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Abstract: Despite the widespread use of IP geolocation databases, a robust and precise method
for evaluating their accuracy remains elusive. This study presents a novel algorithm designed to
assess the reliability of IP geolocation databases, leveraging the congruence of delay distributions
across network segments and cities. We developed a fusion reference database, termed CDCDB, to
facilitate the evaluation of commercial IP geolocation databases. Remarkably, CDCDB achieves an
average positioning accuracy at the city level of 94%, coupled with a city coverage of 99.99%. This
allows for an effective and comprehensive evaluation of IP geolocation databases. When compared
to IPUU, CDCDB demonstrates an increase in the number of network segments by 18.7%, an increase
in the number of high-quality network segments by 13.2%, and an enhancement in the coverage
of city-level network segments by 20.92%. The evaluation outcomes reveal that the reliability of
IP geolocation databases is not uniform across different cities. Moreover, distinct IP geolocation
databases display varying preferences for cities. Consequently, we advise online service providers to
select suitable IP geolocation databases based on the cities they cater to, as this could significantly
enhance service quality.

Keywords: IP geolocation databases; evaluation; network segment; delay distribution; city delay
characteristics

1. Introduction

The rapid proliferation of the Internet and the ubiquitous adoption of mobile ap-
plications have precipitated an unprecedented demand for the precise geolocation of IP
addresses [1,2]. In the recent past, a multitude of IP geolocation methodologies have been
proposed, finding wide-ranging applications across diverse sectors such as online services,
targeted advertising, social sharing, network performance enhancement, and bolstering
network security [3–5]. The most commonly employed technique for IP geolocation hinges
on database queries, which involves soliciting an IP geolocation database to extract the
geolocation specifics of IP addresses. A number of Internet corporations have rolled out
sophisticated IP geolocation libraries for public utilization, notable among them being
MaxMind GeoIP2 [6] and IP2Location [7]. Patricia Callejo and her team underscore that a
staggering 50% of online advertisements necessitate location information of IP addresses,
which are furnished by these IP geolocation libraries [8].

However, the veracity of IP geolocation databases is often called into question. These
databases typically remain reticent about the methodologies they deploy in their construc-
tion. Moreover, a significant number of these databases are beleaguered by the absence
of location data and high incidences of address migration [9]. As a result, different IP
geolocation databases may proffer inconsistent results for the same IP address. Poese et al.
inferred that while IP geolocation databases furnish reliable location information at the
national level, their city-level data leave much to be desired [10]. Gharaibeh et al., in their
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appraisal of four databases using a limited dataset, deduced that these databases exhibit
a 95.8% location consistency at the national level; however, this consistency plummets to
71% at the city level [11]. Ben Du et al., in their evaluation of RIPE IPmap’s performance,
discovered that its city-level positioning accuracy hovered around 80.3% [12]. Gouel et al.,
through a decade-long longitudinal study, unearthed significant short-term dynamics in
the GeoIP2 database [9]. These studies collectively underscore a pervasive issue: the posi-
tioning information proffered by IP geolocation databases for IP addresses is not entirely
trustworthy. This is particularly pronounced for city-level positioning information and
smaller geographic regions. Therefore, effectively evaluating the quality of IP geoloca-
tion repositories and providing corresponding recommendations has emerged as a viable
approach for individuals selecting IP geolocation repositories.

The current evaluation methodologies for IP geolocation databases primarily bifurcate
into two categories. The first involves the research team amassing a ground truth collection
of IP addresses and assessing the database’s accuracy predicated on this collection [13–16].
While this method can accurately assess verified IP addresses, it is not without its limita-
tions. The range of verifiable IP addresses is circumscribed, precluding a comprehensive
assessment of the IP geolocation database. Additionally, procuring the ground truth collec-
tion poses a formidable challenge. The second approach evaluates IP geolocation databases
predicated on consistency [17–19]. This is achieved by comparing the similarity between
multiple databases, such as data consistency rate or delay similarity rate. This method
addresses the limited detection range issue of the previous scheme. However, the accuracy
of the evaluation results is subpar, and its reliability is heavily contingent on the original IP
geolocation repository itself. This underscores the need for more robust and comprehensive
evaluation methodologies for IP geolocation databases.

The accurate and comprehensive evaluation of IP geolocation databases presents a
formidable challenge. In this study, we unveil a novel method for evaluating IP geolo-
cation repositories predicated on city delay characteristics. This approach is designed to
address the conundrum of striking a balance between the scope and accuracy of traditional
evaluation methods. Initially, we delve into the feasibility of a strategy that evaluates IP
geolocation repositories based on cities, network segments, and delay distributions. We
propose a strategy that gauges the reliability of each IP geolocation repository from a city-
centric perspective, predicated on the similarity between the delay distribution of network
segments and that of a city. Subsequently, we construct a converged reference database,
christened CDCDB, which boasts the capability to encompass all IP addresses and furnish
highly accurate localization results, which is a requirement that remains unfulfilled by other
evaluation methods. Our contributions are primarily encapsulated in the following points:

• We propose a minimum network segment matching mechanism. This mechanism
effectively integrates the network segment information from multiple IP geolocation
databases, addressing the issues of address overlap between different databases and
candidate address problems within segments.

• We introduce a nearest neighbor network segment matching mechanism. This mecha-
nism expands the candidate cities for a network segment, which is crucial for improv-
ing the location accuracy of the segment.

• We put forth the concept of city delay feature (CDC). It accurately describes the
delay distribution and delay pattern of a target city obtained from a specific detection
point, offering a novel solution to improve the city-level geolocation accuracy of an
IP address.

• Finally, we propose a network segment verification algorithm based on city delay
features. By leveraging the similarity between the delay distribution of network
segments and that of cities, we propose network segment delay feature values for
candidate cities and select candidate cities for network segments based on these values.

The remainder of this paper is structured as follows: Section 2 provides a review of
the relevant evaluation methods for IP geolocation databases. Section 3 discusses three
distinct evaluation strategies. Section 4 offers a detailed description of the methodology for
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evaluating IP geolocation databases based on city delay features. Section 5 presents the
experimental and evaluative procedures conducted. Finally, Section 6 provides a summary
of the paper.

2. Related Work

A multitude of IP geolocation methodologies have been proposed, finding wide-
ranging applications across diverse sectors [20,21]. For instance, Q Li et al. achieved IP
geolocation through fine-grained and stable webcam landmarks [1], while Z Ma et al.
proposed an IPv6 geolocation algorithm predicated on neural networks [22]. Despite the
rapid strides in IP geolocation technology, numerous scholars have underscored that current
IP geolocation databases provide geolocation information for IP addresses that is reliable at
the national level but falls short at the city level [10–12]. M Cozar et al. pointed out that a
number of online databases and services furnish geolocation data for IP addresses with
varying degrees of accuracy and reliability [23]. Livadariu et al. demonstrated that existing
databases tend to incorrectly geolocate IPs belonging to global networks and IPs moving
between networks [24]. D Ganelin et al. unearthed evidence of bias in IP geolocation: it
makes greater geographic errors for users from more economically disadvantaged areas,
and it disproportionately places users from more economically disadvantaged areas in
prosperous areas [25]. IP geolocation databases constitute the most prevalent conduit for
individuals to procure geolocation information of IP addresses. However, the precision of
some geolocation services leaves room for enhancement [26]. Consequently, the selection
of a suitable IP geolocation database emerges as a topic of significant importance.

At present, methodologies for evaluating IP geolocation repositories can be broadly
bifurcated into two categories. One approach entails researchers evaluating IP geolocation
repositories by independently constructing ground truth collections of IP addresses. Specif-
ically, researchers assess the accuracy of these databases by utilizing a set of IP addresses
with known or estimated locations and juxtaposing them with the locations reported in the
databases. Researchers have amassed ground truth collections of IP addresses through a
variety of means. For instance, Shavitt et al. constructed ground truth sets using virtual
node aggregation [13], while Jiang et al. gathered IP location data from various sources [14],
including government websites, universities, well-known companies, and shopping fo-
rums. Komosny et al., on the other hand, collected IP address data from other websites [15].
J Sommers harnessed geolocation information embedded in non-standard HTTP response
headers and unencrypted HTTP cookies [27]. Saxon et al. utilized validation set data ob-
tained from devices such as mobile terminal GPS [16]. O Dan et al. enhanced IP geolocation
by mining search engine click logs [28]. These methods can procure location-accurate IP
addresses, but the data size is generally small. Consequently, validation-set-based assess-
ment methods can only assess the reliability for a limited number of IP addresses in the
database, and cannot comprehensively assess all IP addresses in the database. Moreover,
in constructing a ground truth set of IP addresses, ensuring the accuracy of the dataset
poses a formidable challenge [29].

The second approach is the consistency-based assessment method, which evaluates
IP geolocation repositories by comparing data consistency or latency consistency between
databases. Huffaker et al. utilized data consistency to assess the reliability of IP geolo-
cation repositories [17], premised on the assumption that the majority of IP addresses
in these repositories yield consistent localization results. Their findings suggest that IP
geolocation repositories tend to prioritize the localization accuracy of routable IPs. H
Li et al. extended this work by proposing a weighted voting database fusion model [18],
DEROSSO, in conjunction with data consistency rates. Their results indicate that Chinese
providers’ IP geolocation repositories are more adept at locating IP addresses within China
compared to foreign providers’ repositories. X Bo et al. introduced the delay consistency
rate from a delay similarity perspective and enhanced the DEROSSO model based on this
metric [19]. They proposed the D&D model for evaluating IP geolocation repositories.
The D&D model supplements the active validation method based on the data consistency
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rate, thereby improving the reliability of data consistency rate-based evaluation methods.
While consistency-based evaluation methods enable large-scale evaluation of IP geolocation
repositories, these methods lack location validation means, and their reliability heavily
depends on the original IP geolocation repositories. Notably, they are unable to validate
numerous non-routable IP addresses.

3. Evaluation Strategies

In this section, we will delve into the relevant strategies employed for evaluating IP
geolocation repositories. These strategies form the theoretical foundation for our proposed
method of database evaluation, which is based on urban delay characteristics.

3.1. City-Based Assessment Strategies

The literature [10–12] highlights that while different IP geolocation libraries perform
commendably in national-level geolocation efforts for IP addresses, they exhibit significant
disparities in city-level geolocation efforts. This observation motivates us to consider the
primary differences between IP geolocation repositories for effective evaluation. It is a
promising approach to assess the quality of different IP geolocation repositories based on
the differences in city-level geolocation of the databases.

In order to substantiate the conclusions drawn earlier, we selected four widely used IP
geolocation databases for similarity experiments. These databases encompass IPUU [30],
IP2Region [31], IP2LocationLite [7], and GeoLite2 [6]. The IPUU database was procured
from AIWEN TECH, while the remaining three databases are freely accessible versions.
Initially, we counted the number of network segments contained in all experimental IP
geolocation libraries. During this process, we discerned that a significant number of IP
addresses within the same database lack city location information, and the number of IP
addresses with city location information varies across different databases. We define the
percentage of IP addresses with city location information in the IP geolocation database as
the city coverage of the database. In a similar vein, we define the country coverage of the
database. Consequently, we synchronized the number of network segments and coverage
across all experimental IP geolocation databases, as depicted in Table 1.

Table 1. Number of network segments and coverage of IP geolocation repositories.

Database
Network Segments Coverage

ALL Country City Country City

IPUU 13,704,888 13,701,348 10,838,666 99.97% 79.08%
IP2LocationLite 3,841,655 3,834,796 3,831,202 99.82% 99.73%

GeoLite2 3,463,148 3,463,046 3,463,046 99.99% 99.99%
IP2Region 1,023,551 1,023,533 338,311 99.99% 33.05%

Our analysis reveals that IPUU performs the best, containing over 10 million network
segments with country location information and over 10 million network segments with
city location information. IP2LocationLite and GeoLite2 perform similarly, containing
information for over 3 million network segments. In contrast, IP2Region performs the
worst, containing just over 1 million network segments with country location information
and over 330,000 network segments with city location information. All four experimental
databases have close to 100% country coverage, but there is a significant difference in terms
of city coverage. IP2LocationLite and GeoLite2 have city coverages of 99.73% and 99.99%,
respectively, and IPUU has a city coverage of 79.08%, while IP2Region has a city coverage
of only 33.05%. This suggests that all the experimental databases prioritize national-level
geolocation of IP addresses, but their focus on city-level geolocation varies significantly,
which aligns with findings reported in other works. From Table 1, we infer that the primary
difference between different IP geolocation repositories is manifested in the city-level
geolocation work.
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We introduce the comparative agreement rate metric to further assess the similarity
of city-level geolocation information. The design of the comparative agreement rate is
inspired by the data agreement rate proposed by Huffaker [17]. It refers to the ratio
of the number of IPs with consistent positioning to the number of all IPs provided by
two IP geolocation repositories for the same city. A higher comparative agreement rate
indicates greater similarity between the localization results of the two IP geolocation
repositories in that city. We conducted pairwise comparisons of the four experimental IP
geolocation repositories. To streamline the data volume for the experiments, we selected
42 international cities with common coverage across the four experimental databases as the
experimental subjects. These 42 experimental cities are situated in 32 countries worldwide
and encompass approximately 560 million IP addresses. Therefore, the experimental results
possess considerable objectivity. The experimental results are depicted in Figure 1.
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Figure 1. (a) Schematic of the comparison agreement rate results for IP2LocationLite and GeoLite2.
(b) Schematic of the comparison agreement rate results of all databases.

Figure 1a presents the schematic results of the comparative agreement rate between
IP2LocationLite and GeoLite2 across the 42 experimental cities. We observe that the
comparative agreement rate between IP2LocationLite and GeoLite2 exceeds 80% in most
cities. This suggests that the majority of cities in IP2LocationLite and GeoLite2 yield
consistent localization results, thereby resulting in a high comparative agreement rate.
However, there are certain cities where the comparative agreement rate is notably low.
For instance, in Denver, USA, the comparative agreement rate is a mere 9%. This indicates
a significant discrepancy between the location information provided by the two IP location
repositories in that city. Overall, approximately 25% of cities exhibit a substantial conflict
between the geolocation information provided by IP2LocationLite and GeoLite2. This
underscores that different IP geolocation libraries offer varying levels of reliability for IP
addresses across different cities.

Figure 1b provides a schematic of the comparative agreement rates obtained from
pairwise comparisons of the four experimental databases. We observed that the com-
parative agreement rates between different IP geolocation databases vary, with overall
rates being low. Among the 42 selected cities, the two databases exhibiting the highest
similarity are IPUU and IP2LocationLite, with an average comparative agreement rate of
only 60.1%. Conversely, IP2LocationLite and IP2Region, which display the lowest simi-
larity, have an average comparative agreement rate of a mere 39.1%. This suggests that
while most cities have location-aligned IP addresses provided by multiple IP geolocation
repositories, this high degree of similarity does not extend to all cities. In a few cities,
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there is significant conflict between the positioning information provided by different IP
geolocation repositories.

Table 1 and Figure 1 elucidate that at the city-level geolocation granularity, the reli-
ability of location information furnished by the same IP geolocation repository exhibits
considerable variation from city to city. Furthermore, there exist discernible differences
in the location information provided by different IP geolocation databases for the same
city. This observation serves as a catalyst for us to evaluate IP geolocation repositories from
a city-centric perspective. This approach promises to yield more nuanced insights into
the performance and reliability of these repositories, thereby facilitating more informed
decision-making for users leveraging these databases.

3.2. Network Segment-Based Evaluation Strategy

We further examine the difference in network segment quality among IP geolocation
repositories. IP geolocation repositories typically store data in the format of {net segment,
location}, where a net segment represents a set of numerically neighboring clusters of IP
addresses. The quantity of network segments can, to a certain extent, reflect the quality of
an IP geolocation database: the more network segments the database contains, the more
detailed the information it provides, and consequently, the more credible its geolocation
information becomes. We posit that the longer the prefix length, the fewer IP addresses
contained in the network segment, and consequently, the higher the quality of the segment.
Therefore, we categorize the quality of network segments based on the number of IPs they
contain. We consider network segments with prefix lengths longer than /24 as high-quality
segments, segments equal to /24 as normal-quality network segments, and segments
smaller than /24 as low-quality network segments. Based on this categorization, we
conducted quality statistics on all the network segments of the experimental IP geolocation
repository. The experimental results are depicted in Figure 2.
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Figure 2. Quality of network segments for IP geolocation repositories.

Our analysis reveals that IPUU exhibits superior performance, comprising 79% high-
quality network segments and 13% normal-quality network segments. GeoLite2 follows,
with 50% of its network segments classified as high-quality and 19% as normal-quality.
The distinction between IP2LocationLite and the preceding two databases primarily lies in
the high-quality network segments; IP2LocationLite contains merely 70% normal-quality
network segments and 31% low-quality segments. The least effective is the IP2Region
database, with a significant 45% of its network segments categorized as low-quality. Diverse
IP geolocation databases proffer varying numbers of network segments, engendering sig-
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nificant disparities in the quality of network segments in the databases. The more superior
the quality of a network segment, the higher the likelihood that its internal IP addresses are
situated in the same area. Consequently, the proportion of high-quality network segments
can be leveraged to evaluate the overall reliability of the IP geolocation database.

Determining the geographical location of the IP address in the form of network
segments also boasts higher credibility. While most current IP geolocation techniques
are based on IP addresses, Gharaibeh et al. proposed that geolocation can be achieved
more efficiently by utilizing clusters of IP addresses located at the same address [32].
Yong Gan et al. demonstrated that the geolocation of an IP address can be inferred from
sequences of neighboring IPs [33], and that the average error for the method based on
these neighboring sequences is 20–30 km. These studies suggest that the geolocation of IP
addresses can be more accurately determined by using clusters of neighboring IP addresses,
which aligns with the practices of network operators in assigning IP addresses. Moreover,
when constructing a reference database, the computational effort required to construct a
reference database based on network segments is significantly lower than that required for
a database based on individual IP addresses. Therefore, we will evaluate the IP geolocation
database based on network segments.

3.3. Evaluation Strategies Based on Delay Distribution

A significant number of IP geolocation techniques rely on the round-trip delay in-
formation of IP addresses for geolocation. For instance, Q Zhao et al. utilized delay as a
feature to elucidate the relationship between distance and delay and found that delay can be
effectively employed in geolocation efforts for IP addresses [34]. However, delay-based ge-
olocation methods do not always yield accurate results. As pointed out by Marchetta et al.,
the round-trip time (RTT) from the last hop of the traceroute and the RTT from the middle
hop are not comparable [35]. They originate from different ICMP responses, which are
handled differently by the router. Consequently, the middle hop may register a higher
latency than the destination.

We corroborate this conclusion as well. We actively probed the IP addresses of the top
100 cities globally from three probe sources in Weihai, London, and Newark, and plotted the
average RTT-distance curves as depicted in Figure 3. The distance is the Euclidean distance
between the target city and the probe node calculated based on latitude and longitude.
In Figure 3, we observe that the round-trip delay information does not consistently exhibit
a linear relationship with the distance. Once the distance between source and destination
addresses surpasses a certain threshold, the relationship between RTT and distance begins
to deteriorate. Simultaneously, the assumption that a shorter distance corresponds to a
smaller RTT is not necessarily accurate, as evidenced by numerous “spurs” in the delay
curves of cities with similar distances in Figure 3. This suggests that the feedback of
network delay on distance is influenced not only by the magnitude of the distance but
also by the network environment. Consequently, network delay does not accurately reflect
distance, and IP geolocation algorithms based solely on network delay are susceptible
to errors.

F Zhao et al. proposed a novel IP geolocation algorithm predicated on the similarity
of directional routers and local delay distributions, providing a fresh perspective on po-
tential solutions [36]. F Zhao highlighted that this IP geolocation algorithm, based on the
similarity of directional routers and local delay distributions, improves the accuracy by
an average of 19% over the learning-based method at city-level geolocation granularity.
The average accuracy of the algorithm proposed by F Zhao et al. exceeds 92% at city-level
localization granularity.
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Figure 3. RTT–distance curve graph of 100 cities.

To verify the reliability of the method of the localized delay distributions’ similarity
proposed by F Zhao et al., we conducted delay probing from the London node for IP
addresses localized in four cities, namely London, Paris, Brussels, and Rotterdam. Sub-
sequently, we tallied the delay frequency of different RTT messages located in the same
city according to their frequency of occurrence. By considering the delay frequency as a
characteristic of RTTs, we plotted the frequency–delay graph as depicted in Figure 4.

From Figure 4, we observe that the pattern of delay distribution across cities is not
uniform. There is an overlap in the delay ranges of neighboring cities, which clearly
illustrates that the network delay-based approach is susceptible to errors when cities are in
close proximity to each other. Although the delay distributions of neighboring cities all
resemble a normal distribution, the delay distribution patterns of different cities are entirely
distinct. This suggests that the localization results obtained from IP geolocation based on
network delay distribution are indeed more reliable than those based solely on network
delay. Therefore, we will evaluate the IP geolocation library based on the distribution
pattern of network delay.
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4. Method
4.1. Overview

Having discussed the strategies employed to evaluate IP geolocation libraries, we now
delve into the specifics of our approach. In our analysis, we introduce two concepts of IP
address clusters:

• Network Segment: The first is a network segment, which is a set of numerically
neighboring IP address clusters, denoted in the text in the form [ f irstIP, endIP].

• City IP Address Group: The second concept, referred to as a city IP address group,
represents a cluster of IP addresses located in the same city.

We aim to construct a reference database based on the similarity between the delay
distribution of network segments and the delay distribution of city IP address groups. Sub-
sequently, we will conduct a comprehensive and effective evaluation of the IP geolocation
database using this reference database. To address the challenges associated with the swift
and efficient construction of the reference database, the absence of city information for
certain IP addresses, and the low accuracy of city information for IP addresses, CDCDB
introduces two major enhancements. Figure 5 illustrates the architecture of the method for
constructing the reference database CDCDB.

GeoIPDB1 GeoIPDBmGeoIPDB2

 IPsame of Cities 

City1 
CBDR\CDC

City2 
CBDR\CDC

Cityn 
CBDR\CDC

LFR

Traceroute

Seg1

Minimum network segment match

Seg-Fusion

Seg2 Seg3

Cadidate Cities

City1 

Cityx 
Heuristic

verification
methods

City-Fusion 

Figure 5. Architectural diagram of the construction methodology of the reference database CDCDB.

To mitigate issues such as the difficulty in rapidly constructing the reference database
and missing city information for some IP addresses, we propose an approach based on the
minimum network segment matching mechanism. We determine city location information
of IP addresses based on network segments, thereby enhancing the efficiency of building
reference databases. Then, we enhance the number and quality of segments in the reference
database CDCDB by slicing segments with overlapping addresses between each database.
We also improve city coverage of IP addresses by retaining candidate city information.

To tackle the issue of low accuracy of city location information for IP addresses,
we initially utilize the minimum network segment matching mechanism to increase the
likelihood that IP addresses within the same network segment are located in the same region.
Then, we leverage the similarity between delay distribution of network segments and delay
distribution of city IP address groups to verify locations of network segments where
multiple candidate cities exist. Through a heuristic location verification algorithm based on
city delay characteristics, we effectively assist network segments with location conflicts in
determining city location information, thereby resolving the issue of low accuracy of city
location information for IP addresses.

4.2. Minimum Network Segment Matching Mechanism

We propose the amalgamation of location information from various IP geolocation
repositories to construct a reference database. By integrating multiple IP geolocation repos-
itories, we can acquire as much location information of IP addresses as possible, thereby
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facilitating the construction of a more comprehensive and accurate reference database. We
denote this reference database as CDCDB (City Delay Characteristics DataBase). Given that
IP geolocation databases contain a vast amount of data, and different databases provide
varying numbers of network segments, different qualities of network segments, and differ-
ent reliability levels of IP address location information, the primary challenge we need to
address is how to efficiently merge multiple IP geolocation databases. We aim to ensure
that the IP addresses have high city coverage and that the location information of the IP
addresses is highly accurate.

In Section 3.2, we address the feasibility of a network segment-based scheme to
improve IP geolocation accuracy. In an intuitive sense, the fewer the number of IPs within
a segment, the higher the quality of that segment. This also increases the probability that
the IP addresses within the segment are located in the same region. Upon analyzing the
number of network segments contained in the experimental IP geolocation databases, along
with the quality of these segments, we observed a noticeable overlap of assigned network
segments among multiple databases. To address this issue of overlapping addresses, we
propose a method based on a minimum segment matching mechanism. This method not
only expands the number of segments in the reference database but also enhances segment
quality by slicing mid-stacked address blocks.

The minimum network segment matching mechanism operates by dissecting network
segments with overlapping addresses across multiple IP geolocation databases. This
process involves dividing larger network segments into smaller ones and subsequently
annotating each segment with potential location information as a candidate location. This
approach serves a dual purpose. Firstly, it refines the network segments, thereby enhancing
the likelihood that IP addresses within the same network segment are localized in the same
region, i.e., it improves the quality of the network segments. Secondly, by remarking all
potential location information of the network segment, the city coverage of the segment
can be augmented. Concurrently constructing the reference database based on network
segments can significantly expedite the construction efficiency of the entire reference
database and reduce the volume of data requiring location verification. A schematic
representation of the minimum net segment allocation mechanism is depicted in Figure 6.

F1 - E1 F2 - E2 F3 - E3 F4 - E4
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min(E1,E2,E3,E4)

Fusion_before

Fk - Ek

Fn =  Ek+1 
and n != k

DBk  
NEXT LINE

DBn (n!=k) 
MODIFY F

Figure 6. Schematic diagram of the minimum network segment matching mechanism.

Initially, we arranged network segments of all the IP geolocation databases in as-
cending order and uniformly converted the expression form of network segments into the
format [FirstIP, EndIP]. Subsequently, we selected one network segment from each of the
databases in sequence post-sorting and executed a “smallest network segment” comparison.
In the first round of comparison, all databases provided the first sorted network segment,
hence all segments involved in the comparison shared the same FirstIP. We designated
the network segment with the smallest EndIP in this round of comparison as the fusion
network segment, recorded the city information of this segment across all databases as
the candidate location of this fusion network segment, and subsequently stored the fusion
network segment in the “Fusion-before” database. Following this, we selected the next
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segment from the database that provided the fusion network segment for the subsequent
round of comparison. The remaining network segments were sliced from the smallest
EndIP, and the residual portion was formed into a new segment for the next round of
comparison. This process was repeated until all segments had been compared.

Utilizing the minimum segment matching mechanism, we construct the Fusion-before
database. The network segments within this database may concurrently contain multiple
candidate cities, necessitating the verification of network segment locations with multiple
candidate cities. If a fusion network segment possesses only a single candidate city or lacks
any candidate city, we directly deposit the segment into the “Fusion” database, thereby
completing the final processing of the reference database construction.

4.3. City Delay Characteristics

For a converged network segment with multiple candidate cities, it becomes necessary
to discern the true location city of the segment from among the multiple candidates.
However, prior to executing the location verification, we must first ascertain the delay
characteristics of the network segments of the candidate cities. In Section 3.3, we explore
the feasibility of determining IP address geolocation schemes based on delay distribution,
and in our analysis in Section 3.1, we also discover that different IP geolocation inventories
exhibit certain city preferences. Consequently, we can verify the location of network
segments with multiple candidate cities in the Fusion-before database from the perspective
of city delay distribution.

Our objective is to discern the delay characteristics of cities, yet accurately obtaining the
delay information of cities and determining their delay distribution model pose significant
challenges. Figure 7 illustrates our frequency–delay graph from the London node for four
cities: London, New York, Beijing, and Singapore. In contrast to the three cities closer
to London in Figure 4 (Paris, Brussels, and Rotterdam), the three cities further from the
London node in Figure 7 (New York, Beijing, and Singapore) exhibit a large RTT mode
and a broad distribution of RTTs, as well as the phenomenon of RTT outlier nodes and
RTT clusters. Their delay distributions are so irregular that they cannot be adequately
represented by any mathematical model.
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Figure 7. Frequency–delay diagrams for London, New York, Beijing, Singapore (London).

Figures 3, 4, and 7 demonstrate that when the source IP is proximate to the target
IP, the size of the RTTs still exhibits a linear pattern with distance, and the city’s delay
distribution pattern is also evident. Conversely, this law does not hold when the source IP
is significantly distant from the target IP. This suggests that only when the target IP is closer
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to the original IP does the obtained delay information prove relatively accurate and the
city’s delay distribution regular. Therefore, only cities closer to the probe node can yield
accurate and centralized delay information, and only the delay distribution model obtained
based on this accurate delay information can be utilized for geolocation of IP addresses.
Consequently, we propose a distance-based collection point assignment method to gather
city delay information.

The principle of the distance-based acquisition point allocation method is depicted in
Figure 8. Initially, we select multiple probe nodes globally for delay detection. Subsequently,
we calculate the Nearest Haversine Distance [37] from the target city to different probe
points based on latitude and longitude, selecting the probe point with the shortest distance
as the city’s probe point. Finally, the specific probe node conducts delay detection on the IP
address of the assigned city to obtain the corresponding city delay information.

City 1 City 2 City j 

Prober 1 Prober 2 Prober k

Nearest Haversine Distance 

Traceroute

Figure 8. Distance-based collection point assignment method.

In the process of constructing the city’s delay characteristics, we encounter two signifi-
cant challenges. Firstly, how do we identify credible IP addresses that are localized to the
target city? Secondly, how do we construct a reliable city delay distribution model from the
obtained delay information?

To effectively obtain trusted IP addresses located in the target city, we propose a
dynamic comparison mechanism based on multiple databases. As observed in Section 3.1,
different IP geolocation databases often contain many identical IP addresses within the same
city. These location-consistent IP addresses are more trustworthy than other IP addresses
with location conflicts. Consequently, we treat all IP addresses that are locationally identical
across multiple IP geolocation databases as trusted IPs. These are then divided by city to
obtain a set of trusted IP addresses for a city, referred to as the set of city IPs (IPsame). If an
IP address lacks city information in a certain database, then that database is not involved
in the comparison. This dynamic comparison mechanism based on multiple databases
maximizes the number of trusted IP addresses.

Among the 42 experimental cities we selected, the average total number of city IPsame
datasets obtained based on three experimental IP geolocation databases is 7.95 million
(excluding IP2Region), while the average number of trusted IP addresses obtained based
on four experimental databases exceeds 2.54 million. Therefore, our delay characterization
of cities based on the city IPsame dataset is sufficiently objective and reliable. The dynamic
comparison mechanism based on multiple databases is depicted in Figure 9.
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Figure 9. Schematic diagram of dynamic comparison mechanism based on multiple databases.
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We utilize the delay information of the city IPsame dataset, obtained from the special
detection points, as the city’s delay dataset. However, we observe that even the delay infor-
mation derived from the city IPsame dataset is broadly distributed and contains numerous
RTT outlier nodes. We attribute this phenomenon to potential interference from network
firewalls or network congestion, resulting in a small number of IP addresses with distorted
feedback delay. The extensive distribution range of the city delay dataset is not conducive
to discerning the city’s delay characteristics and also impacts the computational efficiency
of these characteristics. Therefore, it becomes necessary to perform data preprocessing on
the collected raw time-delay data.

To address the issue of the extensive distribution range of the city delay dataset,
we employ a “Low-frequency rejection” method for data cleansing. Although different
cities exhibit distinct delay distributions, the delay distribution range for each city should
be concentrated within a certain value range. RTT values that are excessively small or
large may indicate distortion in delay information. Consequently, we propose that the
frequency of occurrence of an RTT signifies the credibility of that RTT: an RTT with a
higher frequency of occurrence is less likely to be distorted, while an RTT with a lower
frequency of occurrence is more likely to be distorted. We compute the frequency value of
each RTT based on the urban delay dataset. We eliminate extreme data with excessively
low frequency, a process referred to as “Low-frequency rejection”. By employing “Low-
frequency rejection”, we can significantly reduce the distribution range of delay information,
enhance computational efficiency, and simultaneously retain the primary characteristics of
urban delay. Specifically, RTTs with a delay frequency lower than 1/a are rejected. Utilizing
the “Low-frequency rejection” method, the reliability of urban delay characteristics can be
substantially improved. We will discuss the related parameter a in the subsequent section.

Finally, we construct the corresponding city delay characteristics. We arrange the reli-
able RTT dataset of the city in ascending order to establish the city’s boundary delay range,
denoted as CBDR = [t1, t2, . . . , tn]. Concurrently, we utilize the frequency of occurrence of
each RTT in CBDR as a feature of the RTT. For any city delay information tk, assuming its
frequency of occurrence is p, the RTT = tk is characterized by p, denoted as {tk : p}. Then,
based on the city’s boundary delay range and the frequency of occurrence, we derive the
city delay characteristics: CDC = [{t1 : p1}, {t2 : p2}, . . . , {tn : pn}].

4.4. Geolocation Verification Mechanism

As discussed in Section 3.3, we propose an evaluation strategy based on delay dis-
tribution. We argue that IP geolocation algorithms solely based on network delay are
susceptible to errors, while determining the geographic location of IP addresses based
on the network delay distribution of the region proves more reliable. Our objective is to
geolocate the network segments in the Fusion-before database where multiple candidate
cities exist. Therefore, upon obtaining the city delay characteristics, we propose a location
verification method predicated on city delay characteristics.

We obtain the delay information of all IP addresses in a network segment through
active probing and derive the network segment delay distribution of the candidate city by
analogy with the delay characteristics of the candidate city. We then express the confidence
that the candidate city is the real location of the network segment with the eigenvalues
of the net segment delay characteristics of the candidate city. Consequently, we select the
candidate city with the highest network segment delay feature value as the actual location
city of the network segment. The flowchart of the location verification method based on
city delay features is depicted in Figure 10. We partition the geolocation verification of
network segments into four distinct stages.

Firstly, we measure the delay information of the network segment based on the
candidate cities of the segment. Given that different candidate cities may select different
probing nodes, we choose an appropriate probing node to perform delay probing on the
network segment based on the candidate cities. We then perform traceroute probing on all
IP addresses in the network segment from the corresponding probing point and record the
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RTT information of the last hop of the routing path fed back by each IP address. The RTT
information fed back by all IP addresses is aggregated into the network segment delay:
NET = {Nt1, Nt2, . . . , Ntm}.

Y N

Figure 10. Schematic diagram of the principle of location verification method based on city delay char-
acteristics.

Secondly, we compare the network segment delay with the corresponding candidate
city delay characteristic CDC. For a candidate city’s network segment delay information
NET = {Nt1, Nt2, . . . , Ntm}, if any RTT = Ntk is located in a candidate city with CDC =
[{t1 : p1}, {t2 : p2}, . . . , {tn : pn}], we then record the feature pk of Ntk in the CDC
into the corresponding segment delay as the segment delay feature of the candidate city
NETDC = [{Nt1 : p1}, {Nt2 : p2}, . . . , {Ntm : pm}]. If RTT = Ntk does not exist in the CDC
of the candidate city, its characteristics are defaulted to pk = 0.

Next, we compute the network segment delay characteristics value T of the candidate
city. For the candidate city j to be determined in the net segment, its corresponding net
segment delay characteristics are denoted as NETDCj = [{Njt1 : pj1}, {Njt2 : pj2}, . . . , {Njtm :
pjm}]; we define the delay eigenvalue Tj of this candidate city as Tj = Njt1 × pj1 + Njt2 ×
pj2 + . . . + Njtm × pjm.

Finally, we determine the real location of the network segment. We complete the loca-
tion verification by taking the candidate city with the largest value of the network segment’s
delay feature as the actual location city of the network segment. The network segment after
location verification is stored in the Fusion database to complete the construction of the
reference database CDCDB.
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To enhance the credibility of the candidate cities of a network segment, we propose a
method to extend the candidate cities of a network segment. Yong Gan et al. suggested that
the geolocation of an IP address can be determined by a sequence of neighboring IPs [33].
Therefore, we propose to extend the list of candidate cities of a network segment based on
the nearest neighbor matching mechanism of a network segment. Specifically, we compare
the network segment to be verified with the network segments in the Fusion database,
identify the network segment from the Fusion database that is the closest neighbor to the
network segment to be verified, and add the localized city of that segment into the list of
candidate cities for the network segment to be determined. Figure 11 provides a schematic
diagram of the candidate city expansion method based on the nearest neighbor network
segment matching mechanism.

Fusion

 Network segments are selectedNetwork segment to be verified

Expand Network segment

Figure 11. Schematic diagram of the candidate city expansion method based on nearest neighbor
network segments.

For any segment NETi = {[IPf i, IPei], [Cityi1, Cityi2]} to be verified, we search for the
nearest neighbor NETk to NETi from the Fusion database. NETk = {[IPf k, IPek], Cityk}
in the Fusion database is the nearest neighbor of NETi if NETk satisfies the condition∣∣∣IPei − IPf k

∣∣∣ = min
∣∣∣IPei − IPf j

∣∣∣ or
∣∣∣IPf i − IPek

∣∣∣ = min
∣∣∣IPf i − IPej

∣∣∣, where NETj =

{[IPf j, IPej]} is any network segment in the Fusion database. If NETk is the closest
neighbor of NETi in the Fusion database, we then add the localized city Cityk to the
list of candidate cities of NETi to complete the candidate city expansion, resulting in
NETi = {[IPf i, IPei], [Cityi1, Cityi2, Cityk]}.

5. Experimentation and Evaluation

The experimental and evaluative components of our study are organized into two
distinct sections. The first section delves into the relevant parameters involved in computing
urban delay features. The second section provides an overview of the fundamental aspects
of the reference database CDCDB, accompanied by a discussion on the validity of the
CDCDB. Then, we evaluate the reliability of four experimental IP geolocation libraries
utilizing the reference database CDCDB as a benchmark.

5.1. Discussion of Parameter a

In order to enhance the reliability of urban delay features, we introduced the “Low-
frequency rejection” data cleaning method in Section 4.3. In this section, we explore the
parameter a in “Low-frequency rejection” to determine the optimal cleaning scheme.

Reliable city boundary delay ranges are typically characterized by a high frequency of
RTTs and a highly concentrated distribution of RTTs. The more concentrated the distribu-
tion range of city delay, the more pronounced the characteristics of delay distribution in
the city. Our objective is to eliminate as much distorted RTT information as possible, while
retaining as many original delay data points as possible, in order to discover the delay
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characteristics of the city as comprehensively and accurately as possible. Therefore, we take
the data retention rate as the primary measurement index for the selection of parameter
a. the smaller the range of delay distribution of the city, the more pronounced the delay
characteristics of the city; the higher the retention rate of raw data, the more comprehensive
the delay characteristics of the city.

Table 2 presents the results of the experiments conducted in Shanghai following
several data cleansing sessions. Prior to data cleaning, the latency data distribution range
for Shanghai was 112,672 milliseconds. However, after applying the “Low-frequency
rejection” method, the delay range for Shanghai was significantly reduced. When a = 100,
the delay range is reduced to 49 milliseconds (ms), with a retention rate of 66%; when
a = 200, the delay range expands to 79 ms, but the retention rate increases to 90%. When
we set the parameter a to 1000, the distribution range of delay increases to 101 ms, but the
data retention rate reaches 95%. The experimental results demonstrate that the data
cleaning method based on “Low-frequency rejection” can effectively reduce the delay
distribution range of the city, minimize the impact of distorted RTT information on the
delay characteristics of the city, and enhance the reliability of the delay range of the
city boundary.

Table 2. Data cleaning results based on “Low-frequency rejection” (Shanghai).

Parameter Delay Range (ms) Proportion of Remain IPs

a = 100 49 66%
a = 200 79 90%
a = 1000 101 95%

We further analyzed the experimental results of data cleaning based on “Low-frequency
rejection” for 42 large cities, as detailed in Table 3. The average latency ranges for the
42 cities are 26.78 ms, 40.21 ms, and 72.57 ms, while the data retention rates are 74.5%,
83.8%, and 91.4% for the values of parameter a of 100, 200, and 1000, respectively. The over-
all delay distribution and data retention ratio are similar to that of Shanghai. Therefore, we
posit that when the delay distribution of a city ranges around 100 ms and the data retention
ratio exceeds 90%, the remaining RTT data can effectively reflect the delay characteristics
of the city. Consequently, we ultimately choose to make parameter a = 1000.

Table 3. Data cleaning results based on “Low-frequency rejection” (42 cities).

Parameter Delay Range (ms) Proportion of Remain IPs

a = 100 26.78 74.5%
a = 200 40.21 83.8%
a = 1000 72.57 91.4%

5.2. Analysis and Evaluation

Leveraging the minimum segment matching mechanism and the city delay charac-
teristics, we construct the reference database CDCDB for evaluating the IP geolocation
repository. CDCDB comprises 16.27 million network segments, of which 6.38 million seg-
ments with unique candidate cities account for 39.1% of all segments in the database. Con-
sequently, we only need to verify the location of 9.89 million network segments where mul-
tiple candidate addresses exist. Compared with the traditional IP address-based method to
construct the reference database, our proposed method improves computational efficiency
nearly a hundredfold.

In the CDCDB database, there are a mere total of 1.269 million non-high-quality
network segments with prefix length no greater than /24, constituting 7.8% of the number
of all network segments, and the coverage of city-level network segments reaches 99.99%.
Compared with IPUU, the number of network segments in CDCDB increases by 18.7%,
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the number of high-quality network segments increases by 13.2%, and the coverage of
city-level network segments increases by 20.92%, as shown in Table 4. This demonstrates
that our proposed minimum segment matching mechanism indeed expands the number of
segments, improves segment quality and city-level coverage, and is crucial for enhancing
city-level localization accuracy of IP addresses.

Table 4. Basic information of CDCDB and IPUU.

Database NO. of Net-Segments High-Quality
Network Segments City Coverage

CDCDB 16,274,675 15,005,250 99.99%
IPUU 13,704,888 10,826,862 79%

We evaluated the accuracy of CDCDB in 42 cities using the macro Internet Topology
Data Kit (ITDK) provided by CAIDA [38]. This kit amalgamates well-known Internet
exchange point information, Hoiho hostname mapping, and city granularity GeoLite2
geolocation data freely available from MaxMind. After filtering out the location information
provided by MaxMind, we verified the geolocation accuracy of the IP addresses of the
42 cities in the CDCDB. We found that the average accuracy is as high as 94%. The results
are depicted in Figure 12.
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Figure 12. Schematic representation of accuracy validation results for multiple models.

We also evaluated the geolocation accuracy of the DEROSSO model proposed by
H Li et al. [18] and the D&D model proposed by X Bo et al. [19], as well as IPUU, in
42 experimental cities. As depicted in Figure 12, we find that the overall accuracy of both
DEROSSO and D&D is lower compared to CDCDB, indicating that our proposed evaluation
method effectively enhances the accuracy of the reference database. We also observe that
the accuracy curves of DEROSSO and D&D models follow almost the same trend as that of
IPUU, and do not demonstrate any superiority over the original IP geolocation database
IPUU. This suggests that the reference databases constructed by DEROSSO and D&D
models are highly dependent on the IP geolocation database IPUU and do not significantly
improve geolocation accuracy. Conversely, the overall accuracy of CDCDB is significantly
improved compared to that of IPUU, indicating that our constructed reference database
effectively improves city-level geolocalization results of IP addresses and is less dependent
on the original IP geolocation database.
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The results depicted in Figure 12 suggest that we conclude that the reference database
CDCDB, constructed through the minimum segment matching mechanism and city delay
characteristics, has highly reliability in evaluating IP geolocation databases. Furthermore,
this reliability increases as the number of integrated IP geolocation databases increases.

Lastly, we assessed the reliability of the four experimental IP geolocation libraries
utilizing the reference database CDCDB. As identified in Section 3.1, IP geolocation libraries
exhibit varying preferences for different cities, implying that the reliability of geolocation
information provided by IP geolocation libraries differs across cities. Next, we validated
this finding through the reference database.

We assess the reliability of the IP geolocation database in a specific city by selecting the
city to be evaluated. We then compared the IP geolocation database under evaluation with
the reference database, CDCDB, and calculated the data similarity to gauge the reliability
of the IP geolocation database in that city. Specifically, we evaluated the reliability of the
IP geolocation repository in a given city using three metrics: Database Accuracy (DA),
Database Recall (DR), and Database Reliability Score (DRS). The definitions for these three
metrics are as follows:

Consider a scenario where the quantity of IP addresses, which share the same local-
ization between the IP geolocation database and the reference database CDCDB within
a specific city, is denoted as IPsim. The total number of IP addresses localized in that city
by the IP geolocation database is represented as IPGeoDB, and the quantity of IP addresses
localized in that city by the CDCDB is symbolized as IPCDCDB.

1. Database Accuracy (DA): This metric represents the proportion of IP addresses
whose geolocation aligns with both the IP geolocation database and the reference
database CDCDB, relative to the total number of IPs assigned to the IP geolocation
database in that city. Mathematically, it can be expressed as:

DA =
IPsim

IPGeoDB
(1)

2. Database Recall (DR): This measure signifies the ratio of the number of IPs with con-
sistent geolocation between the IP geolocation repository and the reference database
CDCDB, to the total number of IPs assigned to the reference repository in that city. It
can be formulated as:

DR =
IPsim

IPCDCDB
(2)

3. Database Reliability Score (DRS): This score is a weighted reconciled average of both
the database accuracy (DA) and database recall (DR) of the IP geolocation repository.
Mathematically, it can be expressed as:

DRS =
1

1 + β2 · ( 1
DA

+
β2

DR
) (3)

Database Accuracy (DA) serves as a reflection of the reliability of IP addresses pro-
vided by IP geolocation databases that are situated in a specific city. A higher DA signifies
a greater degree of reliability of the IP information furnished by the database for that city.
On the other hand, Database Recall (DR) mirrors the comprehensiveness of the IP ad-
dresses provided by the IP geolocation database in a particular city. A higher DR indicates
a more extensive coverage of IP addresses by the IP geolocation database in that city. DA
and DR encapsulate the accuracy and comprehensiveness of IP information provided by
IP geolocation databases separately. Yet, we lack a comprehensive assessment indicator.
Therefore we proposed the Database Reliability Score (DRS) as a comprehensive analytical
indicator, which amalgamates DA and DR. This score provides a holistic measure of the
performance of the database, thereby facilitating more informed decision-making for users
leveraging these databases. In this study, we introduce a parameter, β, which serves as a
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measure of the relative importance of database accuracy (DA) versus database recall (DR).
The value of β influences the balance between these two metrics in the following manner:

• When β = 1, it signifies that DA and DR hold equal importance.
• When β > 1, it indicates a greater emphasis on DR.
• Conversely, when β < 1, DA is given more weight.

In the context of this paper, we assign a higher priority to database accuracy. This
decision is driven by the expectations of IP geolocation database users, who generally
anticipate that the positioning information provided by these databases will be highly
accurate. Consequently, we set the parameter β to 0.5, thereby giving more influence to
DA in our analysis.

In this study, we selected 12 cities across China, Europe, and the United States to
evaluate the city-specific performance of the IP geolocation repository. Figure 13 presents
a schematic representation of the database accuracy and database recall results for four
experimental IP geolocation libraries across these 12 cities.
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Figure 13. (a) Schematic of the database accuracy results for the experimental data. (b) Schematic of
the database recall results for the experimental database.

The results delineated in Figure 13 illustrate that all IP geolocation libraries exhibit
exemplary performance in the majority of cities, with high scores for both data accuracy
and data recall. This indicates that these four experimental IP geolocation libraries can
confidently localize IP addresses in most cities. Interestingly, we observed that the database
accuracy and database recall curves of the IP geolocation database generally follow similar
trends in most cities, underscoring the impressive results achieved by this IP geolocation
database in city-level geolocation endeavors.

However, in a select few cities, the DA and DR of the IP geolocation database do not
exhibit congruence. For instance, in Atlanta, the IP2Region database boasts a DA of 78%
and a DR of 36%. This significant difference implies that in Atlanta, there is a substantial
discrepancy between the IP information provided by IP2Region and that provided by the
CDCDB: IP2Region provides only a limited number of IP addresses located in Atlanta,
but the vast majority of these IP addresses are locationally accurate IPs. While there is a
similar trend observed between the database accuracy curve and the database recall curve,
a closer examination reveals distinct differences. The data recall curve clearly indicates
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that the IP2Region database is less proficient at geolocating cities in Europe and the US.
However, this conclusion is not as evident when examining the database accuracy curve.
This discrepancy underscores the existence of differences between the reference database
CDCDB constructed based on the minimum segment matching mechanism and city delay
features and the original IP geolocation database. The reference database improves the
original IP geolocation database, and the degree of reliance on the original database varies
depending on the city of location.

The close alignment between database accuracy and database recall for the IP geoloca-
tion database signifies a high degree of congruence between the IP geolocation database
and the reference database. This observation underscores the broad reliability of current
IP geolocation databases for city-level geolocation endeavors. However, there are also
instances where the DA and DR of the IP geolocation repository diverge significantly in
a few cities. This situation validates the reference databases we constructed on one hand,
and on the other hand, it also reveals that the same IP geolocation database may perform
differently in different cities.

We further scrutinize the performance of different IP geolocation databases in the same
city. From Figure 13, it can be discerned that the performance of different IP geolocation
databases does not differ significantly in most cities, and the major differences are confined
to a few cities. For instance, in Tianjin, the database recall and database accuracy of
GeoLite2 are significantly lower than other databases. The results of this experiment
demonstrate that the performance of different IP geolocation databases in the same city
varies; though, in most cities, the differences between different IP geolocation databases
are marginal. Combined with our previous finding that the same IP geolocation database
also has reliability differences in different cities, we can draw a potential conclusion that
IP geolocation databases exhibit a certain degree of city bias, and that the reliability of IP
information provided by different IP geolocation databases varies according to the city in
which they are located.

Figure 14 presents the database reliability scores of the four experimental IP geolo-
cation libraries across 12 specific cities. A significant observation from Figure 14 is that
different IP geolocation libraries exhibit different reliability in locating different cities.
Overall, IPUU outperforms the others, demonstrating a high overall database reliability
score with minimal fluctuations. IP2LocationLite follows, leading in cities such as Qingdao,
Shanghai, Paris, Atlanta, and Charlotte, despite its subpar performance in Tianjin and
Weihai. GeoLite2 experiences considerable fluctuations in its database reliability score due
to its poor performance in Tianjin. The least effective overall is IP2Region, with a score
significantly lower than the other three databases. Interestingly, Figure 14 does not reveal
any specific country characteristics for the cities that the IP geolocation databases excel at
locating. Instead, their strengths and weaknesses appear to be more city-specific.

We computed the mean and variance of the database reliability scores of the four
experimental IP geolocation databases, as delineated in Table 5. In Table 5, we observe
that IPUU, GeoLite2, and IP2LocationLite exhibit similar average DRS scores, with IPUU
achieving the optimal result with a DRS score of 84%. This suggests that, on the whole,
the performance of each IP geolocation database is comparable for city-level geolocation
work, with the exception of IP2Region, which performs slightly subpar.

Table 5. The mean and variance of DRS score for experimental IP geolocation database.

GeoLite2 IP2LocationLite IP2Region IPUU

Average 83.3% 83.2% 78.99% 84%
Variance 0.009 0.006 0.0063 0.0028
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Figure 14. Schematic of the database reliability score results for the experimental data.

However, the DRS variances of the four databases exhibit noticeable differences.
GeoLite2, which has the largest DRS variance, is 3.2 times larger than IPUU, which has the
smallest DRS variance. The DRS variance of IP2LocationLite is akin to that of IP2Region,
with a minor difference of 0.0003 only. In terms of DRS variance, IPUU’s location results
are more stable, indicating that it is a database that can provide stable location results
more independent of the city where it is located. Conversely, GeoLite2 exhibits more city
preference, and in some of the “bad” cities, the positioning information provided by it may
be suboptimal.

Of course, since IPUU is a paid database, we cannot ascertain whether the DRS
variance difference is due to the difference between free and paid databases, so we refrain
from evaluating the overall quality of the databases. However, from the performance of
the three free databases, the generally high DRS mean and generally small DRS variance
demonstrate that the IP geolocation database has been relatively perfected in city-level
geolocation, but there are still a few “bad” regions. Such regional geolocation weaknesses
will be the main reason for IPUU’s success in city-level geolocation. This kind of regional
geolocalization weakness will be the focus of IP geolocalization database in city-level
geolocalization work.

Figures 13 and 14 collectively indicate that different IP geolocation repositories do
indeed exhibit city preferences. While the reliability of different IP geolocation databases
within the same city is often similar, significant performance differences emerge in a few
cities. This suggests that the primary distinctions between IP geolocation databases lie at the
city level. In certain specific cities, different IP geolocation databases provide markedly dif-
ferent services. Therefore, we recommend online service providers to select an appropriate
IP geolocation database based on the cities they serve to enhance service quality.

6. Conclusions

In response to the absence of an accurate and comprehensive method to evaluate the
quality of commercial IP geolocation databases, we introduce a novel database evaluation
method—the evaluation of IP geolocation databases predicated on urban delay charac-
teristics. Initially, we encapsulated three evaluation strategies based on previous work
as the theoretical foundation for database evaluation. Subsequently, we validated and
optimized the IP address localization cities by employing the minimum segment matching
mechanism and the similarity between the segment delay distribution and the city delay
distribution, culminating in the construction of the reference fusion database CDCDB.
The city-level localization accuracy of CDCDB reaches an average of 94%, and the city
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coverage rate attains 99.99%, providing the foundation for the effective and comprehensive
evaluation of IP geolocation databases. Compared with traditional evaluation methods,
our algorithm exhibits significant advantages in both evaluation accuracy and database
construction efficiency.

Finally, we evaluated four IP geolocation databases using the reference database CD-
CDB. The evaluation results reveal that different IP geolocation databases exhibit different
city preferences, i.e., different IP geolocation databases excel at locating for different cities.
Also, for the same city, the reliability of IP location information provided by different IP
geolocation databases varies. However, these preferences do not extend to the national
level; instead, the strengths and weaknesses of IP geolocation databases appear to be more
city-specific. Therefore, we posit that the future focus of city-level geolocation efforts by IP
geolocation databases should be on addressing “weak” cities and reducing the number of
cities that are “not good” at geolocation. Concurrently, we also suggest that online service
providers should select appropriate IP geolocation databases according to the cities they
serve in order to enhance service quality.
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