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Jałmużna, W.; Butkowski, Ł.; Branlard,

J.; Bellandi, A.; Jabłoński, G.
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wojciech.cichalewski@p.lodz.pl (W.C.); wojciech.jalmuzna@p.lodz.pl (W.J.)

2 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
lukasz.butkowski@desy.de (Ł.B.); julien.branlard@desy.de (J.B.); andrea.bellandi@desy.de (A.B.)

* Correspondence: fatemeh.abdi@dokt.p.lodz.pl

Abstract: Low-level radio frequency (LLRF) systems have been designed to regulate the accelerator
field in the cavity; these systems have been used in the free electron laser (FLASH) and European X-ray
free-electron laser (E-XFEL). However, the reliable operation of these cavities is often hindered by two
primary sources of noise and disturbances: Lorentz force detuning (LFD) and mechanical vibrations,
commonly known as microphonics. This article presents an innovative solution in the form of a
narrowband active noise controller (NANC) designed to compensate for the narrowband mechanical
noise generated by certain supporting machines, such as vacuum pumps and helium pressure
vibrations. To identify the adaptive filter coefficients in the NANC method, a least mean squares (LMS)
algorithm is put forward. Furthermore, a variable step size (VSS) method is proposed to estimate
the adaptive filter coefficients based on changes in microphonics, ultimately compensating for their
effects on the cryomodule. An accelerometer with an SPI interface and some transmission boards are
manufactured and mounted at the cryomodule test bench (CMTB) to measure the microphonics and
transfer them via Ethernet cable from the cryomodule side to the LLRF crate side. Several locations
had been selected to find the optimal location for installing the accelerometer. The proposed NANC
method is characterized by low computational complexity, stability, and high tracking ability. By
addressing the challenges associated with noise and disturbances in cavity operation, this research
contributes to the enhanced performance and reliability of LLRF systems in particle accelerators.

Keywords: narrowband active noise controller (NANC); least mean squares (LMS); field-programmable
gate array (FPGA); microphonics; accelerator; continuous wave (CW)

1. Introduction

Currently, the free electron laser in Hamburg (FLASH) [1] and the European X-ray free-
electron laser (E-XFEL) utilize a digital low-level radio frequency (LLRF) control system
based on field-programmable gate array (FPGA) technology to stabilize the accelerator field
at facilities [2]. FPGA technology is employed in the control system design to maximize
computation power while minimizing latency.

In particle accelerator facilities, two distinct operational modes are used: pulsed or
continuous wave (CW). The maximum number of particle bunches that a particle accelerator
can create in pulsed mode is typically in the range of a few ten thousand bunches per
second; however, the beam energy can be quite high (17.5 GeV for the E-XFEL). Short pulses
require MHz beam injection, and the duty cycle is relatively low because the accelerator
operates in bursts with significant downtime between bunch trains.

CW accelerators operate with a steady stream of particle bunches, often at a signifi-
cantly lower frequency than pulsed accelerators, but yield a higher number of bunches per
second (up to a million). On the other hand, the CW mode typically has lower energy than
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the pulsed mode (4–8 GeV). For these reasons, research and development (R&D) programs
focused on the potential upgrade of the E-XFEL for CW operations are of high interest. The
steady and effectively higher bunch throughput is the main motivation for users to explore
CW machines with simplified beam detection and diagnostic systems [3,4].

The application of the conventional proportional-integral (PI) control method for
resonance control feedback in the cavities is restricted by the mechanical properties of
the cavities. The transfer function of the actuators, when considered in conjunction with
the cavity, exhibits poles in a frequency range proximate to the prevailing components of
microphonic disturbances. Consequently, the use of the PI control scheme proves ineffective
due to an inadequate phase margin within the crossover frequency range. To surmount
these limitations, more sophisticated algorithms have been devised and implemented,
such as the active noise controller (ANC) and narrowband active noise controller (NANC)
methods. Both the ANC and the NANC methods are commonly employed to reduce noise
in many media, and these techniques have also been applied to superconducting radio
frequency cavities [5]. Mechanical vibrations (microphonics) are generated in the accelerator
environment by various sources, like vacuum pumps, helium pressure vibrations, and
fans. Microphonics change the mechanical dimensions of the cavities, which results in
a shift in the resonant frequency. To counteract this, the accelerating structure must be
tuned to the specified resonance frequency. The detuning frequency, the difference between
the actual frequency and the resonance frequency, should be cancelled using an advanced
controller [6,7].

According to measurements made at the cryomodule test bench (CMTB), the micro-
phonics are frequencies below 500 Hz that change based on the characteristics, size, and
placement of the cavity concerning its surroundings [8]. The ANC controller was imple-
mented for microphonics effects at CMTB. This controller, however, has a longer response
time and concentrates on the detuning determined from the RF signal, while the operators
must manually set the microphonics frequency and the step size of the ANC method.

In this paper, we propose an advanced NANC method to control and track micro-
phonic disturbances. This controller utilizes the variable step-size least mean squares (VSS
LMS) algorithm to identify and estimate the adaptive filter coefficients based on the micro-
phonics changes. The controller produces a signal with the same amplitude and opposite
phase of the microphonic disturbances. The step-size parameter significantly influences the
LMS algorithm’s performance. Initially, a large step size is necessary to quickly adapt to
the noise changes. A smaller step size ensures minimal misadjustment and stability after
the error signal converges to a minimum value [9].

2. Controller Loops
The LLRF System Comprises Two Control Loops

Using 16-b analog-to-digital converters, RF signals (1.3 GHz) are first down-converted
to 54.17 MHz and then sampled at 81.25 MHz. After that, the in-phase (I) and quadrature
(Q) signals are made available for control signal production by using the non-I/Q detec-
tion algorithm. The DRTM-DWC10 rear transition module and the SIS8300L advanced
mezzanine card combination are used for down-conversion and I/Q detection. To handle
the forward, reflected, and pick-up signals from the cavities, three RTM-AMC pairs are
required. The detector board computes the vs. signal (2 × 18 b). After that, it is transmitted
over the MicroTCA.4 backplane to the DAMC-TCK7B controller. A 3.2-Gb serial connection
using a low-latency proprietary protocol is used for this purpose.

1. The LLRF controller is responsible for stabilizing the accelerator field. Figure 1
provides an overview of the LLRF control system currently in operation at CMTB.

2. The primary LLRF controller algorithms are implemented on a dedicated data process-
ing card. The LLRF controller’s output is then transmitted to an upconverter/vector
modulator card, and the resulting signals drive the preamplifier and inductive output
tube (IoT) [10,11].

3. The detuning controller loop aims to stabilize the resonance frequency of the cavities.
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4. This paper primarily focuses on the implementation of the detuning controller. An
approach has been proposed to identify microphonics changes and estimate adaptive
filter coefficients using the VSS LMS algorithm.
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3. Compensation Method for Microphonics Detuning

The noise sources and resulting noise signals are frequently periodic in ANC applica-
tions. These periodic noise signals are produced by rotating machinery like motors, fans,
compressors, and engines. Since sine waves have fundamental and harmonic components,
each periodic signal can be expanded as the sum of several sine waves by using the Fourier
series theory.

The noise source’s basic frequency is picked up by a sensor or an accelerometer.
A signal generator uses this data to produce a periodic signal with the same source’s
fundamental frequency. The generated signal is sent via an adaptive filter (the ANC filter),
which modifies its spectrum to match the noise at the canceling loudspeaker’s amplitude
and phase (with the opposite sign). The error signal detects unwanted noise and gives
instructions for ANC filter adaptation.

Mechanical noises, generated by vacuum pumps, compressors, refrigeration equip-
ment, helium boiling, and turbulent flows in pipes, are typically periodic [12].

An advanced narrowband active noise controller (NANC) method is proposed to
compensate for the mechanical noise. It provides a reference signal that includes the
fundamental frequency and all harmonics of the mechanical noise. In the NANC method,
two types of reference signals are commonly used:

1. An impulse train with a period equal to the inverse of the fundamental frequency of
the periodic noise [13,14].

2. Sinewaves that match the frequencies of the corresponding harmonic tones are to be
cancelled. A particular sinusoid signal can be eliminated by a finite impulse response
(FIR) notch filter in the NANC method while having very little impact on narrowband
noise, as shown in Figure 2. The second technique, the adaptive FIR notch filter,
was developed to cancel tonal interference [15] and has been adapted for use in the
periodic NANC method [16].
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The proposed NANC method is implemented using an adaptive FIR notch filter,
offering the advantages of easy bandwidth control and precise frequency tracking of the
mechanical noise. Within the adaptive notch filter, two adaptive coefficients are used:
x1(n) = A × sin(w0n) and x2(n) = A × cos(w0n). These are individually weighted and then
summed to produce the controller’s output signal (Y(n)). The LMS algorithm is employed
to update the filter coefficients (w1(n) and w2(n)) and minimize the residual error (E(n)).
According to Figure 2, an error signal is the difference between the noise and the controller’s
output signal.

The NANC method, incorporating the VSS LMS algorithm implemented with hard-
ware description language (HDL), is utilized to adapt to changes in the resonance frequency
of the cavity induced by microphonics. This is especially important for perturbations in
the narrow band when the disturbance can be represented as the sum of sine waves. The
ANC’s parameters can be adjusted in general while the system is operating by iteratively
optimizing the filter coefficients that are implemented in the high-level software. Com-
plementing existing research in LLRF, the NANC with VSSLMS algorithm offers novel
insights and advancements in control precision. Supplementing the related work in LLRF,
the NANC system, driven by the VSSLMS algorithm, introduces innovative approaches for
improved performance and stability.

Narrowband Active Noise Controller Components

The algorithms are inherently susceptible to measurement noise because the mag-
nitude of the estimation error determines the step size. The algorithm is robust to low
signal-to-noise ratio environments and has a lower computing complexity due to the ap-
plication of the sign-based criterion in the step-size estimation procedure. By reducing
rounding error, the suggested structure optimizes the fixed-point implementation and
permits a reduction in the word length. As depicted in Figure 3, the presented method
comprises four components:

The first component, the adaptive filter component, implements the adaptive FIR
notch filter. Its purpose is to generate the controller output, which contains the same
amplitude and opposite phase as the microphonics signal. The FIR notch filter is imple-
mented to calculate the controller output signal based on Equation (1) and transfer it to the
actuator. Input signals should be multiplied by w1,i,x(n) and w2,i,x(n) (filter coefficients),
respectively [17]. Some dual-port memories (DPM) are used to store the frequency, coeffi-
cients, and step size, and the D block is a D flip-flop for shifting the samples of sine signals
in registers.

yi(n) = w1,i,x(n)sin(win) + w2,i,x(n)cos(win) (1)

The second component, known as the weight computation FxLMS component, is
designed for determining the new coefficients in the FxLMS and LMS algorithms.
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The delayed error signal fe(n − D) (D is a delay), which is the difference between the
output of the NANC algorithm yi(n) and the microphonics measured by the piezo sensor,
updates the filter coefficients, w1,i,x(n + 1) and w2,i,x(n + 1), to minimize the residual error,
according to Equations (2)–(5):

w1,i,x(n + 1) = w1,i,x(n) + µi(n)fe(n − D)x̂1,i,x(n) (2)

w2,i,x(n + 1) = w2,i,x(n) + µi(n)fe(n − D)x̂2,i,x(n) (3)

x̂1,i,x(n) = ∑nw
i=1ŝi(n)sin(win) (4)

x̂2,i,x(n) = ∑nw
i=1ŝi(n)cos(win) (5)

In the equations, fe(n − D) is an error signal with a delay, µi(n) is a variable step size,
and ŝi(n) is secondary path modeling in the system.

The third component involves the suggested step-size update component (shown
in Figure 4). This component calculates the new variable step size and is responsible for
improving the convergence rate, computational complexity, and bit error rate performance
of the algorithm over the existing algorithms. To ensure the algorithm’s stability and
desired steady-state performance, the step size should be constrained to the minimum and
maximum values of the step size. Using the comparator and multiplexer creates a simple
structure with lower computational complexity.

ys(n) =
nw

∑
i=1

ŝi(n)v1(n − i)fe(n − i) (6)

According to Equation (7), a µs(n) is a variable step size of the SPM, and the coefficients
of the transfer function of the actuator are updated by an LMS algorithm. The error signal
fe(n − i) with i delay is used to update the ŝi(n + 1) secondary path coeeficients.

ŝi(n + 1) = ŝi(n) + µs(n)es(n)v1(n − i)fe(n − i) (7)
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The steps of updating the step size of the proposed method are described using
Equations (8)–(10):

µ(n + 1) =
c ∗ µ(n) + µExtrasign(e(n)), µmin ≤ µ(n) ≤ µmax

µmax, µ(n) > µmax
µmin,Otherwise

(8)

c =
{

2−r, i > i′min
1, Otherwise

(9)

sign(e(n)) =


+1, e(n) > ζtol
0, |e(n)| < ζtol
−1, e(n) < −ζtol

(10)

where sign(0) is the signum function and ζtol is a very small positive value that presents the
tolerance of the error signal at a steady state. The µExtra > 0 is a constant value that affects
the convergence rate. The proposed method includes two different values to calculate the c
parameter; a large c = 1 is taken for the initial iteration. imin is defined as the convergence
time of the mean step size, and a small c value is used in the variation process. 2−r is used
where r is a positive integer value. Using a hardwired r-bit right shift operation, 2−r can
be realized. Better steady-state performance and fewer misadjustments will result from c
being extremely close to zero.

According to Equations (8)–(10), when overestimation (measured microphonics < controller
output signal) occurs, the sign of e(n) is negative, while the positive sign of e(n) indicates
underestimation (measured microphonics > controller output signal). The step size is
updated by subtracting a small positive value, µEXTRA. µ(n + 1) = c × µ(n) − µEXTRA,
whenever overestimation occurs. Similarly, to oppose underestimation, the step size is
updated by adding a small positive value, µEXTRA, µ(n + 1) = c × µ(n) + µEXTRA, whenever
underestimation is encountered [17]. A constant parameter called µEXTRA > 0 affects both
the algorithm’s steady-state performance and convergence. The suggested algorithm’s
steady-state misadjustment equals the prior LMS algorithm structure when c is less than 1.

The final component is responsible for random white noise. It governs the injection
or cessation of the white noise in the NANC method. Random white noise component:
According to Equation (7), the LMS algorithm needs the random white noise v1(n) to update
the coefficients of the secondary path (ŝi(n + 1)). The performance block is implemented in
the NANC method to apply random white noise to the algorithm.

When the error signal converges to the minimum value, the injection of the white
noise (v1(n)) will be stopped. Also, the performance block injects white noise into the
algorithm when sudden changes happen in the secondary path. Based on the operation of
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the performance block, the current step-size value is compared to the previous step-size
value. If the step size has changes slightly, the random white noise v1(n) will be stopped.
The random white noise will be given back to the algorithm when the error signal is
divergent [18].

4. Hardware Implementation

From the results of the earlier tests conducted at the CMTB, it has been observed
that the microphone acceleration falls within a range of less than ±5 µg. Consequently, to
accurately measure microphonics levels, it becomes imperative to employ an accelerometer
with a sensitivity that matches or surpasses this threshold, ideally clocking in at less than
±5 µg. Additionally, our preference leans towards utilizing a digital accelerometer for
enhanced precision and reliable data acquisition. Because of these reasons, a solution is
suggested to measure and digitize the microphonics: the ADXL355 is a high-performance,
low-noise, low drift, and low-power 3-axis MEMS accelerometer developed by Analog
Devices. This accelerometer is specifically designed to provide accurate acceleration mea-
surements while consuming minimal power, making it suitable for various applications in
industries such as automotive, industrial, aerospace, and consumer electronics. The sensi-
tivity of the accelerometer is 3.9 µg/LSB at ± 2 g. The maximum SPI frequency is 10 MHz;
antialiasing filters are provided in the ADXL355 before and after the high-resolution ADC
(20 bits). There are user-selectable output data rates (ODR) and filter corners, and the filter’s
high-pass and low-pass poles can be configured [19]. The ADXL355 can connect to another
device with a digital interface (SPI or I2C). The SPI digital interface is implemented into
the vector modulator board (DRTM-VM2) to receive the measured microphonics through
the accelerometer. The DRTM-VM2 is constructed as a rear transition module (RTM). The
subsystems of the module are management, diagnostic, analog, and digital. Multi-gigabit
transceivers (MGTs) are used by the FPGA from the Xilinx Spartan 6 (xc6slx45tfgg484) fam-
ily to receive data from the control module (AMC). The zone 3 connector’s pin assignment
complies with DESY’s digital class D1.2 standards.

In the deployment of our communication system, as illustrated in Figure 5, we make
effective use of RS-485 technology by incorporating ADM3066E integrated circuits on a
dedicated transmission board. This strategic approach enhances the efficient transmission
of accelerometer data in the form of differential signals. Operating at a data transfer rate
of 50 Mbps, our RS-485-based solution not only guarantees reliable communication but
also achieves high-speed data transfer over distances of up to 30 m, which is the distance
between the location of the cryomodule and the LLRF crate. Harnessing the benefits of
RS-485 technology, our system excels in both rapid data transfer and the capability to
transmit accelerometer data across extended distances. This makes our solution particu-
larly well-suited for applications that demand long-range communication capabilities. To
complement the RS-485 setup, we strategically integrated an Ethernet cable to facilitate
the seamless transfer of data from the cryomodule to the LLRF crate. This integration
ensures efficient communication within the system, enhancing the overall performance of
our communication solution.

On the LLRF crate side, a dedicated transmission board plays a pivotal role in receiving
and converting differential signals to single-ended input. These converted signals are
directed to the MLVDS buffer (SN65MLVDS204AD), also known as the translator board
(SNMLVDS). The translator board serves a crucial function by converting SPI signals to
MLVDS signals, which then act as inputs to the RJ45 in the DRTM-VM2 card. Operating
under the designation SNMLVDS, the translator board facilitates the conversion of SPI
signals to MLVDS format, preparing them for transmission to the DRTM-VM2 card through
the RJ45 interface. The utilization of LVDS, with its characteristic differential voltage swing
between positive and negative wires, forms the foundation of this differential signaling
approach. The voltage difference between these signals not only encrypts the transmitted
data but also fortifies the system’s resistance to interference from common-mode noise.
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Figure 5. Proposed hardware.

Figure 6 provides a visual representation of the hardware implementation at the
CMTB, showcasing (a) the transmission board and the accelerometer on the cryomodule
side and (b) the translator and transmission boards on the LLRF crate side. These sig-
nals are subsequently transmitted to the DRTM-VM2 card through the RJ45 interface. In
Figure 7, the installed hardware is shown at CMTB. Following this transmission, the data
processing card (DAMC-TCK7) receives signals from the zone 3 connector and efficiently
transfers them to Xilinx Kintex 7 (xc7k420tffg901), thereby completing the data processing
workflow. In accordance with the PICMG MTCA.4 specification, the AMC-based Controller
(DAMC-TCK7) board was created as a general-purpose high-performance low-latency
data processing unit at DESY. The module offers the computational capacity, data stor-
age, communication channels, reference clock, trigger, and interlock signals needed by
contemporary LLRF control systems.
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SPI Interface

The SPI and finite state machine (FSM) configurations are designed to transfer the
MOSI (master output and slave input), CS (chip select), and SCLK from the FPGA to the
accelerometer and transfer the MISO (master input and slave output, measured microphon-
ics) from the accelerometer to the FPGA. Figure 8 shows the FMS of the top-level module
to configure the accelerometer and SPI module. The Mosi signal transfers the configuration
options to the accelerometer.
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The oscillator generates the clock at 81.25 MHz, and SPI-SCLK is 2 MHz. Some
accelerometer features, such as LPF (500 HZ), output data rate (2 KHz), interrupt, reset, and
power control, are configured in the SPI module. Based on the datasheet, the data value
will be changed from 235 K to 276 K LSB/g. In Figure 9, the accelerometer is mounted
on the z-axis, and the chipscope shows the microphonic measured in three axes and SPI
signals. In the data processing card, one sqrt_math component is implemented to calculate√

x2 + y2 + z2 of the inputs to the ENT_FIFO component.
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5. Firmware Implementation of the NANC Method

Two adaptive algorithms are used to identify and update the primary coefficients
of the FxLMS algorithm and the OSPM filter coefficients through the LMS algorithm. In
Figure 10, several FPGA modules are implemented to design the NANC method using
HDL language. The measured microphonics are directed to the FIFO module (ENT_FIFO).
A hamming window is applied to suppress spurious frequencies caused by discontinuities
in the samples and other operations like low-pass filtering. The subsequent FPGA module
is the FFT module (fft_ipCore), which converts discrete input signals from the time domain
to the frequency domain.
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Figure 10. Implementation of the NANC with FPGA modules.

The max_3freq module calculates the three highest amplitudes of the microphonics
and their corresponding indexes. The Fout_finder modules compute the microphonics
frequencies based on the indices. The Ph_inc module is designed to calculate the phase
increment and transmit it to the Sig_Gen_dds module, generating sine and cosine signals as
input signals to the NANC modules that incorporate the presented NANC method, which
is implemented based on the proposed VSS LMS algorithm.

Firmware Implementation Results

The microphonics are measured by the piezo sensor, which is connected to the PZ16M
piezo driver module, and a fiber connects the PZ16M to the DAMC-TCK7 card. The
software that reads the values from the FPGA and exposes them to Java Data Display
(JDDD) is called the piezo server at DESY. The firmware implementation utilized an 18-bit
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fixed-point operation. Figure 11 shows the measurement setup in the experimental test in
the feedforward.
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Figure 11. Diagram of the measurement set-up.

Figure 12 displays the microphonics data measured, revealing microphonics occurred
at three frequencies with the highest amplitudes at 25 Hz, 28 Hz, and 31 Hz. Figure 13
illustrates the output signals of the FIFO, Hamming Window, and Fout_finder modules. The
FFT module generates the output (FFT_tdata) after a 1024-point process is completed when
the FFT_tlast goes to ‘1’. The Max_3freq module identifies the three highest-amplitude input
signals and their corresponding indices (Max_IDX0-2). These identified frequencies (25 Hz,
28 Hz, and 31 Hz) match the frequencies shown in Figure 12. The Ph_inc modules calculate
the phase increment and send it to the Sin_Gen_dds module to generate sine and cosine
signals based on the microphonic frequencies.
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Figure 13. Outputs of the FPGA modules in the NANC method.

In Figure 14, the error signal represents the difference between measured microphonics
and the NANC output, convergent to the minimum value. This indicates that the algorithm
can efficiently track the microphonics variation with high convergence and tracking ability.
The proposed NANC controller is implemented on a DAMC-TCK7 module [20], which
features the Xilinx Kintex 7 FPGA with an 81.25 MHz clock cycle. In Table 1, the resource
utilization of the implemented architectures is detailed. Referring to the power dissipation
report, the power dissipation is as follows: 0.023W for clocks, 0.052W for signals, and
0.034W for DSP, for a total on-chip power of 0.166W.
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Table 1. Resource utilization on the Xilinx Kintex 7 FPGA.

Module LUT FF DSP RAM
Available in

DAMC-TCK7 260,600 521,200 1680 835

Complete Project 6010 9889 66 30
NANC Module 963 1899 11 0

SPI-Interface
Available in
DRTM-VM2

296
(81,864)

436
(521,200)

2
(58)

0
(116)

6. Experimental Tests

The microphonics, as measured through the piezo sensor, are visually represented in
Figure 15. Notably, microphonics exhibit a consistent oscillation at 49 Hz across the majority
of cavities. To optimize the measurement of microphonics at identical frequencies detected
by the piezo sensor, an accelerometer is strategically mounted in 30 different locations on
the cryomodule. This comprehensive assessment aims to identify the optimal location
for capturing microphonics that are compatible with the output of the piezo sensor. The
measurements carried out in the Cryomodule Test Bench (CMTB) facility at DESY show
vacuum pumps as the main source of microphonics. Based on Table 2, which shows the
frequencies with the highest amplitude, the microphonic has the dominant frequencies of
approximately 32 Hz and 49 Hz with varying amplitude and phase. Also, slowly varying
operating conditions, such as vacuum pumps and helium pressure fluctuations, can cause
detuning of the cavities. Given the resonant nature of the cavities at around 49 Hz, the
accelerometer is strategically positioned on a pipe proximate to the cavity input. This
placement proves effective, as evidenced by the results obtained from Java Data Display
(JDDD) analysis, as illustrated in Figure 15. Leveraging the NANC algorithm, compensation
for microphonics in multiple cavities becomes possible when the accelerometer successfully
detects the 48.024 Hz frequency.
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Figure 16 provides a visual representation of the accelerometer’s placement next to the
third cavity. Notably, the accelerometer demonstrates its capability to detect frequencies
of 48.024 and 72.036 in this optimized configuration. As a result of these findings, the
strategically chosen location near the third cavity input proves to be not only optimal for
detecting microphonics at the resonant frequency but also extends the accelerometer’s
capability to capture additional relevant frequencies.
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Figure 16. Measure microphonics with an accelerometer at CMTB.

Based on Table 2, Figures 15 and 16, the selected accelerometer can detect the dominant
frequency of the microphonics; the proposed method does not need to configure the
filter coefficients and the step size manually by the operator. According to the proposed
algorithm, there is no need for high FPGA resources to implement it, and it has a high
convergence rate.

7. Discussion

In this innovative method, the cumbersome task of manually adjusting microphone
frequency and step size with the operator is eliminated. The implementation modules
efficiently received the measured microphonic data from the accelerometer. Using the FFT
module, the microphonic frequency is accurately calculated, and the DDS module then
transfers the generated sinusoidal signals with corresponding microphonic frequencies to
the proposed algorithm as input signals.

This methodology introduces a streamlined approach where the proposed algorithm
takes charge of identifying and computing filter coefficients based on the microphonic changes.
The algorithm ensures a more efficient and accurate adjustment of parameters, enhances
tracking ability, and needs fewer FPGA resources due to simple mathematical operations.

In previous DESY research, the piezo sensor inside the cryomodule measured the
microphonics. However, in the current approach, an external accelerometer is mounted
on the cryomodule to measure the microphonics. Due to the uncorrelation between the
measured microphonics by the external accelerometer and the microphonics inside the
cryomodule, an advanced algorithm becomes imperative in this proposed methodology.

However, it is important to note a limitation of the implemented method, which
involves the use of a single accelerometer. This constraint arises due to the necessity of
transferring data from RJ45 to DRTM-VM2. Consequently, the implementation requires
four inputs and outputs for transmitting an SPI protocol. Despite this limitation, the overall
efficiency and precision achieved by the proposed algorithm underscore its potential for
advancing the field of microphone compensation.



Electronics 2024, 13, 155 15 of 16

8. Conclusions

The microphonics changes on the cryomodule restrict the performance of the PI
controller at the LLRF system. Therefore, the proposed NANC method is implemented
based on the presented VSS LMS algorithm to compensate for the microphonics effects on
the cryomodule. Some advantages of the proposed method are:

1. There is no need to identify the transfer function of the cryomodule and plant.
2. Low computational complexity.
3. High tracking ability.

The proposed method identified three frequencies of the microphonics with the highest
amplitude. In principle, the adaptive filter coefficients of the NANC method are adjusted
during the operation of the system by an iterative optimization method. The presented
method is implemented on the MicroTCA boards (DAMC-TCK7 and DRTM-VM2 cards)
and permits control of the microphonics changes in CW mode. A microelectromechanical
systems (MEMS) accelerometer is mounted on several locations of the cryomodule at
CMTB, and the optimal location is on the pipe near the cavity input for measuring the
microphonic (mechanical) vibration. The component implementation is integrated into
the LLRF controller module to compensate for the measured microphonics changes. In
the next step of the project, the microphonic module will be extended in piezo feedback in
the DESY firmware and receive the probe phase and forward phase as the inputs of the
microphonics module to identify the filter coefficients based on the microphonics changes.
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