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Abstract: Deep learning is widely utilized to acquire predictive models for mobile crowdsensing
systems (MCSs). These models significantly improve the availability and performance of MCSs in
real-world scenarios. However, training these models requires substantial data resources, rendering
them valuable to their owners. Numerous protection schemes have been proposed to mitigate
potential economic loss arising from legal issues pertaining to model copyright. Although capable
of providing copyright verification, these schemes either compromise the model utility or prove
ineffective against adversarial attacks. Additionally, the privacy concern surrounding copyright
verification is noteworthy, given the increasing privacy concerns among model owners. This paper
introduces a privacy-preserving testing framework for copyright protection (PTFCP) comprising
multiple protocols. Our protocols adhere to the two-cloud server model, where the owner and
the suspect transmit their model output to non-colluding servers for evaluating model similarity
through the public-key cryptosystem with distributed decryption (PCDD) and garbled circuits.
Additionally, we have developed novel techniques to enable secure differentiation for absolute values.
Our experiments in real-world datasets demonstrate that our protocols in the PTFCP successfully
operate under numerous copyright violation scenarios, such as finetuning, pruning, and extraction.

Keywords: mobile crowdsensing; deep learning model copyright protection; privacy preservation

1. Introduction

Deep learning, as a promising and practical technology, has been extensively adopted
to enhance the performance of mobile crowdsensing systems (MCSs) [1–4]. For instance,
in [5], the authors utilize deep neural networks (DNNs) and employ graph convolutional
reinforcement learning to achieve Aoi-minimal UAV crowdsensing. Similarly, in [6], the
DNN is utilized to implement a heterogeneous task allocation in MCSs, employing a modi-
fied approximate policy approach. Furthermore, in [7], Xu et al. combine the concepts of
the graph attention network and deep reinforcement learning to propose an intelligent task
allocation scheme for MCSs. It is evident that well-trained DNN models can significantly
enhance the performance of MCSs.

However, as the model complexity, data volume, and number of tasks grow, the
cost of training an applicable model, particularly for deep neural networks (DNNs), also
increases. For instance, training a model with 1.5 billion parameters, such as the BERT
model on Wikipedia, can cost nearly $1.6 million. Therefore, safeguarding the trained
models from duplication, theft, or unauthorized reproduction by adversaries is necessary
and crucial [8,9].

It is worth noting that, to enhance the provision of machine learning as a service
(MLaaS), certain organizations or companies opt to offer open-source toolkits, remote ser-
vices, or cloud platforms to the public. However, despite its potential for commercial profit,
this approach exposes the trained DNN models (which are often trained at considerable
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cost) to the public, enabling adversaries to steal the models discreetly and conveniently.
These potential risks can lead to substantial economic losses [10–12] and even involve legal
issues [13–16] related to copyright infringement for the model owners. Researchers have
already highlighted that adversaries can stealthily and efficiently steal DNN models [17,18].
In cases where the adversary possesses greater knowledge about the model or when the
model parameters are publicly available, two commonly employed white-box attacks are
unauthorized finetuning and pruning [19]. Furthermore, recent studies have shown that
even under a black-box attack scenario [17,20], the core functionalities of a DNN model can
still be extracted. Despite the adversary’s limited access to the exposed API, they can em-
ploy advanced model extraction approaches to reconstruct the underlying core functionality
of the model. In conclusion, there has been a rapid growth in the threat to the copyright of
DNN models, highlighting the urgent need for effective and practical countermeasures.

In recent years, numerous schemes have been proposed to protect model copyrights.
DNN watermarking is a commonly employed scheme among these, known for its effec-
tiveness in practical scenarios [21,22]. It utilizes the over-parameterization properties of
DNNs to secretly embed a designed watermark (e.g., a signature or logo representing
ownership information) into the model. Verifying the ownership of a suspected model can
be easily accomplished by extracting potential embedded watermarks from the model [23].
Consequently, DNN watermarking is considered a promising technique with significant
advantages. However, these schemes still have some crucial drawbacks [24]. Notably,
the essential attribute of these schemes is their invasive nature, where the model content
or training process is modified after watermark embedding. Recent studies have shown
that such modifications can severely compromise the utility of DNN models or introduce
additional vulnerabilities [25,26].

To overcome the limitations of invasive techniques such as watermarking, researchers
have proposed DNN fingerprinting, which has garnered significant attention [27,28]. Fin-
gerprinting is rooted in the uniqueness of a DNN model, which embodies its distinct
characteristics. Specifically, a distinctive fingerprint is extracted from the owner model,
serving as an identifier to differentiate it from other models. If the extracted fingerprint from
a suspect model matches that of the owner model, the model owner can assert ownership
based on this result. However, in real-world scenarios, relying solely on the fingerprint as a
feature or metric for justifying model ownership is insufficiently persuasive. Nonetheless,
DNN fingerprinting is also vulnerable to state-of-the-art model stealing attacks. In conclu-
sion, the distinctive characteristics of a DNN model may be compromised or unavailable in
various situations.

To address the limitations of DNN fingerprinting, researchers have turned their atten-
tion to assessing the similarity between distinct models [29–31]. Traditional approaches em-
ploy direct calculations, such as the Euclidean distance [29], Kullback–Leibler divergence,
or Jensen–Shannon divergence [31], to measure the dissimilarity between the contents
of distinct models in parameter space or output space. This methodology is based on
the premise that the similarity between two different models stems from the resemblance
of their internal contents. However, this simplistic approach lacks persuasiveness and
practicality. For example, computing the Euclidean distance in the parameter space of DNN
models can result in significant computational expenses [32]. If these costs are deemed
acceptable, copyright verification becomes unnecessary. Moreover, there is a possibility that
the two models exhibit substantial differences [33] in parameter space despite sharing the
same training dataset and initialization due to potential bugs in floating-point operations
or stochasticity in the training process.

To enhance the assessment of similarity between distinct models, Chen et al. [30]
introduced a testing framework called DeepJudge. In their study, they evaluate the simi-
larity of two distinct models using six metrics across three levels, which are based on the
generated test cases. Their experiments provide evidence of DeepJudge’s effectiveness.
Despite the promise of DeepJudge compared to traditional approaches, it assumes that
the model owner grants unrestricted access to the architecture, parameters, and datasets,
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including training details in some cases. However, in real-world scenarios, ownership
verification is typically conducted by a third party, and the model owner is reluctant to
provide such access due to concerns about model privacy. Consequently, there is an urgent
need for a method that can measure model similarity while maintaining model privacy.
However, to the best of our knowledge, this problem has been largely overlooked.

This paper focuses on evaluating the similarity between two distinct models in a
privacy-preserving manner using cryptographic techniques. We propose a set of protocols
based on the two-cloud model for conducting privacy-preserving model similarity evalua-
tion. In these protocols, the model owner (referred to hereafter as the “victim”) and the
party holding a suspect model (referred to hereafter as the “suspect”) transmit encrypted
data to the cloud server. During the computation phase, the two non-colluding servers can
evaluate the similarity using different metrics without accessing any sensitive information
about the model data. Subsequently, the encrypted evaluation result is returned to the
victim for further estimation purposes. In real-world scenarios, when two AI companies or
organizations face a copyright infringement conflict, the details of their respective models
are confidential due to commercial competition. Therefore, adopting these protocols en-
courages the entities to pursue judgment by the authorized third party while alleviating
concerns about unintentional leakage of confidential model information.

In summary, our main contributions are:

• We address a realistic and often overlooked problem: preserving privacy in model
copyright verification. To the best of our knowledge, this paper is the first to discuss
privacy preservation in this context.

• We propose a set of protocols based on the two-cloud model that enables the evaluation
of similarity between distinct models while safeguarding model privacy. Our protocols
encompass multiple metrics at various levels, providing a comprehensive evaluation
of model similarity.

• Through extensive experiments conducted on various real-world DNN models and
datasets, we demonstrate the effectiveness of our protocols.

The structure of this paper is as follows: Section 2 provides an introduction to the
system and the threat model. Section 3 presents the preliminaries, while Section 4 describes
the details of the proposed protocols. In Section 5, we discuss the experimental results
to demonstrate the effectiveness of the proposed protocols. Section 6 highlights relevant
works on model copyright. Finally, we conclude our work in Section 7. The detailed
roadmap is illustrated in Figure 1.

Method

System Model Threat Model

Deep Neural
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Distributed Decryption (PCDD) 
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Threshold Judgement 

Evaluation metrics 

Settings 
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Related Works
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Figure 1. The roadmap of this paper.
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2. System and Threat Model
2.1. System Model

As illustrated in Figure 2, our PTFCP consists of three main entities: the model owner,
suspect, and cloud servers.

• The model owner, referred to as the victim, possesses a model (referred to as the victim
model for simplicity) that has been trained using private and valuable resources. In
order to ascertain whether the suspect model is an illicit copy of the victim’s model, the
victim utilizes its test cases to generate the outputs from its own model. Subsequently,
these outputs are encrypted and utilized as inputs for the protocols within our PTFCP.

• The suspect possesses a model that potentially infringes upon the copyright of the
victim’s model. To determine the occurrence of infringement, the suspect follows the
subsequent steps. Initially, it employs the test cases of the victim to obtain outputs
using its own model. Subsequently, these outputs are encrypted and utilized as inputs
for the judgment protocols.

• Initially, the cloud servers receive the encrypted outputs from both the victim and
the suspect based on the determined public key pk. Subsequently, these two servers,
denoted as S1 and S2 respectively, collaboratively execute the protocols within our
PTFCP to acquire the encrypted judgment results.

Server Server 

Perform Calculations

Victim Suspect

Victim 
Model

 

Suspect 
Model

Encrypted Outputs

Judgement Result

Secure Similarity 
Evaluation Pipeline

Figure 2. The system model.

2.2. Threat Model

This section focuses on a typical attack–defense scenario in which the victim endeavors
to safeguard the copyright of its model and identify potential instances of infringement.
Conversely, the suspect’s objective is to illicitly acquire either the functionality or the com-
plete information of the victim model. Moreover, the suspect employs various techniques
to obfuscate the stolen model and avoid its detection as an unauthorized replica. Further-
more, in consideration of data privacy requirements such as model parameter privacy and
architecture privacy, privacy-preserving measures are also taken into account within the
threat model.

2.2.1. Model Copyright

We summarize three major threats to the copyright of models based on state-of-the-art
model stealing attacks.

1. Finetuning In this scenario, it is assumed that the suspect possesses complete knowl-
edge of both the model parameters and architecture, along with an additional dataset
for finetuning the target model. For example, even if certain model owners have
open-sourced their trained models solely for academic or open-source purposes, the
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suspect can still exploit finetuning techniques in a malicious manner to construct their
own model for commercial gain.

2. Pruning In this scenario, it is also assumed that the suspect has acquired complete
information regarding the parameters and architecture of the victim model. In order
to perform model pruning, the suspect initially employs various pruning techniques
to reduce the size of the victim model. Subsequently, the suspect employs its auxiliary
dataset to conduct finetuning on the pruned model obtained in the previous step.

3. Model Extraction In this scenario, the suspect has restricted access and can only
retrieve the prediction results, such as probability vectors, from the victim model
by utilizing the exposed API. Occasionally, the suspect may possess information
regarding the architecture of the victim model, while the model parameters of the
victim model remain inaccessible. The primary objective of the suspect is to accurately
replicate the core functionality of the victim model by leveraging the exposed API.
Based on recent proposed works, the suspect can initially utilize selected samples to
query the exposed API and generate a labeled dataset. Subsequently, using the labeled
dataset, the suspect trains an alternative model capable of replicating the functionality
of the victim model. The selected samples can be sourced either from the suspect’s
auxiliary dataset or generated using advanced techniques.

2.2.2. Data Privacy

In our PTFCP, it is assumed that the victim, suspect, and two cloud servers are all
characterized as honest-but-curious. This implies that they will faithfully execute the steps
outlined in the protocols during the similarity evaluation process. Nevertheless, they may
possess an interest in the information pertaining to other entities and have the capability
to compromise data privacy through the utilization of their knowledge. Additionally,
it is assumed that the two cloud servers are non-colluding, a common and reasonable
assumption in numerous application scenarios [34–37]. Furthermore, it is further assumed
that neither the owner nor the suspect will engage in collusion with the cloud servers.

3. Preliminaries
3.1. Deep Neural Network

Deep Neural Networks (DNNs) serve as a fundamental technology in the domain of
deep learning, enabling the learning of intricate relationships between input and output in
high-dimensional spaces. Consequently, DNNs have found applications in diverse fields
such as voice recognition, image classification, and natural language processing. In general,
a canonical neural network comprises three essential components: an input layer, an output
layer, and at least one hidden layer. Figure 3 illustrates a representative example of a fully
connected DNN.

Input Layer

Hidden Layer

Output Layer

Input 

Input 

Input 

Output 

Output 

Figure 3. An example of DNN.
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Without loss of generality, our primary focus here is on the DNN classifier. The DNN
classifier possesses a decision function that maps an input to its corresponding label. The
classifier consists of L layers: f 1, f 2, · · · , f L−1, f L. Here, f 1 represents the input layer, f L is
the output layer that generates the probability vector, and f 2, · · · , f L−1 refer to the hidden
layers. The total number of classes is denoted as C. Each layer f l consists of a set of neurons:
nl

1, nl
2, · · · , nl

Nl
, with Nl representing the number of neurons in that layer. The output of the

neuron nl
i , given a specific input x, is denoted as φl

i(x). Consequently, the output vector
for layer f l (2 ≤ l ≤ L) can be defined as f l(x) =< φl

1(x), φl
2(x), · · · , φl

Nl
(x) >. The

prediction result can be obtained by evaluating arg max f L(x).

3.2. Secure Computation
3.2.1. Public-Key Cryptosystem with Distributed Decryption (PCDD)

The two-trapdoor public-key cryptosystem was first proposed by Bresson et al. [38].
In addition to the ordinary private key (also known as the weak key) sk, the cryptosystem
employs a strong private key SK that can decrypt the encrypted data under different
public keys. To reduce the risk of strong private key leakage, Liu et al. [39] adapted the
cryptosystem by splitting the strong key into two shares, enabling distributed decryption.
PCDD is defined as follows:

KeyGen: Let N = pq and λ = lcm(p − 1, q − 1)/2, where p and q are large prime
numbers, L(p) = L(q) = k. Define a function L(x) = (x − 1)/N, and pick an element g
from the multiplicative group Z∗

N2 , whose order is (p − 1)(q − 1)/2. Then, randomly select
θi from the interval [1, N/4] and compute hi = gθi mod N2 for party i. The public key is
pki = (N, g, hi), and the corresponding weak private key is ski = θi. The strong private key
is SK = λ.

Encryption: Given the public key pki, one can encrypt a message m ∈ ZN by
randomly choosing r ∈ [1, N/4] and computing Encpki

[m] = {Ti,1, Ti,2}, where Ti,1 =

grθi (1 + mN)modN2 and Ti,2 = grmodN2.
Decryption with weak private key: One can decrypt the ciphertext Encpki

[m] with the
weak private key ski = θi by computing

m = Dski
(Encpki

[m]) = L((Ti,1 · (T
θi
i,2)

−1)modN2). (1)

Decryption with strong private key: Any ciphertext Encpki
[m] can be decrypted using

the decryption algorithm DSK(·) with the strong private key SK = λ by first calculating:

Tλ
i,1modN2 = gλθir · (1 + mNλ)modN2 = 1 + mNλ. (2)

Then, m can be recovered as:

m = L(Tλ
i,1modN2) · λ−1modN. (3)

Strong private key splitting: The strong private key SK = λ can be randomly split into
two parts. The partial string private keys SK(j) = λj(j = 1, 2), s.t., λ1 + λ2 ≡ 0modλ and
λ1 + λ2 ≡ 1modN2 hold at the same time.

Partial decryption with partial strong private key: The algorithm D+
SK(j)(·) takes as

input Ti,1 and a partial strong private key SK(j) = λj and then outputs the partially
decrypted ciphertext

CTi,j = (Ti,1)
λj = gλjθir · (1 + mNλj)modN2. (4)

Decryption with partially decrypted ciphertext: The algorithm D−(·) takes as input
CTi,1 and CTi,2 and then computes

m = L(CTi,1 · CTi,2). (5)
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Ciphertext Refresh: This algorithm can refresh the ciphertext Encpki
[m] to obtain

Enc
′
pki

[m] = {T
′
i,1, T

′
i,2} without changing the original message m as follows. Choose a

random number r
′ ∈ ZN and then compute

T
′
i,1 = Ti,1 · hr

′

i modN2, T
′
i,2 = Ti,2 · gr

′
modN2. (6)

Note that the numbers involved in the PCDD can be integers, meaning that m can take
positive, negative, or zero values. However, the sign bit is lost in a modular operation. The
method for handling this issue can be found in [39]. Additionally, the PCDD cryptosystem
exhibits homomorphic additivity as follows:

Dski
(Encpki

[x + y]) = Dski
(Encpki

[x] · Encpki
[y]modN2).

Dski
(Encpki

[a · x]) = Dski
((Encpki

[x])amodN2).
(7)

3.2.2. Garbled Circuit

Garbled circuits (GCs) were initially introduced by Yao [40] as a means to facilitate
secure two-party computation. Broadly speaking, a canonical garbling scheme consists of
three main components: a garbling algorithm, a function f , and a decoding table TabDec.
A randomly chosen seed σ is used in the algorithm, while the function f is employed to
generate the garbled circuit F. Specifically, for a given input x, the encoding algorithm
generates the garbled representation x̂ using x and the random seed σ. Subsequently, the
garbled output ẑ is obtained through the evaluation algorithm by utilizing x̂ and the garbled
circuit F. Finally, by utilizing TabDec and the garbled output ẑ, the decoding algorithm
yields the result f (x).

4. Method
4.1. Evaluation Metrics

In order to assess the similarity between two distinct models more rigorously, we have
identified metrics in the white-box setting and the black-box setting, drawing from [27,30,41].
The details of these metrics are presented in Table 1.

Table 1. Distance metrics in different settings.

Settings Distance Metric

White-Box Neuron Outputs
Layer Outputs

Black-Box Model Robustness

4.1.1. Neuron Perspective

We begin by evaluating the similarity of two distinct models from a fine-grained
perspective. Based on the mathematical attributes, each neuron in a deep learning model
consistently adheres to its respective statistical distribution. Consequently, when two
models differ, their neuron outputs should exhibit variations as well [42]. Building upon
this observation, we focus on the values of neuron outputs to assess the similarity between
ModelVic and ModelSus, utilizing the NOD metric, which is defined at the neuron level.

Neuron Outputs Distance (NOD)

For a specific neuron, we denote nl
i as the i-th neuron in the l-th layer of a given

DNN. We represent the neuron output functions for ModelVic and ModelSus as φl
i and φ̂l

i ,
respectively. The NOD metric calculates the average difference of neuron outputs across a
predefined set Tx = x1, x2, · · · containing test samples:

NOD(Tx, φl
i , φ̂l

i) =
∑xt∈Tx |φ

l
i(xt)− φ̂l

i(xt)|
|Tx|

. (8)
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4.1.2. Layer Perspective

In addition to the neuron perspective, we also examine layer-level metrics that take
into account the output status of entire layers in a DNN model [41]. It is evident that the
metrics from the layer-level perspective provide a more comprehensive assessment of the
similarity between ModelVic and ModelSus based on the differences in intermediate layer
output status.

Layer Outputs Distance (LOD)

For a given DNN, let us consider layer l. Let f l and f̂ l represent the output functions
of layer l for ModelVic and ModelSus, respectively. The LOD formula is used to assess the
distance between the l-th layer of ModelVic and ModelSus and is given as:

LOD(Tx, f l , f̂ l) =
∑x∈Tx || f l(xt)− f̂ l(xt)||p

|Tx|
, (9)

where || · ||p represents the Lp-norm, and we take p = 1 in our scheme.

4.1.3. Attribute Perspective
Model Robustness Distance (MRD)

In recent years, several characteristics have been proposed based on model properties
to measure the similarity between different models. For example, some studies define the
adversarial robustness property [27,28] as a characteristic, while others focus on the fairness
property [43]. In our approach, we employ the initial characteristic and introduce the Model
Robustness Distance (MRD) to assess the similarity in adversarial robustness between two
different models using a provided set of test samples. Since a model’s robustness is closely
tied to its learned decision boundary during the optimization process, it can serve as a
practical indicator to evaluate the similarity between two models.

Without loss of generality, we denote the function of the victim model ModelVic as f .
Given an input xt and its corresponding label yt, a canonical adversarial sample can be
generated by iteratively adding noise to xt in order to maximize the classification error of
the function f . This type of attack is commonly referred to as an adversarial attack, and, if
the final adversarial sample x

′
t satisfies f (x

′
t) ̸= yt, it indicates the success of the adversarial

attack. To generate effective adversarial examples, one can utilize various existing methods,
such as FGSM or PGD. In this case, given a set of test samples, the adversarial counterparts
can be generated as Tadv = x

′
1, x

′
2, · · ·, where x

′
t represents the adversarial version of the

sample x
′
t. We can define the characteristic of model robustness, denoted as MR, as follows:

MR(Tadv, f ) =
∑
|Tadv |
t=1 ( f (x

′
t) = yt)

|Tadv|
. (10)

Next, we assume f̂ represents the suspect model ModelSus, as mentioned earlier.
Based on the aforementioned context, we can define the Model Robustness Distance (MRD)
between ModelVic and ModelSus as follows:

MRD(Tadv, f , f̂ ) = |MR(Tadv, f )− MR(Tadv, f̂ )|. (11)

As observed, the MRD solely relies on the output labels from the model without
requiring any additional knowledge or information.

4.2. Privacy-Preserving Threshold Judgement

This part presents our protocols for the privacy-preserving evaluation of model sim-
ilarity using the aforementioned metrics. Firstly, we describe two auxiliary protocols
for comparison and absolute value difference in Section 4.2.1, which rely solely on the
PCDD and garbled circuits. Subsequently, we delve into the secure evaluation of sim-
ilarity by employing model robustness in Section 4.2.2. Furthermore, we extend our
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techniques to facilitate secure evaluation at the neuron and layer levels, as discussed in
Sections 4.2.3 and 4.2.4.

4.2.1. Auxiliary Privacy-Preserving Protocols

Prior to illustrating our proposed protocols, we will first discuss two critical operations
that play an indispensable role in these protocols. We will then design the corresponding
auxiliary privacy-preserving protocols for each operation. The first operation is comparison,
while the second operation involves calculating the absolute value difference.

Given the significance of comparison in our proposed protocols, it is crucial to establish
an efficient and privacy-preserving comparison protocol as the foundation for our work.
Since we have already assumed that the two cloud servers S1 and S2 are non-colluding,
we can employ various cryptographic techniques, such as garbled circuits and pure ho-
momorphic encryption (HE), to compare two encrypted values on the server. Regarding
HE-based schemes [44,45], it is stated in [46] that evaluating a specific function requires
homomorphic operations and bit-wise encryption. However, these processes can result
in significant time consumption and impose a high bandwidth burden, rendering them
impractical in real-world scenarios. An alternative solution is to utilize garbled circuits,
which allow for offline transfer of computationally expensive operations such as oblivious
transfer or circuit generation. However, as Evans et al. [47] mentioned, a hybrid scheme
that combines both garbled circuits and HE appears more promising in practical scenarios.

Thus, taking into account the aforementioned contexts, we implement the privacy-
preserving comparison protocol for our proposed protocols using garbled circuits with
the combination of the PCDD. The circuit’s structure is depicted in Figure 4. The circuit
consists of two types of circuits: SUB, which is used for bit-wise subtraction, and CMP,
which facilitates bit-wise comparison [48].

Cloud Server Cloud Server 

SUB SUB

CMP

 low bits  low bits

Comparison result

Figure 4. The garbled circuit for privacy-preserving comparison.

Specifically, cloud server S1 possesses two encrypted values Encpk[V1], Encpk[V2] that
are awaiting comparison. Without loss of generality, we assume that all values, namely
V1 and V2, have a length of at most s bits. Server S1 applies masking to the encrypted
value Encpk[Vi], i ∈ 1, 2 by utilizing a randomly chosen k-bit (k < s) number ri, i ∈ 1, 2
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through the additive homomorphic property. The masking operation, as described in [47],
ensures a statistical hiding security level of approximately 2s−k for Vi. Subsequently,
server S1 computes the partial decryption of Encpk[V1 + r1] and Encpk[V2 + r2] using the
corresponding partial strong private keys. The information transmitted to cloud server S2
comprises a set comprising Encpk[V1 + r1], Encpk[V2 + r2] and their corresponding partial
descriptions. Upon receiving these data, server S2 retrieves the plaintext values V1 + r1 and
V2 + r2 using its corresponding partial strong private key. Now, in regard to the garbled
circuit, server S1 receives r1 and r2 as inputs, while server S2 receives V1 + r1 and V2 + r2 as
inputs. Upon completion of the circuit evaluation, the output bit bcomp signifies the result of
the comparison. If bcomp = 1, it implies that V1 > V2, while bcomp = 0 indicates otherwise.
It is worth noting that due to the utilization of the free-XOR technique [49], the cost of XOR
gates can be disregarded when considering the overall cost of the circuit evaluation. The
details of this protocol are illustrated in Algorithm 1.

Subsequently, utilizing the privacy-preserving comparison protocol described above,
it is possible to design a privacy-preserving protocol for calculating the absolute value
difference. In particular, without loss of generality, we assume that cloud server S1 possesses
two encrypted values, Encpk[V1] and Encpk[V2], which are intended for calculating the
absolute value difference. Initially, it collaborates with server S2 to compare Encpk[V1]
and Encpk[V2] using the privacy-preserving comparison protocol. Upon receiving the
comparison result, server S1 employs the additively homomorphic property to compute
the absolute value within the ciphertext domain. Specifically, if V1 > V2, the encrypted
absolute value Encpk[abs] can be calculated as Encpk[abs] = Encpk[V1 − V2] = Encpk[V1] ·
(Encpk[V2])

−1. In the alternate case, simply interchange the order of V1 and V2 while
leaving the remaining parts unchanged. The detailed process for this protocol is presented
in Algorithm 2.

Algorithm 1 SecureCMP(V1, V2)

1: S1 chooses two k-bit random number r1, r2, where k < s;
2: S1 utilizes the additively homomorphic attribute of the PCDD to obtain Encpk[V1 + r1]

and Encpk[V2 + r2];
3: S1 computes the partial decryption for Encpk[V1 + r1] and Encpk[V2 + r2], respectively;
4: S1 sends Encpk[V1 + r1], Encpk[V2 + r2] and the corresponding partial decryptions to

the cloud server S2;
5: S2 decrypts the ciphertext and recovers V1 + r1, V2 + r2;
6: S1 provides r1, r2 as the inputs for the garbled circuit, while V1 + r1, V2 + r2 are the

inputs from S2;
7: S1 receives the comparison result.

Algorithm 2 SecureABSD(V1, V2)

1: S1 compares Encpk[V1] and Encpk[V2] with the use of Algorithm 1.
2: if V1 > V2 then
3: S1 computes Encpk[abs] = Encpk[V1] · (Encpk[V2])

−1

4: else
5: S1 computes Encpk[abs] = Encpk[V2] · (Encpk[V1])

−1

6: end if

4.2.2. Similarity Evaluating Protocol for Robustness

In this part, we present a protocol to facilitate the privacy-preserving evaluation of
model similarity using model robustness. It should be noted that calculating the Model
Robustness Distance for similarity evaluation involves using Equation (11), which necessi-
tates the computation of absolute value difference. Consequently, we employ the auxiliary
protocol introduced in Section 4.2.1 to perform the evaluation while preserving privacy.
Initially, both the victim and the suspect encrypt their respective model robustness values
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and transmit them to the cloud server S1 using the public key pk. Subsequently, the two
cloud servers collaborate to finalize the similarity evaluation and relay the outcome to the
victim. Specifically, the protocol operates as follows:

1. Both victim and suspect leverage the set of adversarial samples Tadv to obtain their
corresponding model robustness MR according to Equation (10).

2. Then, the victim encrypted the threshold δ · T and its model robustness value MR(Tadv,
f ) as Encpk[δ · T] and Encpk[MR(Tadv, f )] by using the public key pk. The suspect also
operates a similar process to obtain Encpk[MR(Tadv, f̂ )].

3. The victim and the suspect send their encrypted value to the cloud server S1. After
that, S1 cooperates with the cloud server S2 with the use of Algorithm 2 to obtain the
encrypted MRD result Encpk[MRD(Tadv, f , f̂ )].

4. S1 utilizes Algorithm 1 to judge whether the MRD result has reached the threshold
from the victim with the cooperation of S2.

5. Once the comparison result is obtained by S1, it will be encrypted and returned to
the victim.

The details of this protocol are outlined in Algorithm 3. This indicates that data privacy
is effectively safeguarded against potential breaches.

Algorithm 3 SecureMRD(Tadv, f , f̂ , δ)

1: The victim computes MR(Tadv, f ), and the suspect computes MR(Tadv, f̂ ) according to
Equation (10).

2: The victim uses the PCDD to obtain Encpk[MR(Tadv, f )] and Encpk[δ · T]. Then, the
suspect obtains Encpk[MR(Tadv, f̂ )].

3: The victim sends Encpk[MR(Tadv, f )] and Encpk[δ · T] to the cloud server S1.
4: The suspect sends Encpk[MR(Tadv, f̂ )] to S1.
5: S1 computes Encpk[MRD(Tadv, f , f̂ )] with the cooperation of the cloud server S2 ac-

cording to Equation (11) and Algorithm 2.
6: S1 compares Encpk[MRD(Tadv, f , f̂ )] and Encpk[δ · T] according to Algorithm 1.
7: S1 returns the comparison result.

4.2.3. Similarity Evaluating Protocol for Neuron Distance

This part focuses on the privacy-preserving evaluation of model similarity at the
neuron level. In addition to the concerns discussed in Section 4.2.2, there is another
challenge of performing a privacy-preserving summation as indicated in Equation (8).
Therefore, we exploit the additively holomorphic characteristics of the PCDD to aggregate
the absolute differentiation values within the ciphertext domain as follows:

1. Based on the determined set of test samples Tx, the victim calculates the output result for
each neuron and encrypts them as {Encpk[φ

l
i(x1)], Encpk[φ

l
i(x2)], · · · , Encpk[φ

l
i(xT)]}.

Similarly, the suspect also obtains the encrypted set {Encpk[φ̂
l
i(x1)], Encpk[φ̂

l
i(x2)], · · · ,

Encpk[φ̂
l
i(xT)]}.

2. Then, the victim sends the encrypted output values and the encrypted threshold
Encpk[δ · T] to the cloud server S1, while the suspect also sends the encrypted output
values to S1.

3. S1 cooperates with the cloud server S2 to calculate the absolute value difference
for each neuron output between the victim and the suspect (e.g., Encpk[absDt] =

Encpk[|φl
i(xt)− φ̂l

i(xt)|]), respectively.
4. After that, S1 adopts the additively homomorphic property to sum up the absolute

difference values in the ciphertext domain as Encpk[absD] = Encpk[∑
T
t=1 absDt] =

∏T
t=1 Encpk[absDt].

5. S1 compares Encpk[absD] and Encpk[δ · T] with the use of Algorithm 1. Once the
comparison result is obtained, it will be encrypted and returned to the victim.
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The details of the NOD protocol are presented in Algorithm 4.

Algorithm 4 SecureNOD(Tx, φl
i , φ̂l

i , δ)

1: for xt ∈ Tx do
2: The victim computes φl

i(xt), and the suspect computes φ̂l
i(xt).

3: The victim uses the PCDD to obtain Encpk[φ
l
i(xt)] and Encpk[δ · T]. Then, the suspect

obtains Encpk[φ̂
l
i(xt)].

4: The victim sends Encpk[φ
l
i(xt)] and Encpk[δ · T] to the cloud server S1.

5: The suspect sends Encpk[φ̂
l
i(xt)] to S1.

6: S1 computes Encpk[absDt] = Encpk[|φl
i(xt)− φ̂l

i(xt)|] according to Algorithm 2.
7: end for
8: S1 computes Encpk[absD] = ∏T

t=1 Encpk[absDt].
9: S1 compares Encpk[absD] and Encpk[δ · T] according to Algorithm 1.

10: S1 returns the comparison result.

4.2.4. Similarity Evaluating Protocol for Layer Distance

In this section, we introduce privacy-preserving protocols that facilitate model similar-
ity evaluation at the layer level. Algorithm 5 is devised specifically for LOD, as specified in
Equation (9).

Concretely, the protocol performs as follows:

1. First, for each sample in the test set Tx, the victim and the suspect obtain the output
of layer l as f l(xt) and f̂ l(xt), respectively. After that, these values will be encrypted
and sent to the cloud server S1. The encrypted threshold Encpk[δ · T] is also sent to S1
by the victim.

2. Then, by utilizing Algorithm 2, S1 cooperates with the cloud server S2 to calculate the
absolute difference value of f l(xt) and f̂ l(xt) in the ciphertext domain. The result is
defined as Encpk[absLODt].

3. Next, S1 adopts the additively homomorphic property for summing up the absolute
difference as Encpk[absLOD] = Encpk[∑

T
t=1 absLODt] = ∏T

t=1 Encpk[absLODt].
4. Finally, S1 compares Encpk[absLOD] and Encpk[δ · T] with the use of Algorithm 1.

Once the comparison result is obtained, it will be encrypted and returned to the victim.

Algorithm 5 SecureLOD(Tx, f l , f̂ l , δ)

1: for xt ∈ Tx do
2: The victim computes f l(xt), and the suspect computes f̂ l(xt).
3: The victim uses the PCDD to obtain Encpk[ f l(xt)] and Encpk[δ · T]. Then, the suspect

obtains Encpk[ f̂ l(xt)].
4: The victim sends Encpk[ f l(xt)] and Encpk[δ · T] to the cloud server S1.
5: The suspect sends Encpk[ f̂ l(xt)] to S1.
6: S1 computes Encpk[absLt] = Encpk[| f l(xt)− f̂ l(xt)|] according to Algorithm 2.
7: end for
8: S1 computes Encpk[absL] = ∏T

t=1 Encpk[absLt].
9: S1 compares Encpk[absL] and Encpk[δ · T] according to Algorithm 1.

10: S1 returns the comparison result.

5. Experiments

We have implemented a testing framework that ensures privacy preservation using
our protocols, and, in this section, we present the experimental results.



Electronics 2024, 13, 133 13 of 21

5.1. Settings

The system is implemented using the Python, Java, and C programming languages.
The core components of the machine learning algorithm and models are implemented in
PyTorch, while the additively homomorphic cryptosystem is implemented in Java using
the JPBC library. For enhanced performance, we utilize Obliv-C, a C-based framework that
incorporates GC implementations with optimization techniques, to construct the garbled
circuit (GC) of the framework. The framework is designed to run on the Ubuntu 20.04
LTS operating system, utilizing Python 3.9.12, Java 11, and GCC compiler version 4.8.5.
Furthermore, the platform server hosting the framework is equipped with four Nvidia RTX
3090 GPUs and 256 GB of RAM.

Datasets and Model

In our experimental setup, we utilize four real-world datasets: MNIST, CIFAR-10,
SVHN, and ImageNet. Subsequently, we consider three commonly used models (LeNet,
ResNet, and VGG) in our experimental settings. The details of the models and datasets can
be seen in Table 2. We divide each training dataset into two parts, with the first part being
used for training the victim model. The samples are divided with a ratio of 50%.

Table 2. Models and datasets in experiments.

Dataset Size Model Parameters Accuracy

MNIST 60,000 LeNet 107.8 K 97.7%
CIFAR-10 60,000 ResNet 274.4 K 85.2%

SVHN 630,420 ResNet 274.4 K 83.9%
ImageNet 14,197,122 VGG 33.65 M 76.3%

In order to assess the effectiveness of our proposed protocols, we define two categories
of models: Questionable Models and Normal Models. The Questionable Models are derived
from the victim model through model-stealing techniques such as finetuning, pruning,
and extraction. These models are classified as questionable since they infringe upon the
victim’s copyright, and the PTFCP aims to provide evidential support to assist the victim in
asserting their copyright. On the other hand, the Normal Models, while sharing the same
architecture as the victim model, are trained using either the second part of the divided
dataset independently or the first part with a differing random initialization. Thus, these
models serve as the control group to illustrate that the proposed protocols in our PTFCP
do not assert ownership over unrelated models. It is important to note that these models
are trained using the same settings. Specifically, “Norm-I” refers to models trained with a
distinct dataset (the second part), whereas “Norm-II” denotes models trained with varying
random initialization. In our experiments, we employ two classical techniques [50,51] to
generate adversarial samples.

5.2. Experimental Results
5.2.1. Model Finetuning

Model finetuning, the most commonly employed method in DNN model stealing, has
been extensively investigated in numerous studies [30,52,53]. In this section, we evaluate
the effectiveness of our PTFCP in defending against model finetuning. Specifically, we
consider two common model finetuning techniques for a specified victim model and a small
dataset drawn from the same distribution. The first technique, referred to as finetuning
the last layer (FineTuning-I), involves freezing all layers except the last one and updating
only the parameters of the last layer. The second technique, known as finetuning all layers
(FineTuning-II), directly updates all parameters of the model.

To assess the performance of the PTFCP more effectively, we conducted separate
experiments under both white-box and black-box settings. The experimental results are
presented in Figure 5. In the white-box settings, we can access all intermediate outputs
from the layers of both the victim model and the suspect model in a privacy-preserving
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manner. Specifically, we utilize two protocols from the PTFCP that operate within the
white-box settings: SecureNOD and Secure LOD. It is worth noting that we conducted over
1000 random repetitions of the experiments to obtain more precise estimation accuracy
results. As shown in Figure 5a, the majority of estimation accuracy results for the finetuned
models exceed 70%. Notably, for the MNIST and CIFAR-10 datasets, the results approach
nearly 80%. Furthermore, the performance on normal models (Norm-I and Norm-II)
demonstrates the PTFCP’s ability to effectively distinguish between stolen models and
other normal models.

In the black-box setting, we can only access the output probabilities of the models
while preserving privacy. Specifically, we employ the protocol from PTFCP that operates
within the black-box settings: SecureMRD. The effectiveness of the black-box protocol in
defending against the finetuning attack is illustrated in Figure 5b. Overall, the experimental
results demonstrate that PTFCP remains practical in the black-box setting, enabling privacy-
preserving model copyright auditing. It is worth noting that the evaluation accuracy results
in the white-box setting surpassing those in the black-box setting. This is logical since
the protocols in the white-box setting have access to more information, allowing for more
accurate decision making.
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Figure 5. The performance of PTPFC in defending against model finetuning. (a) is the evaluation in
the white-box setting, while (b) is the one in the black-box setting.

5.2.2. Model Pruning

In addition to the model finetuning method, model pruning is another commonly
employed technique for stealing valuable DNN models. In this section, we evaluate the ef-
fectiveness of PTFCP in defending against model pruning. Utilizing the same configuration
for the victim model and datasets, we focus on two distinct types of model pruning attacks,
distinguished primarily by the percentage parameter r. In these attacks, the attacker prunes
the parameters with the lowest absolute values, based on a percentage ratio of r. To preserve
utility, the attacker also conducts finetuning on the pruned model. We conduct experiments
using both a low ratio (r = 25%, Pruning-I) and a high ratio (r = 75%, Pruning-II). It should
be noted that canonical data augmentation techniques are also employed to enhance the
effectiveness of the model pruning attack.

Similar to the finetuning attack, we conducted separate evaluations of the PTFCP in
both the white-box and black-box settings. The corresponding experimental results are
depicted in Figure 5. The evaluation results in Figure 6a indicate that the majority of the
evaluations exceed 70%. Moreover, for the MNIST and CIFAR-10 datasets, the evaluations
can reach up to 75%. In the black-box setting (as depicted in Figure 6b), while the evaluation
results are slightly lower than those in the white-box setting due to the absence of certain
intermediate knowledge, the results demonstrate that the PTFCP can detect stolen models
obtained through model pruning attacks. In conclusion, these results demonstrate that the
PTFCP is effective in defending against model pruning attacks as well.



Electronics 2024, 13, 133 15 of 21

MNIST CIFAR-10 SVHN ImageNet

30%

40%

50%

60%

70%

80%

Es
tim

at
io

n 
Ac

cu
ra

cy
Norm-I
Norm-II
Pruning-I
Pruning-II

(a)

MNIST CIFAR-10 SVHN ImageNet20%

30%

40%

50%

60%

70%

80%

Es
tim

at
io

n 
Ac

cu
ra

cy

Norm-I
Norm-II
Pruning-I
Pruning-II

(b)

Figure 6. The performance of PTPFC in defending against model pruning. (a) is the evaluation in the
white-box setting, while (b) is the one in the black-box setting.

5.2.3. Model Extraction

Among the model finetuning, model pruning, and model extraction attacks, the
model extraction attack is considered the most significant threat to DNN model copyright
protection. Studies have revealed that conventional DNN watermarking methods are
ineffective in establishing ownership claims for DNN models when confronted with the
model extraction attack [30]. One possible explanation is that watermarks are intended
to be inconspicuous elements of learning tasks and do not specifically address the model
extraction attack. Consequently, attackers can readily exploit model extraction attacks to
remove the watermarks from DNN models. In this section, we evaluate the effectiveness of
the PTFCP in defending against the model extraction attack. Specifically, we consider two
well-known model extraction attacks from recent state-of-the-art studies. The first attack
is called Jacobian-based augmentation (JBA) [54], which involves sampling a set of seeds
based on the test dataset and utilizing the Jacobian-based data augmentation technique to
generate additional data samples from these seeds. The second attack is known as Knockoff
Nets (KnockOff) [55], which employs an auxiliary dataset that shares similar characteristics
with the original training dataset used for the victim model.

Figure 7 illustrates the experimental results of the PTFCP in defending against the
model extraction attack in both the white-box and black-box settings. Despite a decline
in performance compared to the model finetuning and pruning scenarios, the evaluation
accuracy in the white-box setting remains above 60%. In the black-box setting, it is expected
that the results would be inferior to those in the white-box setting due to the absence of
intermediate knowledge from the models. Nevertheless, the majority of the results still
reach nearly 60%. Additionally, as indicated in various studies on model extraction [54–56],
model extraction attacks are not consistently successful. While it may be challenging to
accurately identify poorly performing extracted models, their subpar performance may
not pose significant threats to model copyright. Furthermore, it can be observed that as the
model extraction attack achieves better performance, the extracted model becomes more
similar to the victim model. Thus, the PTFCP presents an effective countermeasure against
the primary objective of achieving perfect parameter or functionality matching in model
extraction attacks.
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Figure 7. The performance of PTPFC in defending against model extraction. (a) is the evaluation in
the white-box setting, while (b) is the one in the black-box setting.

6. Related Works
6.1. DNN Watermarking

Numerous watermarking technology solutions have been proposed to safeguard the
copyright of DNN models. Similar to the techniques utilized in the traditional multime-
dia domain, existing DNN watermarking approaches comprise two primary steps. The
initial step involves embedding, whereas the subsequent step entails verification. In the
embedding step, the designated watermark, owned by the creator, is incorporated into
the model during the training process. Regarding the verification step, DNN watermark-
ing approaches can be primarily classified into two categories: white-box and black-box.
Categorization is based on the level of knowledge accessible during the verification step.

In white-box watermarking, the availability of model information allows for the
embedding of a pre-determined signature into the model’s parameter spaces using various
methods, such as regularization terms. Thus, if the extracted watermark from a suspect
model closely matches the owner’s signature, the copyright of that model can be readily
justified. In contrast, black-box watermarking employs backdoor attack techniques due to
the absence of model information. Specifically, the model owner trains the model with a
trigger set to compel the model to categorize certain samples into a specific hidden class,
acting as a backdoor. The watermark is also injected into the model upon completion of
the training procedure. Thus, to verify the copyright of a suspect model, the owner simply
needs to query the suspect model using samples from the trigger set and examine whether
the predicted result corresponds to the predetermined hidden class.

Despite its effectiveness and simplicity, watermarking inevitably possesses significant
drawbacks. In addition to its invasive nature, which interferes with the training process,
the performance of watermarking is heavily reliant on the model’s ability to memorize.
Essentially, watermarking aims to maximize the model’s retention of the watermark content,
and the degree of memorization determines the robustness of the watermark against attacks.
As indicated in numerous studies, watermarking proves effective in countering finetuning
and pruning attacks but is susceptible to various model extraction attacks. One critical factor
is that model extraction attacks aim to pilfer the model’s functionality rather than its entire
contents, whereas most watermarks are often task-irrelevant. Despite the aforementioned
disadvantages of watermarking, it remains the sole method for owners to embed their
signature into their models, surpassing the capabilities of other techniques.

6.2. DNN Fingerprinting

In recent years, numerous researchers have focused on DNN fingerprinting tech-
niques as an alternative method for verifying ownership. Similar to DNN watermarking,
DNN fingerprinting involves two steps: fingerprint extraction and fingerprint verification.
Importantly, fingerprinting is considered non-invasive, distinguishing it from watermark-
ing schemes. Unlike watermarking, where intervention in the model training process is
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required to embed a watermark, fingerprinting techniques directly extract a distinctive fea-
ture or attribute from the model to act as a fingerprint. If the fingerprint of a suspect model
matches that of the owner’s model, the owner can assert ownership of the suspect model.

For example, in [28], the authors introduced IPGuard, a fingerprinting scheme. IP-
Guard characterizes the fingerprint by utilizing data points located near the classification
boundary to capture the model’s boundary property. If a suspect model produces iden-
tical predictions for a majority of these points, IPGuard identifies it as an unauthorized
copy of the owner’s victim model. Additionally, in [27], a Conferrable Ensemble Method
(CEM) is introduced to capture the overlap between the decision boundary or adversarial
subspaces of the victim model and those of the suspect model. Specifically, this CEM gener-
ates conferrable adversarial examples, which are a specific type of transferable examples,
to facilitate characterization. In [27], the authors demonstrate the robustness of a CEM
against common DNN removal attacks, such as finetuning, pruning, and extraction at-
tacks. However, it is incapable of addressing certain adapted attacks, including adversarial
learning.

In conclusion, as evidenced, the majority of fingerprinting schemes concentrate on
establishing the “uniqueness” of a particular model. However, in practical scenarios, relying
solely on or being limited to a specific metric is not practical. Consequently, relying solely
on fingerprinting is insufficient to provide convincing evidence or support for verifying
model ownership. A potentially promising approach to address this challenge is to combine
various existing methods to create a comprehensive mechanism.

6.3. Model Similarity Evaluation

The evaluation of model similarity has emerged as a crucial metric used to assess
performance in diverse scenarios, including Machine Unlearning [32] and model copyright
protection [30]. Consequently, numerous researchers have dedicated their efforts to this
area and proposed a range of schemes.

Wu et al. [29] utilized the Euclidean distance as a measure of similarity between two
distinct DNN models in the context of machine unlearning, based on the intuition that the
parameter distance reflects their similarity. However, experiments conducted on ResNet
by the authors of [33] revealed that relying solely on the l2-Norm to evaluate DNN model
similarity is insufficiently accurate and practical. Specifically, various complex factors such
as learning rate and floating-point operations can result in significantly different model
parameter outcomes, even when the training datasets and initialization are identical. Addi-
tionally, for large DNN models with a substantial number of parameters, the computational
costs become impractical in real-world applications [32].

To address the mentioned limitations, Golarkar et al. [31] employ the extensively used
the Jensen–Shannon divergence, based on the Kullback–Leibler divergence, to assess the
distance between two distinct DNN models in the parameter space. Similarly, in [57], the
authors utilize the Jensen–Shannon divergence to quantify the distance between probability
distributions of two different DNN models. Another notable metric, known as activation
distance, is employed in certain studies [57,58]. It represents the average l2-Norm distance
between probability distributions of two distinct models. Furthermore, to provide a
comprehensive evaluation at a broader level, model similarity measurement employs layer-
wise distance [41]. This approach computes the distance between two models considering
their parameters or the output of each layer.

Recently, Chen et al. [30] introduced a framework known as DeepJudge. DeepJudge
combines multiple metrics to provide a comprehensive evaluation of the similarity between
two distinct DNN models. Specifically, the framework categorizes six distinct metrics into
three main categories. When assessing the similarity between two different DNN models,
DeepJudge initially calculates the distance value for each respective metric separately.
Subsequently, it determines whether the suspect model exhibits sufficient similarity to the
victim model within the specified metric, based on a predetermined threshold. Finally, a
straightforward majority voting scheme is employed to determine whether the suspect
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model constitutes an illicit copy of the victim model. However, this necessitates the victim
granting DeepJudge full access to their DNN model, including model parameters and
architecture. Consequently, this approach is impractical in real-world scenarios where
concerns about model data privacy have already arisen, as some model owners may be
unwilling to provide DeepJudge with such privileges due to the potential risk of private
model information leakage.

7. Conclusions

This work presents our PTFCP, a privacy-preserving testing framework designed to
protect the copyright of deep learning models in mobile crowdsensing scenarios. Our
PTFCP consists of multiple protocols that assess the similarities between two distinct
models while maintaining privacy. In contrast to existing schemes, the PTFCP ensures
that model utility remains intact throughout the training process while providing defense
against various attacks in a privacy-preserving manner. Extensive experiments using
real-world datasets were conducted to demonstrate the effective performance of the PTFCP.
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Abbreviations
The following notations and abbreviations are used in this manuscript:

Notations Definitions
f i The layer i in the DNN
nl

i The i-th neuron in the layer l
φl

i(x) The output of the neuron nl
i for the given input x

lcm Least common multiple
SK The strong private key
sk The ordinary private key
pk The public key
Encpk[m] The ciphertext of message m encrypted by pk
Tx The test case set
Tadv The test case set of adversarial samples
δ The threshold of the similarity
Abbreviations Definitions
MCS mobile crowdsensing systems
PTFCP privacy-preserving testing framework for copyright protection
PCDD public-key cryptosystem with distributed decryption
DNN deep neural network
GC garbled circuits
NOD neuron outputs distance
LOD layer outputs distance
MRD model robustness distance
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