8].

The development of deep learning models typically involves a supervised process
called end-to-end learning, which relies on known training data to make predictions on
unknown data [9]. However, there are several limitations to the applicability of CNN-based
methods. Perhaps the most important is the amount of data the network needs to learn the
characteristics of the images. Obtaining the required number of high-quality images with
accurate labeling is a significant challenge, even more so in the agricultural case, where
the field environment is often difficult to access and visual signs of interest are not always
present or isolated [6,10]. To address these challenges, a commonly employed strategy is to
leverage transfer learning, which involves utilizing pre-trained networks that have been
trained on extensive datasets. This technique not only reduces the amount of data and
computational cost that is needed to train the network but also allows a model developed
for one application domain to be relatively easy to transfer to another [9].

Many works that aim to recognize pathologies on plant leaves use transfer learning
as the starting point to develop new models. These works usually propose a comparison
between well-developed models and the new model to select the one that performs best
for a specific problem. Regarding the recognition of maize diseases, Zhang et al. [11]
proposed an improved model based on GoogLeNet and Cifar10 architectures to classify
eight disease types using images collected from both the PlantVillage dataset [12] and
other image search sites. Similarly, Bhatt et al. [13] classified three disease types with a
combination of enhanced models (VGG16, InceptionV2, ResNet50, and Mobilenet), only
using the PlantVillage data. Both studies achieved a maximum classification accuracy
of 98%. Furthermore, Chen et al. [14] introduced INC-VGGN: composed of a VGGNet
enhanced with the Inception module. The network was trained on a field-collected database
composed with images of both maize and rice leaves. Results were subsequently compared
with other common transfer learning models trained on PlantVillage, and it was shown that
the proposed CNN performed the best. Likewise, Zeng et al. [15] classified several diseases
of maize using a database acquired with a cellphone and a digital camera. They created a
model that integrates the ResNet50 architecture with the SK unit (found in SKNet). The
results of their method were then compared with the results of state-of-the-art multiscale
network models (InceptionV3, InceptionV4, and Inception-ResNet-V2) and showed that
their proposal produced competitive results. On the other hand, Verma and Bhowmik [16]
created a new architecture named MDCNN (Maize Disease Detection CNN) and a database
composed of publicly available databases and manually acquired leaf images. In this work,
the results were also compared to those of several pre-trained networks, with the proposed
model achieving the best results.
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In the domain of maize leaf nutrition identification using artificial vision, various stud-
ies have explored the detection and analysis of nutritional deficiencies. For instance, Zúñiga
and Bruno [7] developed a system that relies on texture and color analysis to recognize
deficiency levels of essential nutrients such as nitrogen (N), phosphorus (P), potassium
(K), magnesium (Mg), and sulfur (S). K-nearest neighbors algorithm, Naive Bayes, and
Support Vector Machines (SVM) classifiers were used, and the best results were obtained
using SVM, which achieved no more than 82% accuracy. Furthermore, Leena and Saju [3]
classified macronutrient deficiency (N, P, and K) using an optimized multi-class SVM, with
the highest classification accuracy being 90%. Similarly Guerrero et al. [17], recognized
NPK deficiencies on banana leaves by preprocessing the images through linear and color
space transformations and using them as input for a VGG16 model, obtaining 98% as the
maximum accuracy. Also Jahagirdar and Budihal [18] utilized images with NPK nutrient-
deficit maize leaves to train an Inception V3 model, reaching 80% training accuracy. In both
cases, authentic datasets were used, but they are not publicly available.

Meanwhile, there are even fewer studies that specifically concentrate on the identification
of single-nutrient deficiencies, such as the work conducted by de Fátima da Silva et al. [19],
wherein magnesium nutrition was assessed with texture classifiers, reaching a maximum
classification accuracy of 75%. In addition, Condori et al. [8] detected levels of nitrogen
deficiency by comparing texture and transfer learning models. The main conclusion of this
work was that the results of CNN-based models outperform those of texture methods in
the majority of experiments.

In the realm of datasets utilized for studying nutrient deficiencies in maize leaves,
Peng et al. [20] stands out as a pioneering contribution. The dataset in [20] comprises
UAV images characterized by extensive spatial coverage and long time series purposefully
crafted for distribution analysis of maize in China. Additionally, [21] presents another
noteworthy contribution, wherein images were sourced from well-known leaf databases,
systematically curated, and categorized based on four common diseases. A distinctive
feature of this work is the absence of self-generated images in the referenced dataset. As
of our current understanding, there is no publicly available maize leaf database explicitly
addressing single-nutrient deficiency, particularly phosphorus.

In the current research landscape, there is a conspicuous absence of studies exclusively
dedicated to the classification of phosphorus deficiency in maize through the utilization of
various deep transfer learning techniques. Furthermore, the absence of a well-established
and publicly available database focused on this specific topic exacerbates the existing
research gap. In light of these considerations, the primary objective of this study is to fill this
void by addressing recent advancements in deep learning techniques. Specifically, our focus
is on the classification of images derived from controlled environments featuring maize
leaves that exhibit varying degrees of phosphorus deficiency: the complete absence of the
nutrient, a half dose of the required phosphorus, and an adequate supply of phosphorus.

The structure of this work is as follows: Section 2 provides an overview of the pro-
cess involved to build the dataset and details the transfer learning approach utilized. In
Section 3, the results obtained from applying the transfer learning models to the created
dataset are thoroughly reported. The paper finishes with Section 4.

2. Materials and Methods

The workflow employed in this study, approaching the use of deep learning techniques
to classify three levels of phosphorus deficiency in maize leaves, is illustrated in Figure 1.

Firstly, we begin with a data preparation stage, which involves the collection, labeling,
preprocessing, and splitting of data. This stage ends with the labeled samples divided into
three data sets: train, validation, and test. In the second stage, a set of pre-trained models is
chosen and implemented in MATLAB version 9.9.0 (R2020b), The MathWorks Inc., Natick,
MA, USA. One is selected for a fine-tuning stage, for which the inputs are the training and
validation sets and the output is a trained model. Hence, the fine-tuned model is used
to classify new images from the test set. The prediction results are then evaluated with



Electronics 2024, 13, 16 4 of 18

classification metrics, and the next model is chosen from the aforementioned set to restart the
second stage. Once all pre-trained models have been tested, a comprehensive performance
evaluation is conducted based on the metric scores, thereby concluding the workflow.

The following subsections present the procedures’ details, providing a full overview
of their specific information and methodologies.

Start

Model
testing

Model
evaluation

Nutrition status
classification

Comparing
performance

of models
End

DATA PREPARATION

Image
collection

Splitting
dataset

Image
preprocessing

Image
labelling

MODELS STABLISHMENT

Choosing the
models

Implementation 
in MATLAB

Set of pre-trained models

FINE TUNNING

Model
training

Model
Validation

Trained
model

Train set

 Validation
set

Test set

Select next
model

Select one
model

Figure 1. Workflow for phosphorous deficiency detection.

2.1. Dataset Building

The images of nutrition-deficient maize leaves (Zea mays L. improved variety ICA—V
109) used in this study were collected from mid-June to early August 2022 in a plas-
tic shed from the area of Natural Systems and Sustainability of Universidad EAFIT,
Medellin, Colombia (6°11′53.80′′ N, 75°34′43.23′′ W). The experimental design followed a
3 × 10 scheme comprising ten replications of three phosphorus levels: P absence (-P), half
dose (-P50), and complete supply (C), resulting in a total of 30 plants (see Figure 2).

To induce the phosphorus deficiency levels, Hoagland’s complete solution [4] was
modified by taking into account only macronutrients and adjusting the net contribution of
each nutrient according to the concentration of minerals in the solution.

-P50 -P C
Figure 2. Location of experiments and treatment differentiation.
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2.1.1. Image Collection

A total of 3934 images were acquired. Photographs included the growth stages of
seedling, jointing, and flowering. The experiment involved natural illumination. Both sunny
and cloudy days were considered in order to increase diversity in the illumination conditions.

Five acquisition devices were utilized, encompassing two types of regular smart-
phones, a digital camera, a single-lens reflex camera, and a compact scientific camera. In
Table 1, the specifications of the tested cameras are presented.

Table 1. Specifications of cameras used to acquire original images.

Camera Type Smartphone 1:
Xiaomi Redmi 8T

Smartphone 2:
Moto G (5) Plus Digital Single-Lens Reflex Compact Scientific

Manufacturer Omnivision Motorola Samsung Nikon ThorLabs
Model OV02A10 Unknown ES65 D3100 DCC1645C-HQ

Sensor type CMOS Unknown CCD CMOS Color CMOS
Number of Active Pixels 1200 × 1200 3264 × 2448 2048 × 1536 3456 × 2304 1280 × 1020

Resolution (ppp) 96 72 96 300 144
Optical Format 0.2′′ 0.4′′ 0.24′′ 1.09′′ 0.33′′

Maximum Aperture f / 2.4 1.7 3.5 3.8 1.4

Nevertheless, previous experiments have determined that images captured by the
scientific camera consistently yield superior classification performance. The outcomes of
image classification using the GoogLeNet architecture for each camera type are provided in
Appendix A. Consequently, this study exclusively concentrates on the dataset comprising
images acquired solely by the scientific camera.

The image collection process was conducted according to the following steps: (1) One
leave per plant exhibiting prominent visual symptoms, predominantly observed in older
leaves, was selected for sampling. Specifically, the mid-leaf area, as depicted in Figure 3,
was the focal region of interest. (2) A white background sheet was carefully positioned:
the intent was to prevent the formation of shadows caused by the leaf and to minimize
background-related noise. (3) The leaf was securely held, and a total of five photographs
were captured for each leaf. Either the capture angle or the leaf section was adjusted be-
tween each shot, ensuring diverse perspectives. An illustration of this process is presented
in Figure 4.

Mid-leaf area

Camera

Background

Figure 3. Illustration of an image acquisition example. The camera, the background sheet, and the
leaf capture area are depicted.
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The resulting images were saved and labeled according to the treatment and growth
stage. Examples of images obtained using this method are shown in Figure 4.

(a)

(b)

(c)
Figure 4. Example of five consecutive images taken of three different leaves with: (a) complete
nutrition (C), (b) no phosphorus nutrition (-P), and (c) half-phosphorus nutrition (-P50).

2.1.2. Image Pre-Processing and Data Augmentation

The original images obtained with the scientific camera underwent automatic size
processing using Python (version 3.8.8, Python Software Foundation, Wilmington, DE,
USA) code with two concurrent methods: (1) All 1280 × 1020 pixel original images were
cropped to a central square with sides equal to the smallest image side (n), i.e., 1020 px.
Then, cropped images were resized to 224 × 224 pixels according to the method shown in
Figure 5a. (2) All images cropped to a central square were subsequently divided into four
individual images with a size of 510 × 510 pixels each. Similarly, these cropped images
were resized to 224 × 224 pixels. The process is shown in Figure 5b.

n

1280 × 1020

224 × 244

(a)

224 × 224

#1 #2

224 × 224

#3

224 × 224

#4

224 × 2241020 × 1020

(b)
Figure 5. Pre-processing based on cropping and resizing images using two methods: (a) crop to a
centered square and (b) quadrant division. ’#1’ to ’#4’ are the resulting images after quadrant division.

After the above process, the number of images increased five-fold. However, the
automated cropping mechanism introduced certain issues, including producing blank
images or images capturing only a small portion of the leaf, which led to images with
limited or irrelevant content. An example of this is seen in image #2 of Figure 5b. Based on
supplementary experiments presented in Appendix B, these images introduce confusion to
the neural network, hindering the accurate extraction of pertinent features and consequently
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resulting in a decline in performance metrics. To address this problem, an algorithm was
developed to select valid images. The algorithm involved the following steps: First, the
image was split into its RGB components. Based on the histogram analysis of the images,
we determined that the blue (B) channel provided more contrast to distinguish the leaf from
the background, so only the B channel was preserved. Next, a thresholding process was
applied to distinguish leaf pixels (set to 255) from the background (set to 0). The algorithm
then counted the number of leaf pixels and considered a minimum count of 15k pixels
as indicative of a significant leaf presence. Finally, images with a pixel count below this
threshold were excluded from further analysis. The effectiveness of the filtering process is
illustrated in Figure 6.

44.8k white px

#1 #2

#3 #4

8.4k white px

28.5k white px 43.2k white px

Blue chanel Threshold

Figure 6. Selection process for images obtained through quadrant division. Each image shows the
separated blue channel (left) and the result of thresholding (right). The number of white pixels at the
bottom of each image represents the leaf content. A minimum count of 15k white pixels is considered
as the threshold for determining the presence of relevant information. ‘#1’ to ‘#4’ are the resulting
images after quadrant division. In this example, only image #2 would be filtered out.

Following the preprocessing and data augmentation procedures, the resulting dataset
contained the number of images indicated in Table 2.

Table 2. Dataset details.

Class Description Number of Images

-P No phosphorus nutrition 656
-P50 Half of complete phosphorus nutrition 850

C Complete nutrition 927

Finally, the training, validation, and testing image sets were composed with a ratio of
7:2:1 and in such a way that the five subimages obtained from each original image belonged
to a single set, thus ensuring the independence between the image sets. The correspondence
of the totals of the images for each set is detailed in Table 3.
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Table 3. Dataset division.

Image Set Number of Samples

Total 2433
Train (70%) 1703

Validation (20%) 487
Test (10%) 243

2.2. Transfer Learning Approach

A deep learning approach is employed to classify the three levels of phosphorus
deficiencies. Given the challenges associated with acquiring an ample supply of images
and the potential scarcity of publicly available datasets for training convolutional neural
networks (CNNs), it is a common practice to adopt transfer learning. Transfer learning
is a powerful machine learning technique that involves repurposing an existing trained
model for a new—often related—problem. This approach capitalizes on the capability of
the initial layers in the original model to detect general features. Subsequently, the output
of the last layer is adapted to the specific requirements of the new task. This adjustment is
achieved by replacing the last fully connected layer with a new one representing the classes
relevant to the new problem. Additionally, it is possible to fine-tune the transfer learning
process by selectively freezing or updating specific weights in the initial layers [22].

The models used for transfer learning in this study are primarily associated with the
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [23], which has produced
some of the most accurate models. These models have served as inspiration for numerous
versions and improvements, as well as being the foundation for other models. Considering
the existing literature, five architectures were selected based on their frequent utilization
and high accuracy. Therefore, the following models were included in this study.

2.2.1. VGG16

These models were introduced in 2014 by Oxford’s Visual Geometry Group [24] but are
still popular today. The VGG networks consist of multiple blocks of stacked convolutional
layers with smaller filters (i.e., 3 × 3 layers) combined with a max-pooling and another
fully connected layer. This set of layers is used instead of a larger filter size (such as 7 × 7)
in order to increase efficiency and make the decision function more discriminative [22]. The
latter ultimately means that this model type generalizes well to a wide range of tasks [24].
One of the most popular variants is VGG16, which is composed of 16 layers in weight and
is available pre-trained on the ImageNet dataset [25].

2.2.2. ResNet50

Residual networks were first introduced in 2015 by He et al. [26] and consist of blocks
with two or three sequential convolutional layers with a parallel but separate identity layer
that connects the input of the first layer to the output of the last one [22]. These identity
layers, called ’skip connections’, solve errors generated during training and testing when
the model goes deeper. Furthermore, they can mitigate the vanishing gradient problem
when placed before the activation function [27]. This study utilizes ResNet50, one of the
evolved versions of ResNet. ResNet50 is chosen as it is a 50-layer deep architecture known
for its remarkable performance and effectiveness at various tasks.

2.2.3. GoogLeNet

The GoogLeNet model is a special manifestation of the Inception architecture. This
type of block splits the input into parallel and multiple pillars containing convolutional
layers with a different-sized filter and a pooling layer. Those are followed or preceded by
a downsampling convolution to reduce the output depth, which is finally concatenated.
This enables the saving of computing resources [22]. The GoogLeNet structure uses nine
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Inception modules accompanied by pooling, regularization, and fully connected layers.
For additional information, refer to the original paper [28].

2.2.4. DenseNet201

The creators of Dense Convolutional Network (DenseNet) [29] took some inspiration
from the residual network’s idea to introduce dense blocks. These are modules of sequential
convolutional layers for which any layer has a connection to every other layer in a feed-
forward way in terms of concatenation operation. In this way, successive layers receive
information from preceding ones, including feature maps, for better feature propagation
and reuse. This process causes the number of channels to grow, despite reducing the number
of parameters as compared to conventional CNN [30]. Three versions are highlighted:
DenseNet121, DenseNet169, and DenseNet201, which are differentiated by the number of
layers. The latter is used in this study.

2.2.5. MobileNetV2

MobileNet was first introduced by Howard et al. [31] using the concept of depthwise
separable blocks and consists of (1) depthwise convolution: performing a single convolu-
tional filter per input channel, followed by (2) pointwise convolution: computing a linear
1 × 1 convolution of the input channels. Later, Sandler et al. [32] improved the original
version by incorporating bottleneck blocks between input and output layers; bottleneck
blocks are similar to residual connections but are considerably more memory efficient [33].

2.3. Model Implementations

The transfer learning models are implemented using MATLAB’s Deep Learning Tool-
box™ release R2020a, The MathWorks Inc., Natick, MA, USA [34]. This package provides
access to the pre-trained models mentioned earlier, which have been specifically trained on
the ImageNet dataset. Some specifications of these models are presented in Table 4.

Table 4. Parameters of pre-trained CNN models.

Model Depth (Layers) Total Parameters (in Millions) Size (MB) Birth Year

VGG16 16 138.0 515 2014
ResNet50 50 25.6 96 2015

GoogLeNet 22 7.0 27 2014
DenseNet201 201 20.0 77 2017
MobileNetV2 53 3.5 13 2018

The computer code is executed on a machine equipped with an i7-9700K 3.6 GHz
processor, 64 GB RAM (Intel, Santa Clara, CA, USA), and an NVIDIA GeForce RTX 2080
40 GB GPU (Santa Clara, CA, USA). To apply the transfer learning approach for each model,
the following process is performed (see Figure 7):

(1) Data with its ground-truth labels are read. The five sub-images are randomly
chosen to form the train set with 70% of available samples, 20% for the validation set, and
the remaining 10% images as a test set, ensuring the independence of sets. (2) Each model
is loaded separately, and its initial layers are frozen to reuse the already learned general
features. Moreover, the last fully connected layer is substituted to match the three classes’
outputs. (3) Hyperparameters are predefined with specific values as outlined in Table 5.
These hyperparameters control various aspects of the deep learning model and its train-
ing process. The details and explanations of these hyperparameters are provided in the
following paragraph. (4) The training process involves training each model on the training
set and validating it at each epoch using the validation set. The training continues until
either the ’maximum number of epochs’ requirement is met or the validation patience
is satisfied. (5) The fine-tuned model is used to classify new images from the testing set.
Consequently, the predicted labels are obtained. (6) The predicted labels are compared with
the ground-truth labels to validate the model’s performance.
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In Table 5, the Solver represents the optimizer used for the loss function, which is
stochastic gradient descent with a momentum of 0.9. The batch size indicates the number of
images processed by the network in each batch for error computation and weight updates.
The initial learning rate is used at the beginning of training and decreases by 0.96 per
epoch in a stepwise manner. To prevent overfitting, the training process considers both a
maximum number of epochs and a validation patience method. The validation patience
method monitors the validation error for consistent behavior within a certain number of
epochs to determine when to stop training.

In
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Load data

Read labels

Dataset divison

-P-P50 _C

70% 20% 10%

Train Val. Test
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-P50

Labels comparision
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performance

Figure 7. Framework of transfer learning approach for each model.

Table 5. Hyperparameter specifications.

Solver SGDM
Momentum 0.9
Batch size 32

Initial learning rate 0.001
Learning rate policy Step
Learning rate decay 0.96

Decay period 1 epoch
Max epochs 30

Validation patience 8

The hyperparameters presented in Table 5 were determined based on findings re-
ported in the existing literature for similar studies: Mohanty et al. [35], Barbedo [36],
Zhang et al. [11], Maeda-Gutiérrez et al. [37], and Nagaoka [38]. These values have been
widely used and are recognized as effective choices for achieving good performance using
deep learning models.

3. Results

The proposed transfer learning approach was employed to classify three levels of
maize leaf phosphorous deficiency using the aforementioned deep learning models (VGG16,
ResNet50, GoogLeNet, DenseNet201, and MobileNetV2). The following subsections de-
scribe the evolution of accuracy and loss values during the training stage and present the
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results obtained to evaluate the overall performance of the studied models on the dataset
built specifically for this study.

3.1. Learning Curves

To evaluate the training performance, accuracy and loss curves are examined for each
epoch. Figures 8–12 depict the training progress with the training set and visual represent
how well each model learns. On the other hand, the validation curves in those figures
provide insight into how well the models generalize.
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Figure 8. Training and validation curves for the VGG16 architecture specifying (a) accuracy and
(b) loss in every epoch. The maximum accuracy value and the minimum loss are also reported.
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Figure 9. Training and validation curves for the ResNet50 architecture specifying (a) accuracy and
(b) loss in every epoch. The maximum accuracy value and the minimum loss are also reported.
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Figure 10. Training and validation curves for the GoogLeNet architecture specifying (a) accuracy and
(b) loss in every epoch. The maximum accuracy value and the minimum loss are also reported.
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Figure 11. Training and validation curves for the DenseNet201 architecture specifying (a) accuracy
and (b) loss in every epoch. The maximum accuracy value and the minimum loss are also reported.
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Figure 12. Training and validation curves for the MobileNetV2 architecture specifying (a) accuracy
and (b) loss in every epoch. The maximum accuracy value and the minimum loss are also reported.

Each model was run for 30 epochs, and it was found that at around ten epochs, the
models started to converge with high accuracy. Specifically, DenseNet, VGG, and ResNet
achieved more than 94% validation accuracy. They were followed by MobileNet, which
obtained an accuracy of more than 90% on the validation sets. In the same way, as is
expected, losses seem to be lower as accuracy increases and had values ranging from 0.18
to 0.4.

In addition, model behavior can be diagnosed by the shape of the learning curves. One
common dynamic that can be concluded by observing the graphs is overfitting. Overfitting
refers to a model that has learned the training dataset too exactly. This causes it to be
less able to generalize unseen data. Based on Figure 9, the ResNet loss validation curve
continues to increase after a minimum validation point. Similarly, the GoogLeNet loss
curve (Figure 10) has two peaks where the loss increases, causing training to stop at only
14 epochs.

Another consideration to be seen on the learning curves is the gap between the
validation and training loss curves, which indicates an insufficient dataset size. It can be
observed on Figure 12 that the MobileNet loss curve has a more considerable gap distance,
followed by ResNet and VGG (Figures 8 and 9, respectively).

Finally, the most consistent performance is obtained by the DenseNet model in
Figure 11 since both curves reach a point of stability with a minimal gap between the
final values. In addition, the training stops in 20 epochs, indicating good learning and
generalization of features in the images.

3.2. Performance Analysis

Once each model is trained, it can further be used to infer features of interest in un-
known data to test its generalization. In order to both assess the effectiveness of the studied
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models and to determine the superiority of one model over the others, four performance
metrics were utilized, as described below:

• Accuracy: This is the most common classification metric. This metric describes the
ratio between the number of correct predictions and the size of the data. The metric is
defined in Equation (1).

Accuracy =
Total correctly classified samples

Dataset size
(1)

• Precision: This is a performance metric that measures the proportion of correct predic-
tions for a specific class out of all the predictions made by the model for that class. It
provides insight into the model’s ability to accurately classify instances for a particular
class, regardless of the overall accuracy. Precision focuses on the relevance of the
model’s predictions compared to the actual ground truth. This metric is defined in
Equation (2).

Precision =
Correctly classified samples by class

correctly classified samples + incorrectly classified samples

=
Correctly classified samples by class

Total predictions by class

(2)

• Recall: Also known as sensitivity or true positive rate, recall is a performance metric
that measures the proportion of correctly predicted instances for a specific class out of
all the instances that actually belong to that class. It quantifies the model’s ability to
identify and capture the positive instances, or true positives, in relation to the actual
ground truth. Recall emphasizes the model’s capability to recognize and recall the
relevant instances of a particular class, without considering the incorrect predictions.
This metric is computed as presented in Equation (3).

Recall =
Correctly classified samples by class

Number of samples by class
(3)

• F1-score: The F1-score is a performance metric that combines precision and recall
into a single value by taking their harmonic mean. By incorporating both precision
and recall, the F1-score provides a comprehensive evaluation of the model’s ability to
achieve both high precision and high recall, promoting a balanced trade-off between
the two measures. The metric is defined by Equation (4).

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Since the metrics of precision, recall, and F1-score are performance measures for n
classes, there are different ways to combine these scores to have an overall value. One way
to do this is to calculate the simple arithmetic mean, which is known as the macro-averaged
score and is defined by Equation (5). With this technique, all classes contribute equally to
the final averaged metric.

Macro-averaged score =
Class1 score + · · ·+ Classn score

Total of classes
(5)

Table 6 presents a comparison of the performance metrics, including macro-averaged
precision, recall, F1-score, and accuracy, on the testing set. DenseNet is the model with the
best results and is highlighted.

In these terms, GoogLeNet obtained the lowest scores, followed by the VGG and
MobileNet architectures. As was discussed based on observing the learning curves, these
models had problems with training in terms of overfitting and insufficient dataset size.
Both aspects would negatively impact the model’s performance. In the same way, the
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most consistent training was done by DenseNet and ResNet, and this is depicted by their
high performance.

Table 6. Comparative performance analysis of validation macro-averaged metrics for each model.

Network Model Accuracy Precision Recall F1-Score

DenseNet201 96.1 96.1 96.0 96.0
MobileNet 91.5 91.8 91.4 91.5
ResNet50 92.7 92.6 92.6 92.6

GoogleNet 88.4 88.3 88.3 88.2
VGG16 91.1 91.1 91.1 90.9

To finish the evaluation of the studied models, the confusion matrix is used. This
tool records all the predictions made on the test set, allowing the visualization of the
performance for each class. On one side of the matrix, the ground truth is arranged against
predictions of the model. The confusion matrices for all models are shown in Figure 13.
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Figure 13. Normalized confusion matrices to evaluate the accuracy of prediction results for:
(a) VGG16, (b) ResNet50, (c) GoogLeNet, (d) DenseNet, and (e) MobileNet models.
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Based on the graphics, it can be seen that in almost all cases, the prediction of the
−P50 class has the lowest performance values, except for DenseNet (Figure 13d), which has
lower recognition rates for the −P label. Concerning this architecture, the color map shows
high homogeneity of correct classifications for all classes, i.e., this model has no strong
inclination to recognize one class more than another. In the opposite case, it can be seen
in Figure 13c that the GoogLeNet model has a classification weakness for the −P50 label
(79% accuracy), although all other classes are identified with good accuracy (both higher
than 90%). This same behavior is traced by MobileNet in Figure 13e but with a slightly
higher accuracy rate. Finally, both the VGG and ResNet models had similar behavior
(Figure 13a and 13b, respectively).

This difficulty in recognizing the −P50 label is observed in almost all models and is
explained by the overlap of visual characteristics between this class and the other two. This
makes it as difficult for a human as it is for a machine to recognize the differences between
a leaf with sufficient nutrition or low nutrition and a leaf with medium nutrition.

In addition to nutrition evaluation being relevant to ensure good agricultural pro-
duction, other issues, such as maize diseases, are also important and been studied using
the same deep learning framework, so it is possible to compare our results to the results
obtained by other studies from the literature; this comparison is presented in Table 7. It
was observed from the analysis that this work places within the state-of-the-art results and
also that only a few studies have attempted to acquire their own images.

Table 7. Results comparison with other studies from the literature.

Reference Dataset Multi-Classes Pre-Trained Model Metric Value

[14] PlantVillage 4
VGG19

Training accuracy
74.20

ResNet50 70.41
DenseNet201 84.13

Proposed “INC-VGGN” 97.57

[16] Self-created 4
VGG16

Test Accuracy
97.35

ResNet50 99.21
DenseNet169 99.51

Proposed “MDCNN” 99.54

[15] Self-created 6
VGG16

Average F1-Score
81.4

ResNet50 82.5
Proposed “SKPSNet-50” 91.9

[11] Various sources 9 Improved GoogLeNet Test accuracy 98.8
Improved Cifar10 97.1

4. Conclusions

The detection and identification of plant leaf issues is a relevant task in farm manage-
ment. The care of each plant leads to a healthy plantation, which results in high production
and excellent quality. Despite the development of many deep learning methods for the
classification of plant diseases, including leaf nutrition deficiency, they do not respond the
same to all situations. For this reason, there is an existing need to test deep learning model
performance for specific tasks, as learned features are extracted uniquely depending on
image characteristics.

In this study, five transfer deep learning architectures pre-trained on the ImageNet
database (i.e., VGG16, ResNet50, GoogLeNet, DenseNet201, and MobileNetV2) were
trained to classify three phosphorus deficiency levels. The training was conducted on a self-
made database comprising images taken by five different acquisition devices (but just one
camera’s images were selected for this analysis). It was found that DenseNet201 performed
the best for this specific problem: giving the most consistent training performance and
best recognition metrics and leading with an overall accuracy score of 96.1% as well as
correct prediction rates uniformly distributed among all classes. This performance is placed
within the state-of-the-art results, so further investigations can be done focusing on the
performance of this architecture against more current models.
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The second best-behaved model was ResNet50: reaching an accuracy of 92.7% but with
better recognition rates for −P and C labels than for those with −P50. Finally, GoogLeNet and
VGG16 models had lower overall accuracy (88.4% and 91.1%, respectively). The first, probably
due its huge number of layers, either does not learn enough features from the database or
requires more data to correctly adjust the network weights. Meanwhile, the dataset is possibly
unrepresentative for the second model, judging by the shape of the loss curve.

Moreover, the analysis of learning curves supports this hypothesis and allows us to
understand that for most architectures, either the amount or the quality of training data is
not sufficient for the models to make a perfect generalization of the features in the images.
Therefore, it is necessary to increase the size of the database in the future. In the same way,
different regularization techniques can be explored to avoid overfitting.

This study generates a comprehensive evaluation of the performance of the mentioned
models that contributes to the understanding of deep learning models applied to detection of
single-nutrient deficiency on plants. This also contributes to faster and economical identification
of nutritional phosphorus issues so that a crop’s fertilization schedule can be focused on specific
plants and thus make more rational use of resources, taking care of both the farmer’s budget as
well as the health of the environment. We remark that the setup proposed in this research can
be extended easily to real-time monitoring of other crop types and even to analyzing different
kinds of leaf issues that can be inferred from visual inspection.

In future work, we aim to explore the development of a novel model directly from our
dataset. This endeavor will involve experiments without pre-training to assess the model’s
performance and the potential advantages of a more specific dataset tailored to address
agricultural challenges. Additionally, we will investigate the implications of this approach
for broader applications in similar agricultural problems.
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Appendix A. Previous Results Using Different Camera Types

Table A1. Results of classification of images using GoogLeNet architecture according to camera type.

Metric Accuracy Average Precision Average Recall

Smartphone 1 0.84 0.84 0.84

Smartphone 2 0.91 0.92 0.92

Digital 0.80 0.81 0.80

Reflex 0.92 0.92 0.92

Scientific 0.93 0.92 0.93

https://zenodo.org/records/10279042
https://zenodo.org/records/10290643
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Appendix B. Previous Results of Model Behavior with and without Images with
Spurious Content

The GoogLeNet model was trained with both a database containing all the prepro-
cessed subimages and with another database wherein the blank images were removed.
The results are listed in Table A2 and show a significant decrease in performance when the
blank images are included.

Table A2. Results of classification of two databases using GoogLeNet architecture: Comp. stands for
the database with all images, and Drop. means the database with blank images removed.

Metric Accuracy Class Precision Mean Class Recall Mean

-P -P50 C Precision -P -P50 C Recall

Comp. 0.91 0.91 0.88 0.94 0.91 0.86 0.91 0.95 0.91

Drop. 0.93 0.91 0.91 0.96 0.92 0.95 0.91 0.92 0.93
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