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Abstract: In this paper, the recognition of fidgety speech emotion is studied, and real-world speech
emotions are collected to enhance emotion recognition in practical scenarios, especially for cognitive
tasks. We first focused on eliciting fidgety emotions and data acquisition for general math learning.
Students practice mathematics by performing operations, solving problems, and orally responding to
questions, all of which are recorded as audio data. Subsequently, the teacher evaluates the accuracy
of these mathematical exercises by scoring, which reflects the cognitive outcomes of the students.
Secondly, we propose an end-to-end speech emotion model based on a multi-scale one-dimensional
(1-D) residual convolutional neural network. Finally, we conducted an experiment to recognize
fidgety speech emotions by testing various classifiers, including SVM, LSTM, 1-D CNN, and the
proposed multi-scale 1-D CNN. The experimental results show that the classifier we constructed can
identify fidgety emotion well. After conducting a thorough analysis of fidgety emotions and their
influence on the learning process, a clear relationship between the two was apparent. The automatic
recognition of fidgety emotions is valuable for assisting on-line math teaching.

Keywords: speech emotion; AI-assisted teaching; cognitive processes; multi-scale network;
fidgety emotion

PACS: 43.72.F; 43.72.L; 43.72.K
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1. Introduction

AI-assisted teaching, particularly on online distance learning platforms, gained popularity
during and after the COVID-19 pandemic. The automatic recognition of negative emotions is
important for studying cognitive outcomes in these educational scenarios.

In past emotion recognition studies, basic types of emotions were extensively studied
in controlled and isolated laboratory environments. The relationship between emotion and
cognition from a computational perspective has not though been thoroughly explored. Only
a limited number of researchers have investigated specific emotions that are associated
with the learning and cognitive process.

Pessoa [1] examined emotions from the perspective of brain organization. Pessoa
proposed that the conventional categorization of affective and cognitive regions is overly
simplified. By emphasizing the intricate interplay between emotion and cognition, this
underscores the necessity of obtaining a more comprehensive understanding of how the
brain functions and how complex cognitive behaviors emerge. From the computational
perspective, Huang et al. [2] conducted studies on the practical problem of speech emo-
tion recognition. They employed various machine learning models to model specific
types of emotions bearing on practice, such as confidence, anxiety, and fidgety emotion.
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Zepf et al. [3] studied driver’s practical emotions, including stress and other types of emo-
tions related to cognitive performance. However, in previous studies, the relationship
between emotions and cognitive outcomes has not been fully explored. In particular, the
methods suitable for leveraging emotions to aid in cognitive prediction and enhance teach-
ing, as well as how cognitive factors can be used to improve emotion recognition, remain
unanswered questions.

Various classification methods have been investigated, including support vector ma-
chines, Gaussian mixture models, LSTM (long short-term memory), transformer, and other
deep neural networks [4–9]. Shirian et al. [9] investigated a deep graph approach to
speech emotion recognition. In their study, they compared various algorithms with graph
learning and achieved promising results. However, it is worth noting that only some of
the fundamental types of emotions were addressed in their research. Wang et al. [10,11]
aimed to investigate the challenges posed by group differences and to sample imbalances
in emotion recognition. Their research considered distinctions associated with age and
gender. Furthermore, they explored the application of deep neural networks in modeling
age and gender differences for speech emotion recognition.

Feature analysis and extraction for emotion recognition have received relatively exten-
sive research attention. Farooq et al. [12] studied feature selection algorithms for speech
emotion. In their study, various features were selected and optimized to achieve the best
possible results using deep learning. Gat et al. [13] suggested speaker normalization
techniques to improve emotion recognition rates. In their study, speaker normalization and
self-supervised learning were investigated in detail and experiments were carried out using
different databases. Tiwari et al. [14] investigated noisy speech emotion, which is a practi-
cal topic that has not been extensively studied. They suggested using data augmentation
to improve the modeling of speech emotions. Additionally, they examined a generative
noise model for common emotion types. Nevertheless, certain practical emotions were
not addressed in their work, and further discussion is needed to explore the practical
applications of noisy speech recognition. Lu et al. [15] investigated the generalization
of feature extraction, in contrast to domain-specific features, and successfully addressed
speaker-dependent issues. The validation of effectiveness was conducted on commonly
observed emotion types.

Language-dependent features are also crucial for emotion recognition. Costantini et al. [16]
investigated cross-linguistic features of speech emotion. Their study involved the use
of various datasets to enable a universal comparison of speech features. Additionally,
they explored different machine learning algorithms for emotion modeling and analyzed
their generalization capabilities. Saad et al. [17] explored language-independent emotion
recognition with a focus on addressing cross-database and cross-language recognition
challenges. In their research, they examined and analyzed fundamental speech features,
including pitch frequency, formant frequency, and intensity. They also extended their
analysis to compare these features between English and Bangla languages. However,
there was potential for addressing feature normalization issues further in their work, and
the authors did not investigate the relationships between these features, cognition, and
personality.

In summary, conventional emotion recognition studies are still limited in methodology,
focusing solely on acoustic and computational aspects, while overlooking the intricate
relationship between emotion and cognitive processes. Our approach involves employing
multi-scale CNNs for modeling and, from a computational perspective, studying the
connection between “fidgety” emotion and cognitive processes. We explore how to leverage
emotion recognition results to enhance cognitive prediction and improve online teaching.

Fidgety emotion is an important emotional category that differs from traditional
emotion research, which focuses on basic emotional categories. Fidgety is a complex
emotion with practical value. It holds particular practical significance in the processes of
learning and cognition, as it significantly influences cognitive abilities, behavioral control,
and psychological stability. While traditional sentiment and emotion recognition (SER)
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research extensively cover the six basic emotions, like happiness, anger, surprise, sadness,
fear, and disgust, there has been relatively limited research on complex emotions.

2. The Eliciting Experiment and Data Collection

In this section, we introduce our eliciting experiment [18], which involves math
problem solving as a cognitive task. During this task, subjects (students) are required to
verbally report their outcomes, allowing us to collect speech containing various emotions.

In the Schachter–Singer two-factor theory [19], also known as cognitive arousal the-
ory, it is suggested that emotions are the result of a two-step process. First, individuals
experience physiological arousal in response to a stimulus, which can be a general state of
physiological excitation. Then, they use cognitive appraisal and external cues to label or
interpret that arousal as a specific emotion. According to this theory, the cognitive inter-
pretation is critical in determining which emotion is experienced. Based on the cognitive
arousal theory, we make the assumption that the generation of negative emotions, such as
feeling fidgety, frustrated, or nervous, may interfere with other cognitive processes, such as
math calculations. When a student becomes distracted due to these emotions, it can lead to
lower performance in math learning.

Eliciting fidgety emotion using repeated and complex math calculations as an external
stimulus aligns with the first factor of the cognitive arousal theory, which involves trigger-
ing physiological changes during math tasks. In the following sub-sections, we provide a
detailed description of the elicitation and data collection process.

Fidgety emotion is an important practical emotion related to cognition. It often
emerges in situations where our minds are engaged, seeking stimulation, or grappling
with complex thoughts. This emotion can be manifest in cognitive performance as well as
physical behavior. Fidgety emotion can have a range of negative impacts on cognitive func-
tioning and overall well-being. When excessive, it can disrupt one’s ability to concentrate
and complete tasks efficiently. Persistent fidgeting can be distracting to both the individual
and those around them, making it challenging to engage in activities that require sustained
attention, such as studying or participating in meetings.

2.1. The Cognitive Task

Cognitive processes include engaging with sequences of mathematical calculation
topics. As illustrated in Figure 1, participants in the study undertook cognitive tasks by
solving a series of mathematical problems. Throughout this learning process, we captured
voice data from the participants using a voice interface. This was utilized, in particular,
during repetitive math calculations to elicit fidgety emotions from the participants, enabling
the collection of high-quality, naturalistic speech data. We systematically observed and
annotated the emotions expressed in each oral report (speech data), while also document-
ing test scores and individual improvements. Additionally, we recorded the associated
mathematical topics as part of the learning history data.

2.2. Data Annotation

Data annotation for emotion recognition necessitates precise emotion labeling across
diverse contexts, accounting for factors like cultural nuances, personality, and environmen-
tal stimuli. Ensuring inter-annotator agreement through guidelines, training, and regular
quality checks is crucial. When selecting data for annotation, diversity is prioritized to train
robust models capable of recognizing emotions in various cognitive scenarios and across
different demographics.

We employed the Self-Emotion Assessment Scale before and after the math task to
monitor emotions. We also conducted a listening test with 12 annotators to label emotions
as fidgety, stressed, happy, or neutral. If speech proved challenging to categorize under
any of these emotions, we assigned it an “other” label.
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Math problems set

Generated worksheet of questions

Subjects required to repeatedly work on the exercises

Speech interaction module, where subjects report the
calculation results orally

Record the math history score, and speech data

Figure 1. Flowchart of the math exercises and the speech elicitation.

After annotation, consolidating labels from different annotators can be achieved using
the analytic hierarchy process (AHP) [20]. This method helps weigh and prioritize the
annotations, facilitating assignment of a consensus or aggregated label that reflects the
collective judgment of the annotation.

Each emotion annotation divides the intensity of the specific emotion into five levels:
1, 3, 5, 7, and 9. Hence, the comparison matrix is represented as P:

P =


1 1/3 1/5 1/7 1/9
3 1 1/3 1/5 1/7
5 3 1 1/3 1/5
7 5 3 1 1/3
9 7 5 3 1

 (1)

The eigenvalue can be computed as λmax = 5.2375. The weight vector W is:

W = [0.0561, 0.1067, 0.2170, 0.4401, 0.8630]T (2)

The consistency index CI is:

CI =
λmax − n

n − 1
= 0.06 (3)

The consistency ratio is thus: CR = CI/RI = 0.06/1.12 = 0.053, since CR < 0.1, it
satisfies the consistency requirement.

Finally, we collected a dataset comprising 36 subjects (18 females, 18 males) who
volunteered to take part in the data collection, with a total of 4389 annotated emotional
speech samples. Among these, there were 1082 labeled as “fidgety”, 858 as “stressed”, 855
as “happy”, 929 as “neutral”, and 665 as “others”.

The distribution of samples is further illustrated in Figure 2. We can see that the
utterances had a relatively balanced distribution across different ages and genders. All
speakers were Chinese native speakers and the oral test was carried out in standard Chinese.
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(c) Label distribution

Figure 2. Age, gender, and label distribution among the annotated utterances.

Example of the fidgety emotional speech (female) is shown in Figure 3. The spectro-
gram and pitch frequency are plotted.

Figure 3. Example of speech signal recording: time−domain waveform, spectrogram, and pitch contour.

3. Methodology
3.1. Multi-Scale CNN for Emotion Recognition

We propose an end-to-end speech emotion model based on a multi-scale one-dimensional
(1-D) residual convolutional neural network. The data input to the network is the raw
waveform, and the output is the probability corresponding to various emotion categories
(including the fidgety emotion).

Multi-scale CNN [21] was used to model and identify the emotional categories. We
adopted a time series modeling method to perform 1-D convolution on the scale of the
emotional speech signal. We extended the model for application to recognizing fidgety
speech emotions. The network architecture is shown in Figure 4.
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Figure 4. The overall process of multi-scale residual neural network development for emotional feature
classification.

The role of dilated convolution is to carry out local feature processing, which is suitable
for the representation learning of time-series signals, extracting time-series features through
convolution, and is also suitable for modeling sequence data, such as speech emotion.

Given that emotions are expressed over varying durations, and time-domain changes
are crucial arousal and valence features, increasing the dilation rate to a value greater than
one introduces gaps between the values in the filter. With a larger dilation rate, these gaps
become wider, allowing the filter to capture information from a broader receptive field
within the emotional speech signal.

Each network block comprises a dilated convolution layer, batch normalization, a
residual shortcut connection, and a ReLU layer, all arranged to extract the emotional
features from the raw time signal, as shown in Figure 5.

The residual network was proposed by Kaiming He [22]. By introducing a short-cut
to avoid problems such as gradient explosion, the network depth can be greatly increased,
so that very deep networks can also converge well in training. The residual module is the
basic unit that makes up the residual network. Many residual modules cascaded together
can improve the effect of representation learning and enable the construction of effective
speech emotional features.

In our model, the ReLU function is used as the activation function. We choose 1, 3,
8, or 12 residual blocks for the multi-scale blocks. The optimizer we choose is Adam. The
learning rate is set to 0.01, and the loss function is a cross-entropy function.
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Figure 5. Depiction of the residual neural network block.

3.2. Emotion Recognition and Cognitive Outcome Prediction

As suggested by the Schachter–Singer two-factor theory [19], our eliciting experiments
serve as the stimulus to the subjects, provoking physiological changes. Subsequently,
during the second cognitive stage, emotions such as fidgety emotions are generated. In our
computational model, we assume that both the second stage and the presence of negative
emotions will exert an influence on the cognitive outcome.

Through the stimulation of cognitive tasks, which involve mathematical calculations, it
is probable that the underlying two-factor process that triggers emotions can also influence
cognitive processes. We observe and record changes in cognitive processes from an external
perspective, including the problem-solving speed, the question difficulty, and the answer
accuracy, which together form a cognitive vector.

As shown in Figure 6, by leveraging these cognitive vectors, we assist in emotion
recognition, assuming that there exists a certain relationship between cognitive processes
and negative emotions (such as the fidgety emotion). Modeling this probability condition
can potentially enhance the results of emotion recognition.

Conversely, based on the outcomes of emotion recognition, as well as the historical
data on problem-solving speed and answer accuracy rates, it is possible to predict the
probability of correctly answering the next question.

The cognitive vector is defined as a set of metrics shown in Equation (4).

Cog_vec = {speed, di f f , rate} (4)

Speed denotes the measure of the average time spent on one problem (1/time spent),
diff denotes the difficult level, and rate denotes the accumulated percentage of correct
answers.
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Figure 6. The proposed computational model for cognitive feedback and AI-assisted cognitive
outcome prediction.

As depicted in Figure 7, we utilise a cognitive vector to enhance the function of
emotion recognition. This cognitive vector is created by incorporating cognitive metrics,
specifically, the accuracy of mathematical calculations and the historical score record, as
outlined earlier. The resultant “cognitive vector” is subsequently transmitted to the machine
learning classifier for emotion recognition, in conjunction with an emotion vector generated
from the probability outputs of the residual network. The machine learning algorithm
chosen for combining cognitive and emotional data is the Decision Tree, which offers a
more comprehensible representation of the relationship between emotional states and
cognitive outcomes.

Cognitive Vector

Emotion Vector

Emotional Speech Emotion Recognition Practical Emotions

Figure 7. Emotion recognition using cognitive vector.

The machine learning algorithm chosen for integrating cognitive and emotional data
is the C5.0 Decision Tree. C5.0 is a sophisticated type of decision tree, renowned for its
adaptability and effectiveness in classification and regression tasks. It adeptly partitions
the data into subsets by selecting the most informative features, rendering it a valuable tool
in our context.

In our specific case, we employ the C5.0 Decision Tree algorithm to amalgamate
cognitive and emotional information. It is thoughtfully configured with a maximum depth
set at 10 and a requirement for at least five samples to initiate node splitting. In evaluating
the quality of these splits, we employ the information gain criterion, a hallmark of C5.0’s
advanced decision-making process.
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C5.0 Decision Trees are particularly valued for their capacity to unveil the significance
of features within a dataset. Given our objective of harmonizing cognitive and emotional
data for the recognition of emotional states, understanding which features or metrics exert
the most influence becomes paramount. C5.0 decisively illuminates the relative importance
of cognitive and emotional metrics, which, in turn, underpins the accuracy of our predictive
model.

In this paper, the formulation of the cognitive vector signifies the state observed
during the question-solving process. Emotions undeniably exert a noticeable impact on the
precision of responses and the pace of question-solving. With this underlying hypothesis,
we devised a statistical model to establish statistical connections among the variables,
thereby increasing the prediction accuracy. Subsequently, the prediction of the question
results’ precision serves as a means to corroborate the hypothesis concerning the influence
of fidgety emotional states on cognitive speed and cognitive reasoning processes.

Cog_veci−1 = {rate1, rate2, rate3, . . . , speed1, speed2, speed3, . . . } (5)

where i stands for the current index number.

Emo_vec = {emo_vec1, emo_vec2, emo_vec3, . . . } (6)

where emo_vec = {p1, p2, p3, . . . } denotes the probability of each emotion type. We focus
on the negative emotions, e.g., fidgety emotion, and their impacts on cognitive outcomes.

The input includes the cognitive vectors, emotion vectors, and the cognitive difficulty
level, and the output is: Output = {Rate, Speed}.

As illustrated in Figure 8, in contrast to the emotion recognition process, predicting the
cognitive outcomes also involves the outcomes of emotion recognition. When considering
the accuracy of mathematical calculations, emotional states play an influential part. In
the algorithmic flow presented, we demonstrate the close relation between the emotion
category and the preceding cognitive vector, jointly facilitating the prediction of cognitive
outcomes, encompassing both the correctness rate, which is the cumulative percentage of
correct answers, and the speed of math problem solving.

The predictive model here is Decision Tree.The parameter settings are carefully ad-
justed, achieving an equilibrium between model complexity and generalization. The
maximum depth of the tree is set to 15, enabling the tree to explore the data more compre-
hensively. The minimum number of samples per node threshold is set to 8, ensuring that
nodes split only when a sufficient number of data points are present, thus promoting a
more robust and generalized model.

Previous Cognitive Vector

Emotion Category

Prediction Model Rate and Speed

Figure 8. Cognitive vector prediction using emotional states.

4. Experimental Results

The statistics pertaining to the sample distribution within our dataset utilized for
this experiment are presented in Table 1. Our dataset comprises a total of 4389 samples,
with each mathematical assignment item associated with approximately 5–7 oral report
utterances. Furthermore, our dataset contains 665 math assignment questionnaires. The
train-validation-test split ratio is set at 7:1:2, resulting in 878 samples allocated for testing.
The training samples are randomly selected and mixed; thus, it is speaker independent. The
model ability is not dependent on any specific speaker. It has good ability to be generalized
to different speakers.



Electronics 2024, 13, 146 10 of 14

The training of the emotion recognition classifier is a single task. The emotion classifier
is trained separately using the emotion labels. The speed and rate for cognitive prediction
is estimated independently in the first place, and they can be improved by the emotion
recognition results.

Table 1. Dataset sample distribution.

Emotion Type Sample Size (Total) Sample Size (Male) Sample Size (Female)

Fidgety 1082 542 540

Stress 858 430 428

Happy 855 430 425

Neutral 929 466 463

Other 665 333 332

The results for emotion recognition are displayed in Table 2. The confusion matrix
highlights the performance of our proposed method, which is built upon a multi-scale 1-D
residual network. It is evident from the matrix that fidgety emotion and other cognitive
processes are accurately identified.

Table 2. Confusion matrix of fidgety emotion recognition using multi-scale 1-D residual network.

Actual Emotion
Predicted Emotion (%)

Fidgety Stress Happy Neutral Others

Fidgety 85.1 4.5 2.0 3.4 5.0

Stress 5.1 83.4 6.5 2.2 2.8

Happy 2.1 1.5 85.6 4.2 6.6

Neutral 4.3 6.1 3.3 81.3 5.0

Others 3.4 5.3 2.9 7.9 80.5

In order to demonstrate the advantage of our proposed method, we compare it with a
basic 1-D convolution model, LSTM (long short-term memory) [23], and SVM. As shown
in Figure 9, four emotion classes, fidgety, stress, happy, neutral, and “other” emotion
types are modeled and compared. The recognition rates observed show that our proposed
multi-scale 1-D residual convolutional network outperformed the rest.

Fidgety Stress Happy Neutral Others
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100

Cognition-Related Emotion Class
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ta

ge
of

R
ec

og
ni

ti
on

R
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1-D Convolution (%)
Multi-Scale 1-D Residual (%)

LSTM(%)
SVM(%)

Figure 9. Comparison of algorithms for averaged recognition rates.

Parameter Settings
In order to better compare the different classifiers and to more easily reproduce the

models, we describe the parameters used for the basic 1-D convolution model, the LSTM
model, and the SVM model. For the basic 1-D convolutional model, identical residual
blocks are employed. We maintain a fixed number of residual blocks at three, in contrast to
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the multi-scale model where the scale may vary. We further choose the ReLU function as the
activation function. For LSTM, we employ the ReLU activation function, the cross-entropy
loss function, and set the dropout rate to 0.2. The Adam optimizer is utilized for training
the model. For SVM, the radial basis function (RBF) kernel is used as the kernel function,
after being compared with the polynomial kernel and the linear kernel.

As shown in Table 3, using the proposed computational model described in the
methodology section, we can improve the emotion recognition results by merging the cog-
nitive vector in the recognition process. The results show that fidgety and other cognition-
related emotions are improved considerably. The recognition rate for the fidgety emotion is
improved from 85.1% to 94.6%.

Table 3. Confusion matrix of fidgety emotion recognition with cognitive vector.

Actual Emotion
Predicted Emotion (%)

Fidgety Stress Happy Neutral Others

Fidgety 94.6 1.5 1.2 1.5 1.2

Stress 0.2 91.3 1.3 3.3 3.9

Happy 0.4 1.6 89.8 3.5 4.7

Neutral 2.8 3.2 3.2 87.3 3.5

Others 1.7 3.6 4.3 5.2 85.2

As depicted in Figure 10, the utilization of cognitive vectors was shown to enhance
recognition rates, particularly in the case of negative emotions, like “fidgety”, which ex-
hibited a more pronounced improvement compared to emotions less closely associated
with cognitive processes. The results highlight considerable enhancements in emotion
recognition rates when cognitive vectors are integrated. Across various emotional cate-
gories, the incorporation of cognitive vectors consistently outperforms recognition which
relies solely on emotion-related features. Notably, the most substantial improvements were
evident in the “Fidgety” and “Stress” categories, where recognition rates increased by
9.5 and 7.9 percentage points, respectively. This suggests that cognitive vectors excel at
capturing subtleties in the fidgety emotional state. However, even in the “Happy” and
“Neutral” categories, there were noteworthy improvements of 4.2 and 6.0 percentage points,
underscoring the versatility of cognitive vectors in enhancing recognition accuracy across a
spectrum of emotional classifications.

Fidgety Stress Happy Neutral Others

80

85

90

95

Emotion Class

Pe
rc

en
ta

ge

Emotion Recognition (%)
E.R. With Cognitive Vector (%)

Figure 10. Improvements in recognition rates over emotion classes using cognitive vector.

In our cognitive outcome prediction, we determine the prediction accuracy as the
percentage of correct predictions for both right and wrong answers. The math problems’
difficulty levels are categorized into “easy” and “hard”. Along with the difficulty level,
different math topics are incorporated as features in our prediction model.
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By leveraging peer performance in the math assignment correctness results, we employ
an XGBoost classifier to predict future math problem outcomes (as a base prediction model,
without considering the emotional states). The model takes as input the current math
topics, encoded as one-hot vector IDs, along with the difficulty levels, and the historical
assignment results, encompassing both correct and incorrect answers for each past topic, as
well as the corresponding time spent on each. The classifier’s parameters are configured as
follows: 500 for n_estimators, 0.01 for learning_rate, and 4 for max_depth.

In this experiment, the cognitive prediction results without using emotional infor-
mation are shown in Table 4. “Speed” denotes the measure of the average time spent on
one problem (1/time spent). By using an emotion vector, we can improve the cognitive
outcome prediction results. As shown in Table 5, both the rate and speed predictions were
improved. We can see that the improvements were considerable when fidgety and stress
emotions were present. In the ’easy’ category, the rate prediction accuracy improved from
80.1% to 87.7% for the fidgety emotion. In the ’hard’ category, the rate prediction accuracy
improved from 81.5% to 89.5% for the fidgety emotion. We can conclude that using the
emotional states labels contributes to the prediction of cognitive outcomes.

Table 4. Cognitive outcome prediction.

Difficulty Level Emotional State Rate Prediction Accuracy Percentage Error of Speed Prediction

Easy Fidgety 80.1% 9.3%
Easy Stress 82.2% 7.8%
Easy Happy 80.4% 8.1%
Easy Neutral 84.5% 6.7%
Easy Others 83.3% 8.7%
Hard Fidgety 81.5% 9.3%
Hard Stress 84.4% 7.8%
Hard Happy 82.4% 10.1%
Hard Neutral 85.7% 9.7%
Hard Others 82.4% 7.7%

Table 5. Enhanced cognitive outcome prediction with emotion vector.

Difficulty Level Emotional State Rate Prediction Accuracy Percentage Error of Speed Prediction

Easy Fidgety 87.7% 6.6%
Easy Stress 87.5% 5.7%
Easy Happy 82.4% 6.3%
Easy Neutral 85.7% 4.4%
Easy Others 83.9% 7.9%
Hard Fidgety 89.5% 6.1%
Hard Stress 88.2% 5.2%
Hard Happy 86.2% 8.1%
Hard Neutral 87.4% 8.5%
Hard Others 83.1% 7.1%

5. Discussion

In our emotion recognition and cognitive prediction experiments, the dataset, com-
posed of 4389 samples, was systematically divided into training, validation, and test sets,
with a significant allocation for testing (878 samples). The results for emotion recognition
underscore the effectiveness of the proposed multi-scale 1-D residual convolutional net-
work. Notably, the confusion matrix facilitated accurate identification, particularly when
discerning fidgety emotion and other cognitive processes.

Comparative analysis with traditional models, such as basic 1-D convolution, LSTM,
and SVM, showed the superior performance of the proposed multi-scale 1-D residual
network across four emotion classes. The subtle improvements observed, particularly in
the recognition of fidgety emotion (94.6% from 85.1%), underscore the model’s ability to
capture nuanced variations in emotional states.

Furthermore, the integration of cognitive vectors in the emotion recognition process
highlights significant enhancement in identifying fidgety and other cognitive-related emo-
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tions. These improvements span various emotional categories, with the most substantial
gains observed in the recognition of the fidgety emotional state.

The incorporation of emotion vectors in cognitive prediction aligns with the two-factor
model, considering physiological arousal and cognitive processes. This approach, attuned
to understanding and adapting to students’ emotional states during cognitive tasks, offers
a nuanced perspective on enhancing the learning experience.

6. Conclusions

In this paper, we present a computational model for emotion recognition and cognitive
prediction based on the well-known two-factor model, which takes into account physio-
logical arousal and cognitive processes. We approach the problem of emotion recognition
from the perspective that its generation is closely intertwined with cognitive processes.
Our methodology began with the creation of an eliciting experiment for collecting emo-
tional speech data during a mathematical cognitive task. Subsequently, we developed a
computational model employing a 1-D residual network.

Through comparative analysis among various machine learning classifiers, we estab-
lished that our proposed approach excels in recognizing emotions with cognitive relevance.
Furthermore, we demonstrated the potential utility of emotion recognition in assisting cog-
nitive outcome prediction. This development has promising implications for applications
in AI-assisted teaching.

Author Contributions: Conceptualization, C.H.; methodology, M.Z., C.W. and C.H.; software, M.Z.,
C.W. and C.H.; validation, M.Z. and C.H.; investigation, C.H.; resources, C.H.; writing—original
draft, M.Z., C.W. and C.H.; supervision, C.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Written informed consent has been obtained from the participants to publish this paper.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pessoa, L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 2008, 9, 148–158. [CrossRef] [PubMed]
2. Huang, C.; Jin, Y.; Zhao, Y.; Yu, Y.; Zhao, L. Recognition of practical emotion from elicited speech. In Proceedings of the 2009 First

International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009 ; pp. 639–642.
3. Zepf, S.; Hernandez, J.; Schmitt, A.; Minker, W.; Picard, R.W. Driver emotion recognition for intelligent vehicles: A survey. ACM

Comput. Surv. (CSUR) 2020, 53, 1–30. [CrossRef]
4. Atmaja, B.T.; Sasou, A.; Akagi, M. Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion.

Speech Commun. 2022, 140, 11–28. [CrossRef]
5. Wagner, J.; Triantafyllopoulos, A.; Wierstorf, H.; Schmitt, M.; Burkhardt, F.; Eyben, F.; Schuller, B.W. Dawn of the transformer era

in speech emotion recognition: Closing the valence gap. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 10745–10759. [CrossRef]
[PubMed]

6. Wani, T.M.; Gunawan, T.S.; Qadri, S.A.A.; Kartiwi, M.; Ambikairajah, E. A comprehensive review of speech emotion recognition
systems. IEEE Access 2021, 9, 47795–47814. [CrossRef]

7. Kanwal, S.; Asghar, S. Speech emotion recognition using clustering based GA-optimized feature set. IEEE Access 2021,
9, 125830–125842. [CrossRef]

8. Sun, L.; Zou, B.; Fu, S.; Chen, J.; Wang, F. Speech emotion recognition based on DNN-decision tree SVM model. Speech Commun.
2019, 115, 29–37. [CrossRef]

9. Shirian, A.; Guha, T. Compact graph architecture for speech emotion recognition. In Proceedings of the ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021;
pp. 6284–6288.

10. Wang, Z.; Tashev, I. Learning utterance-level representations for speech emotion and age/gender recognition using deep neural
networks. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), New Orleans,
LA, USA, 5–9 March 2017; Volume 17, pp. 5150–5154.

http://doi.org/10.1038/nrn2317
http://www.ncbi.nlm.nih.gov/pubmed/18209732
http://dx.doi.org/10.1145/3388790
http://dx.doi.org/10.1016/j.specom.2022.03.002
http://dx.doi.org/10.1109/TPAMI.2023.3263585
http://www.ncbi.nlm.nih.gov/pubmed/37015129
http://dx.doi.org/10.1109/ACCESS.2021.3068045
http://dx.doi.org/10.1109/ACCESS.2021.3111659
http://dx.doi.org/10.1016/j.specom.2019.10.004


Electronics 2024, 13, 146 14 of 14

11. Mustaqeem; Kwon, S. Att-Net: Enhanced emotion recognition system using lightweight self-attention module. Appl. Soft Comput.
J. 2021, 102, 107101. [CrossRef]

12. Farooq, M.; Hussain, F.; Baloch, N.K.; Raja, F.R.; Yu, H.; Zikria, Y.B. Impact of feature selection algorithm on speech emotion
recognition using deep convolutional neural network. Sensors 2020, 20, 6008. [CrossRef] [PubMed]

13. Gat, I.; Aronowitz, H.; Zhu, W.; Morais, E.; Hoory, R. Speaker normalization for self-supervised speech emotion recognition.
In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, 23–27 May 2022; pp. 7342–7346.

14. Tiwari, U.; Soni, M.; Chakraborty, R.; Panda, A.; Kopparapu, S.K. Multi-conditioning and data augmentation using generative
noise model for speech emotion recognition in noisy conditions. In Proceedings of the ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 7194–7198.

15. Lu, C.; Zong, Y.; Zheng, W.; Li, Y.; Tang, C.; Schuller, B.W. Domain invariant feature learning for speaker-independent speech
emotion recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2022, 30, 2217–2230. [CrossRef]

16. Costantini, G.; Parada-Cabaleiro, E.; Casali, D.; Cesarini, V. The emotion probe: On the universality of cross-linguistic and
cross-gender speech emotion recognition via machine learning. Sensors 2022, 22, 2461. [CrossRef] [PubMed]

17. Saad, H.F.; Mahmud, M.S.; Hasan, P.M.; Farastu, M.; Kabir, M. Is speech emotion recognition language-independent? Analysis of
English and Bangla languages using language-independent vocal features. arXiv 2021, arXiv:2111.10776v2.

18. Pascual-Leone, A.; Herpertz, S.C.; Kramer, U. Experimental designs and the ‘emotion stimulus critique’: Hidden problems and
potential solutions in the study of emotion. Psychopathology 2016, 49, 60–68. [CrossRef] [PubMed]

19. Ying, L.; Michal, A.; Zhang, J. A Bayesian Drift-Diffusion Model of Schachter-Singer’s Two-Factor Theory of Emotion. In
Proceedings of the Annual Meeting of the Cognitive Science Society, Toronto, ON, Canada, 27–30 July 2022; Volume 44.

20. Munier, N.; Hontoria, E. Uses and Limitations of the AHP Method; Springer: Berlin/Heidelberg, Germany, 2021.
21. Zhou, G.; Huang, L.; Li, Z.; Tian, H.; Zhang, B.; Fu, M.; Feng, Y.; Huang, C. Intever public database for arcing event detection:

feature analysis, benchmark test, and multi-scale CNN application. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [CrossRef]
22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
23. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2021.107101
http://dx.doi.org/10.3390/s20216008
http://www.ncbi.nlm.nih.gov/pubmed/33113907
http://dx.doi.org/10.1109/TASLP.2022.3178232
http://dx.doi.org/10.3390/s22072461
http://www.ncbi.nlm.nih.gov/pubmed/35408076
http://dx.doi.org/10.1159/000442294
http://www.ncbi.nlm.nih.gov/pubmed/26684473
http://dx.doi.org/10.1109/TIM.2021.3082998
http://dx.doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301

	Introduction
	The Eliciting Experiment and Data Collection
	The Cognitive Task
	Data Annotation

	Methodology
	Multi-Scale CNN for Emotion Recognition
	Emotion Recognition and Cognitive Outcome Prediction

	Experimental Results
	Discussion
	Conclusions
	References

