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Abstract: The complexity of urban scenes presents a challenge for semantic segmentation models.
Existing models are constrained by factors such as the scale, color, and shape of urban objects, which
limit their ability to achieve more accurate segmentation results. To address these limitations, this pa-
per proposes a novel Multi-Scale Feature Shuffle NetWork (MFSNet), which is an improvement upon
the existing Deeplabv3+ model. Specifically, MFSNet integrates a novel Pyramid Shuffle Module
(PSM) to extract discriminative features and feature correlations, with the objective of improving the
accuracy of classifying insignificant objects. Additionally, we propose an efficient feature aggregation
module (EFAM) to effectively expand the receptive field and aggregate contextual information,
which is integrated as a branch within the network architecture to mitigate the information loss
resulting from downsampling operations. Moreover, in order to augment the precision of segmenta-
tion boundary delineation and object localization, we employ a progressive upsampling strategy for
reinstating spatial information in the feature maps. The experimental results show that the proposed
model achieves competitive performance, achieving 80.4% MIoU on the Pascal VOC 2012 dataset,
79.4% MIoU on the Cityscapes dataset, and 40.1% MIoU on the Coco-Stuff dataset.

Keywords: semantic segmentation; contextual information; pyramid pooling module; attention
mechanism; multi-scale fusion

1. Introduction

Semantic segmentation is a crucial aspect of image processing tasks in the field of elec-
tronics, which is important for image comprehension; it aims to assign class labels to each
individual pixel within an image and make a finer classification of the image. With the ad-
vancement of semantic segmentation techniques and the breakthroughs achieved through
weakly supervised learning [1,2], semantic segmentation techniques find extensive applica-
tions in various domains of electronics, such as autonomous driving, where they enable
accelerated signal processing through the utilization of semantic segmentation. In the
process of segmenting images in urban scenes, several challenges arise related to complex
spatial relationships, irregular layout positions, and multi-scale objects. The traditional
method [3] for making predictions at a single scale is insufficient to achieve robust seg-
mentation and address the problem of pixel-level object consistency across different scenes.
Therefore, incorporating multi-scale information aggregation is necessary to enhance the
performance of the model to accurately locate and detect objects.

The integration of multi-scale information has received attention in subsequent stud-
ies [4–8]. PSPNet [9] introduced a novel pooling structure known as the Pyramid Pooling
Module (PPM), which aims to effectively integrate multi-scale contextual information, en-
abling the precise segmentation of objects of different scales in complex scenes. ForkNet [10]
employed a novel multi-scale fusion approach to capture scale variations of objects by
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integrating a Siamese feature pyramid network. LSTNet [11] introduces the Pyramid
Texture Feature Extraction Module (PTFEM) to effectively extract multi-scale statistical
texture features. The Atrous Spatial Pyramid Pooling (ASPP) method, introduced in [12],
is designed to effectively enlarge the receptive field and fuse multi-scale information
in semantic segmentation. However, due to the sparse downsampling effect caused by
dilated convolutions, there is a potential risk of losing spatial details and fine-grained
information, consequently leading to the issue of unclear segmentation boundaries in the
resulting model [13]. Furthermore, this method also exhibits limitations when segmenting
neighboring objects with similar attributes such as color and texture.

As the importance of attention mechanisms has been demonstrated in previous re-
search literature [14], it has been widely applied in several tasks for semantic segmentation,
such as [15], who combined [14] and multilayer perception decoders for image semantic
segmentation. The objective is to extract more useful features by assigning higher weights
to feature representations with significant information while suppressing the weights of
less informative ones. OCNet [16] combined attention mechanisms with ASPP to extract
contextual dependencies. GCNet [17] unified the SENet [18] into a framework to model
the global context. However, these methods are susceptible to noise interference in urban
scenes, which can result in the erroneous establishment of long-range pixel dependen-
cies. Refs. [19–21] leveraged the Swin Transformer [22] to construct hierarchical feature
maps and perform self-attention computations for semantic segmentation. Nevertheless,
the approach of partitioning the feature maps into windows restricts the establishment
of inter-window feature connections, which restricts the ability of the model to compre-
hensively capture contextual information. Additionally, the lack of effective integration of
attention mechanisms in multi-scale feature extraction resulted in a weak ability to extract
discriminative features in the case of indistinct urban scene targets. As a consequence, this
limitation leads to a misclassification of pixels and discontinuous segmentation results.

To overcome these limitations, we propose a novel pyramid shuffle module (PSM)
integrates channel and spatial attention mechanisms and utilizes channel shuffling opera-
tions on feature maps to extract informative feature representations. In addition, in order
to mitigate the loss of spatial and fine-grained information caused by the downsampling
process, this paper introduces an efficient feature aggregation module (EFAM) as a sec-
ondary branch of the model, which employs a multi-layer fusion strategy to jointly model
and complement features of various characteristics and expand the receptive field. MFS-
Net enhances the segmentation accuracy of elongated objects or neighboring objects with
similar features by establishing long-range dependencies between key pixels and utilizing
feature reuse mechanisms.

The main contributions are summarized as follows:

• To mitigate the issue of segmentation errors in urban scenes resulting from the pres-
ence of neighboring objects with similar features such as texture or color. We introduce
a Pyramid Shuffle Module (PSM), which improving the multi-scale feature representa-
tions and segmentation robustness of the network by facilitating channel interaction
among multi-scale features and highlighting discriminative features.

• To achieve precise segmentation of object boundaries. We proposed an efficient feature
aggregation module (EFAM), serving as a branch for network multi-layer feature
fusion in the network, to compensate for feature loss caused by pyramid pooling and
to facilitate network backpropagation.

• Extensive experimental results on Pascal VOC 2012, Cityscapes, and Coco-Stuff
datasets reveal that the proposed method exhibits a good generalization ability.

2. Methods

In this section, we first introduce the overall structure of the model. Then, we provide
a detailed explanation of the different modules used for constructing the network.
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2.1. Overview

As shown in Figure 1, the Multi-scale Feature Shuffle Network (MSFNet) used for
urban scenes was constructed under a generic encoder–decoder framework. The en-
coder performed downsampling on the input image to capture rich semantic information.
The learned high-level features were then decoded and reconstructed through the decoder
for pixel-level semantic prediction. Inspired by the aforementioned limitations of the
existing ASPP method, MSFNet introduced PSM and an EFAM to process the feature maps
extracted by ResNet in the encoder. Specifically, PSM integrates a channel shuffle atten-
tion mechanism, leveraging parallel strategies to construct spatial and channel attention.
This mechanism effectively utilizes the multi-scale context information extracted by the
pyramid pooling module, suppressing noise and accentuating discriminative semantic
regions. Additionally, in combination with EFAM in the sub-branch, the model expands
the receptive field while complementing the output features of the main branch.

Figure 1. Overview of our proposed MFSNet for semantic segmentation. “PSM” denotes the pyramid
shuffle module. “EFAM” denotes the efficient feature aggregation module.

During the decoding stage, MFSNet divides the upsampling process into two parts.
Firstly, the feature maps output by the PSM were upsampled by a factor of 4. Subsequently,
they were complemented by fusing them with the output feature maps from EFAM. This
approach effectively avoided the loss of fine-grained information caused by high magnifi-
cation upsampling. It is important to note that upsampling was not about fully restoring
the image resolution, but rather smoothly recovering a feature map of a credible initial size
using a computational formula. The refined features were further processed by a 3 × 3
convolutional layer, followed by another 4-fold upsampling. Finally, the features were
mapped to classes, allowing the class mapping to be rescaled back to the input resolution.
This model was constructed using a multi-strategy fusion approach, integrating function-
alities such as multi-scale fusion, discriminative feature highlighting, and feature reuse.
These functionalities ensured the extraction of high-level semantic information and the
restoration of high-resolution details during the training process.
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2.2. Pyramid Shuffle Model

PSM incorporates dilated convolutions in pyramid pooling, enabling the model to
flexibly adjust the receptive field size and fuse multi-scale object feature information during
feature extraction. As depicted in Figure 2, to enhance the model’s comprehension of
images, the approach employed parallel dilated convolution layers with dilation rates of 1,
12, 24, and 36, along with a global average pooling layer. After these operations, the model
effectively captured local multi-scale information while integrating the global semantic
information of the image. Subsequently, the resulting feature map M was obtained. Inspired
by SANet [23], this module divided the feature map M, which had dimensions of W × H
and C channels, into G groups based on the channel dimension. This process yielded a
collection of feature maps, referred to as X, X = [X1, . . . , XG], Xi ∈ RW×H×C/G. Then, each
sub-feature Xi was further split into two branches based on the channel dimension, which
yielded two distinct feature sets, denoted as Xi1, Xi2 ∈ RW×H×C/2G. These two branches
integrated the channel attention mechanism and spatial attention mechanism to capture
discriminative features. Specifically, the channel attention branch incorporated the global
average pooling (GAP) to compute the average value of each channel in the feature map,
generating global feature information denoted as yi1 ∈ R1×1×C/2G. Subsequently, yi1 was
enhanced using function Fc by Wy + b, where W and b are parameters can be updated by
network training. Unlike SANet, PSM adopts the Hardsigmoid Hσ activation to expedite
the convergence speed of the model and extract channel dependencies. The calculation
process is as follows:

αi1 = Hσ(W1yi1 + b1)× Xi1 (1)

where W1, b1 ∈ R1×1×C/2G adjusts the weights of each channel and highlights more signifi-
cant features. This mechanism helps mitigate the interference from redundant information
in the feature representation.

Figure 2. Pyramid shuffle module.

The spatial attention branch, in contrast, was utilized to focus on regions within
the feature map that contained rich semantic information. It enhanced the capacity of
the model to perceive local details and accurately locate objects in space. Firstly, yi2 ∈
R1×1×C/2G is obtained by GroupNorm using mean and variance calculations. Subsequently,
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the spatial attention vector is computed to enhance the feature representation of yi2. Lastly,
the Hardsigmoid activation is applied to accelerate the convergence speed of the model:

αi2 = Hσ(W2yi2 + b2)× Xi2 (2)

where W2, b2 ∈ R1×1×C/2G are parameters that can also be updated by network learning.
Subsequently, the sub-features αi1 and αi2 are combined along the channel dimension to
yield the feature αi ∈ RW×H×C/G.

The G sub-features are aggregated and subjected to channel shuffling operations to
facilitate inter-channel information interaction, as depicted in Figure 3. The input feature
maps are split into three groups based on the channel dimension. Secondly, a dimension re-
shape is applied to compose a new matrix, followed by a transpose operation and flattening
to accomplish channel shuffling. This operation effectively enhances the feature representa-
tion capabilities of the multi-scale and contextual information extracted through pyramid
pooling. By enabling mutual influence among feature channels with similar semantics,
it suppresses interference from redundant information and mitigates classification errors
during segmentation, ultimately improving the robustness of the segmentation process.

Figure 3. Channel shuffle module.

2.3. Efficient Feature Aggregation Module

In previous studies on semantic segmentation [24,25], it has been demonstrated that
expanding the receptive field is beneficial for improving the performance of semantic
segmentation models. EFAM has been presented as a feature reuse branch in the network. It
effectively mitigates the loss of spatial and detail information both internally and externally,
leading to a notable enhancement in the richness of the extracted semantic information,
as illustrated in Figure 4.

Figure 4. Efficient feature aggregation module.

EFAM receives the feature maps of the input image at a 1/4 resolution from the
backbone. Subsequently, it undergoes multiple branches of average pooling to extract
feature maps at resolutions of 1/8, 1/16, and 1/32. Additionally, a global average pooling
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operation is performed to integrate spatial information, generating image-level information,
which is subsequently used for upsampling. Inspired by the hierarchical residual-like
connections in Res2Net [26], we introduced a multi-branch network architecture based
on 3 × 3 convolutions to successively fuse multi-scale contextual information. The output
feature maps at each scale si are expressed by Equation (3):

si =

{
xi , i = 1
C3×3(Up(xi) + xi−1), 1 < i ≤ n

(3)

where C3×3 represents a 3 × 3 convolution and Up denotes bilinear interpolation upsam-
pling. With the exception of x1 and s1, which are directly mapped without any operations,
each input xi undergoes an addition operation with its corresponding xi−1, followed
by a 3 × 3 convolution. Subsequently, the feature maps obtained from each branch are
concatenated and then subjected to a 1 × 1 convolutional layer for dimensionality reduc-
tion. In the end, the output feature maps will be obtained by performing element-wise
summation operations.

This strategy of splitting and reconnecting greatly enhances the capacity of the module
to extract both the global and local information, substantially improving feature extrac-
tion and processing in the semantic segmentation tasks. Furthermore, ref. [27] provides a
detailed discussion on the combination of traditional convolution, normalization, and acti-
vation, presenting a comprehensive pre-activation design. In the construction of EFAM,
a similar sequential combination of BN-ReLu-Conv was employed, which effectively re-
duced the model overfitting and enhanced model generalization.

3. Experimental Results
3.1. Datasets

The Pascal VOC 2012 [28] benchmark contains 20 foreground object classes and
1 background class. The original dataset consisted of 1464 pixel-level annotated images for
training, 1449 for validation, and 1456 for testing. In addition, the dataset was augmented
with extra annotations provided by [29], resulting in 10,582 training augmented images
that were divided into 21 classes.

Cityscapes [30] is one of the more well-known scene semantic segmentation datasets,
focusing on the analysis of urban street scenes. It consists of 5000 high-quality pixel-level
finely annotated images collected from 50 cities, which are divided into 2975 images for
training, 500 images for validation, and 1525 images for testing, with a total of 19 classes.
In addition, we did not use its extra 20,000 coarse labeled images during training.

Coco-Stuff [31] comprises a comprehensive collection of 10,000 annotated images,
with 9000 images allocated for training and 1000 images for testing. Compared with
Cityscapes and Pascal VOC 2012, the Coco-Stuff dataset is more challenging due to its more
complex classes, includes 80 thing classes, 91 stuff classes, and 1 class labeled as ‘unlabeled’.

The experimental design in this paper aligns with the approach in [32–37]. We con-
ducted experiments on the validation sets of the Pascal VOC 2012 and Cityscapes datasets
to thoroughly analyze the improvements and contributions of the proposed model. Fur-
thermore, we further validated the effectiveness of MFSNet on the COCO-Stuff test set,
demonstrating its performance in semantic segmentation tasks. The experiments employed
Mean Intersection over Union (MIoU) and Mean Accuracy (MAcc) as the evaluation criteria
for assessing the segmentation performance. A higher MIoU and MAcc value suggested a
more precise image segmentation.

3.2. Train Setting

The training and validation of this experiment were conducted on the Ubuntu 20.0.4.01
environment, using the PyTorch framework version 1.8.1. The training was performed
on a GeForce RTX 3090 with 24GB of memory. All of the experiments were conducted
with exactly the same data augmentation. Specifically, Pascal VOC 2012 was cropped to a
440 × 440 resolution, Cityscapes was cropped to 769 × 769 resolution and the Coco-Stuff
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was cropped to a 380 × 380 resolution. We trained the datasets with cross-entropy loss
function and a stochastic gradient descent (SGD) optimizer, and optimized the network by
adopting the poly learning rate Equation (4). The initialization of parameters W1 and W2
were set to 1, and b1 and b2 were set to 0.

I = Iinit × (1 − epoch
epoch_max

)power (4)

where epoch_max represents the maximum number of epochs, I represents the learning
rate, Iinit represents the initial learning rate, and power is set to 0.9.

3.3. Ablation Study

To validate the feasibility and effectiveness of this model, this study evaluated the
contribution of each module to improving the overall accuracy through a series of experi-
ments. In order to ensure fairness in the results, ResNet101 was uniformly chosen as the
backbone for this model during the experiments. Considering that the PSM in our model
was improved based on ASPP in Deeplabv3+, we incorporated ASPP into the experiments
for the comparative analysis.

In Table 1, “Non-EFAM” refers to the absence of the EFAM as the feature reuse branch,
while “EFAM” represents the adoption of EFAM as the feature reuse branch. By analyzing
the table, it becomes apparent that both introduced modules significantly enhanced the
segmentation performance. PSM introduced in this model achieved 79.7% and 80.4%
MIoU, as well as 88.7% and 89.3% MAcc, in the Non-EFAM and EFAM cases, respectively.
Compared with ASPP, PSM achieved a superior 1.3% and 1.0% MIoU, as well as 1.5%
and 1.0% MAcc. Notably, when ASPP was replaced with PSM, this resulted in a minimal
increase in model parameters, while significantly improving the performance of model.
Furthermore, the addition of EFAM as the feature reuse branch led to a slight increase in
0.8M in the model parameters. However, this trade-off yielded a substantial improvement
in segmentation accuracy.

Table 1. Ablation analysis of the Pascal VOC 2012 val set.

Method BackBone ASPP PSM Params. (M) MIoU (%) MAcc (%)

Non-EFAM ResNet101 ✓ 59.3 78.4 87.2
Non-EFAM ResNet101 ✓ 59.3 79.7 88.7

EFAM ResNet101 ✓ 60.1 79.4 88.3
EFAM ResNet101 ✓ 60.1 80.4 89.3

In addition, Figure 5 illustrates the effectiveness of each module in a more intuitive
manner through the MIoU curve. The curve clearly demonstrates that the inclusion of each
module significantly enhanced the accuracy of the segmentation model. Analyzing the
curve trends revealed that the ASPP gradually tendedtowards overfitting after 80 training
epochs. Conversely, the MIoU curve of MFSNet consistently exhibited a steady upward
trend without any indications of overfitting, although the rate of improvement gradually
slowed down.

As the proposed method in this study was an improvement based on ASPP, we further
compared it with Deeplabv3+ in terms of precision, recall, and F1 value to validate its
effectiveness. As shown in Table 2, MFSNet achieved precision, recall, and F1 values
that were 1.4%, 2.7%, and 2.1% higher than Deeplabv3+, respectively, indicating that our
method exhibited a higher accuracy. Additionally, to ensure comprehensive experimental
results, we further computed the false negative rate (FNR) for MFSNet, which resulted
in 10.7%.
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Figure 5. Curve of MIoU for ablation experiments on the Pascal VOC 2012 val set.

Table 2. Ablation analysis of Deeplabv3+ and MFSNet.

Method BackBone Precision (M) Recall (%) F1 Score (%)

Deeplabv3+ ResNet101 86.5 86.6 86.5
MFSNet ResNet101 87.9 89.3 88.6

We conducted comparative ablation experiments on the visual results of ASPP, PSM,
and the entire MFSNet model, as depicted in Figure 6. A comparative analysis of the
second and third rows clearly demonstrated that MFSNet outperformed the ASPP method,
exhibiting a superior segmentation efficacy. An analysis of the first and fourth rows clearly
demonstrated the superior performance of our model compared with the existing ASPP
method. The incorporation of PSM effectively enhanced the discriminative features of
“person” and “motorcycle”, successfully mitigating the issue observed in existing methods
where neighboring objects with similar features were incorrectly identified as the same ob-
ject. Moreover, observations from the first and forth rows revealed that the model efficiently
integrated multi-scale information, establishing long-range dependencies among critical
pixels. As a result, it accurately segmented “person” within the “car” and produced more
complete outlines for smaller objects. Comparing column (d) with column (e), it becomes
evident that our model exhibited a notable enhancement in robustness by leveraging EFAM
as a feature reuse branch to recover spatial information. This improvement effectively re-
duced the occurrence of discontinuity during the segmentation process. The visualizations
clearly demonstrate that the introduced modules in our model significantly improved the
accuracy of object segmentation.

We investigated the impact of the pre-activation structure in EFAM in terms of accuracy.
Observing Table 3 reveals that when utilizing the shallow ResNet50 as the backbone,
the influence of post-activation and pre-activation was relatively minor, with a marginal
difference of approximately 0.1% in MIoU. However, as the depth of the backbone increased,
the disparity became more pronounced, with the pre-activation scheme surpassing the
post-activate counterpart by 0.2% MIoU. These results indicate the efficacy of incorporating
the pre-activation structure in our network, as it contributed to an improvement in the
model performance.
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Figure 6. Visual comparison of segmentation results for the ablation experiments.

Table 3. Ablation study for pre-activate structure.

BackBone Post-Activation Pre-Activation MIoU (%)

ResNet50 ✓ 78.8
ResNet50 ✓ 78.9
ResNet101 ✓ 80.2
ResNet101 ✓ 80.4

PSM is an improvement based on Shuffle Attention (SA), as it is theoretically reasoned
that SA can efficiently combine the channel and spatial attention through its multi-branch
structure, which enables the extraction of the discriminative feature information, while
increasing the feature diversity, effectively enhancing the robustness of the segmentation
model. Experimental comparisons with other attention mechanisms, as illustrated in
Table 4, unequivocally demonstrate that our proposed method yielded the most substantial
performance improvement. Specifically, under the condition of a comparable parameter
count of 60.1M to the ECA and SA methods, our approach outperformed CBAM, SE, ECA,
and SA by 0.5%, 0.6%, 0.5%, and 0.4% in terms of MIoU, respectively.

Table 4. Ablation study for attention mechanisms.

Method Params. (M) MIoU (%)

ASPP + CBAM [38] 60.4 79.9
ASPP + SE [18] 60.4 79.8

ASPP + ECA [39] 60.1 79.9
ASPP + SA [23] 60.1 80.0

PSM 60.1 80.4
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3.4. Results on Pascal VOC 2012

This experiment evaluated the proposed approach on the validation set of the Pascal
VOC 2012 dataset, comparing it with other methods. To improve the training efficiency,
the input image resolutions were cropped during both the training and evaluation pro-
cesses. As presented in Table 5, MFSNet achieved 78.9% and 80.4% MIoU on ResNet50
and ResNet101, respectively, while also achieving 87.8% and 89.3% MAcc. Furthermore,
the study [40] found that larger image sizes during the training and validation resulted
in improved segmentation accuracy, as indicated by previous research. It is noteworthy
that the image sizes utilized in our method were comparatively smaller than those em-
ployed by other state-of-the-art models. Nevertheless, MFSNet still managed to outperform
these advanced methods, achieving the highest MIoU and MAcc, which further validated
the superiority of our method. Additionally, even when the backbone was changed to
ResNet50, MFSNet demonstrated a superior performance compared with the majority of
existing models.

Table 5. Comparison of PASCAL VOC 2012 val set results with other models.

Method Backbone Resolution MIoU (%) MAcc (%)

CCNet [41] ResNet101 512 × 512 77.8 85.1
GCNet [17] ResNet101 512 × 512 77.8 86.0
PSPNet [9] ResNet101 512 × 512 78.5 87.0

PSANet [42] ResNet101 512 × 512 77.7 85.0
DeepLabv3+ [12] ResNet101 769 × 769 78.4 86.0

OCRNet [43] HRNetV2p-W48 512 × 512 77.1 85.9
MARS [44] ResNet101 - 77.7 -

WASS-SAM [2] ResNet101 - 77.2 -
MFSNet (Ours) ResNet50 440 × 440 78.9 87.8
MFSNet (Ours) ResNet101 440 × 440 80.4 89.3

We conducted comparative evaluations to validate the superior segmentation results
of MFSNet against DeepLabv3+ and PSPNet, as shown in Figure 7. The findings reveal that
MFSNet exhibited significant advantages in terms of both distinguishing visually similar
categories, such as “motorcycle” and “person”, and maintaining the overall integrity of
the segmented objects. While DeepLabv3+ efficiently captured multi-scale contextual
information through the integration of ASPP, it failed to address the issue of feature
information loss caused by sparse downsampling and lacked the ability to capture critical
pixel-level feature dependencies, resulting in incomplete segmentation of complex objects
or neighboring objects with similar features. This deficiency was evident in the first
row where the segmentation result exhibited discontinuity. Similarly, PSPNet, despite
incorporating a pyramid pooling module to extract contextual information by performing
multiple pooling operations at different scales, suffered from the loss of fine-grained feature
details due to repeated downsampling. Consequently, the model was prone to noise
interference during segmentation and exhibited imprecise object edge delineation, similar
to DeepLabv3+. In contrast, MFSNet effectively mitigated feature information loss through
the deep aggregation of global and local feature information, while establishing long-
range dependencies between the pixels to extract discriminative features. This approach
significantly enhanced segmentation accuracy. Comparing the third and fourth rows further
demonstrates that MFSNet surpassed DeepLabv3+ and PSPNet in segmenting edges and
small-scale objects.

3.5. Results on Cityscapes

To further demonstrate the good generalizability of our semantic segmentation model
in urban scenes, we conducted experiments on the Cityscapes dataset, as presented in
Table 6. Our method with ResNet50 as a backbone achieved 78.5% MIoU and 87.4% MAcc,
while it achieved 79.4% MIoU and 88.3% MAcc with ResNet101. A comprehensive evalua-
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tion of both MIoU and MAcc metrics revealed that our model outperformed DeepLabv3+
by a slight margin of 0.4% in terms of MIoU, while surpassing it by a noteworthy 1.6% in
terms of MAcc. The experimental results on both datasets unequivocally demonstrated the
outstanding performance of our proposed network, underscoring its substantial generaliz-
ability in urban scenes. While the MIoU of our method on the Cityscapes dataset exhibited
a marginal improvement of only 0.4% over DeepLabv3+, it outperformed DeepLabv3+ by
a substantial margin of 2.0% in terms of MIoU on the Pascal VOC 2012 dataset.

Figure 7. Visual comparison of the segmentation results with the other methods on PASCAL
VOC 2012.

Table 6. Comparison of the Cityscapes val set results with other models.

Method Backbone Resolution MIoU (%) MAcc (%)

GCNet [17] ResNet101 512 × 1024 78.2 85.7
PSPNet [9] ResNet101 512 × 1024 78.3 85.3

DMNNet [6] ResNet101 769 × 769 77.6 86.4
CCNet [41] ResNet101 769 × 769 76.9 84.9

DeepLabv3+ [12] ResNet101 769 × 769 79.0 87.0
PointRend [45] ResNet101 512 × 1024 78.3 85.7
APCNet [46] ResNet101 769 × 769 77.9 87.1
PSANet [42] ResNet101 769 × 769 78.4 87.4

Multiscale DEQ [47] MDEQ-large 769 × 769 77.8 -
UOIFT [7] UOIFT - 78.0 -
STDC [8] STDC2 512 × 1024 76.7 84.0

BiSeNetV2 [48] BiSeNetV2 1024 × 1024 75.7 83.4
StreamDEQ [49] MDEQ-iter8 768 × 768 78.2 -
EEA-NEt-C2 [50] EEA-NEt-C2 320 × 320 76.8 -
MFSNet (Ours) ResNet50 769 × 769 78.5 87.4
MFSNet (Ours) ResNet101 769 × 769 79.4 88.3



Electronics 2024, 13, 12 12 of 16

Although our method on the Cityscapes dataset was only 0.4% MIoU higher than
Deeplabv3+, in order to demonstrate the effectiveness of our model at extracting discrimi-
native information and improving the segmentation of elongated objects, we compared
the IoU scores of the original model and MFSNet on different categories of the Cityscapes
dataset. As shown in Table 7, our model performed exceptionally well in all categories,
except for “road”, “sky”, “truck”, and “train”, where the accuracy was lower compared
with the original model. Specifically, our model achieved a significantly higher Intersection
Over Uion (IoU) on elongated objects such as “pole” and “fence” compared with the origi-
nal model, and also exhibitdc a higher accuracy for complex objects such as “traffic sign”
and “rider”.

Table 7. Comparison of different classes of IoU on the Cityscapes dataset.

Class DeepLabv3+ (%) MFSNet (%)

Road 98.5 98.2
Sidewalk 87.1 87.3
Building 92.8 93.2

Wall 51.3 51.6
Fence 62.4 63.2
Pole 66.5 69.1

Traffic light 70.6 73.1
Traffic sign 79.1 81.6
Vegetation 92.7 93.1

Terrain 64.1 64.5
Sky 95.0 94.2

Person 82.7 84.2
Rider 63.2 64.4
Car 95.7 95.9

Truck 86.1 83.2
Bus 89.1 89.6

Train 78.0 74.6
Motorcycle 68.9 69.1

Bicycle 78.1 79.5

We performed a visual comparison of the results between MFSNet and DeepLabv3+
on the Cityscapes dataset to illustrate the segmentation performance of MFSNet in urban
scenes, as shown in Figure 8. By analyzing the segmentation results of the first, fifth,
and sixth rows, it is evident that MFSNet achieved more complete and continuous segmen-
tation of object contours such as “pole” “traffic light”, and “traffic sign” after establishing
feature correlations. Additionally, by observing the results in the fifth, sixth, and seventh
rows, MFSNet significantly outperformed DeepLabv3+ in the segmentation of complex
objects like “rider” after incorporating multi-scale features fusion and extracting discrimi-
native features from small-scale objects in the image.

3.6. Results on Coco-Stuff

Additionally, to ensure the completeness of our experiments, we conducted a compara-
tive analysis of MFSNet with other models on the COCO-Stuff test set. By observing Table 8,
we can see that our model still achieved competitive results. Particularly noteworthy is
the performance improvement over Deeplabv3+, where our model achieved a 1.7% higher
MIoU and a 1.4% higher MAcc.
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Table 8. Comparison of the Coco-Stuff test set results with other models.

Method Backbone Resolution MIoU (%) MAcc (%)

PSPNet [9] ResNet101 512 × 512 37.2 49.3
RefineNet [51] ResNet101 513 × 513 33.6 -

DANet [52] ResNet101 768 × 768 39.7 -
DeepLabv3 ResNet101 512 × 512 37.3 49.3

DeepLabv3+ [12] ResNet101 512 × 512 38.4 50.2
OCRNet [43] ResNet101 520 × 520 39.5 -

MFSNet (Ours) ResNet101 380 × 380 40.1 51.6

Figure 8. Visual comparison of segmentation results with other methods on Cityscapes.

4. Conclusions

In this paper, we propose a multi-scale feature shuffle model (MFSNet) for seman-
tic segmentation of urban scenes. By incorporating PSM and EFAM into our network
architecture, we effectively mitigated issues related to information loss, weak feature cor-
relations, and inadequate discriminative features during the feature extraction process.
Specifically, our method introduced PSM, which leverages both multi-scale characteristics
and attention mechanisms, enhancing the representation and consistency of the extracted
features, and effectively reducing the impact of noise interference on model segmentation.
Furthermore, EFAM combines pooling kernels of varying depths and sizes, which enables
the aggregation of both local and global feature information, compensating for the loss of
feature details caused by downsampling operations and promoting effective feature reuse.
The ablation studies in the Pascal VOC 2012 dataset show the effectiveness of the proposed
PSM and EFAM. The experimental results show that MFSNet achieves an outstanding
performance on the Pascal VOC 2012, Cityscapes, and COCO-Stuff datasets, respectively.
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