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Abstract: Modulation recognition is an important technology in wireless communication systems. In
recent years, deep learning-based modulation recognition algorithms, which can autonomously learn
deep features and achieve superior recognition performance compared with traditional algorithms,
have emerged. Yet, there are still certain limitations. In this paper, aiming at addressing the issue of
poor recognition performance at low signal-to-noise ratios (SNRs) and the inability of deep features
to effectively distinguish among all modulation types, we propose an optimization scheme for
modulation recognition based on fine-tuning and feature re-extraction. In the proposed scheme, the
network is firstly trained with the signals at high SNRs; then, the trained network is fine-tuned to
the untrained network at low SNRs. Finally, on the basis of the features learned by the network,
deeper features with enhanced discriminability for confused modulation types are obtained using
feature re-extraction. The simulation results demonstrate that the proposed optimization scheme can
maximize the performance of the neural network in the recognition of signals that are easily confused
and at low SNRs. Notably, the average recognition accuracy of the proposed scheme was 91.28%
within an SNR range of −8 dB to 18 dB, which is an improvement of 8% to 17% in comparison with
four existing schemes.

Keywords: modulation recognition; SNR region classification; transfer learning; feature re-extraction

1. Introduction

The incessant advancement in communication technology has profoundly impacted
various aspects of social life, and the demand for wireless communication continues to
escalate. Typically, signals undergo appropriate modulation during transmission, and as
the transmission environment grows increasingly complex, multiple modulation types
are included within the communication frequency band [1]. Consequently, it is important
to investigate modulation recognition techniques for communication signals in depth.
In non-cooperative communication systems [2,3], modulation recognition primarily serves
to process the received signals; analyze the modulation type; and subsequently perform
signal demodulation, decoding and other operations to obtain valuable information. In co-
operative communication systems, modulation recognition techniques are also applied
in numerous fields, including spectrum sensing [4,5], spectrum resource management [6],
cognitive radio [7] and others. In summary, to guarantee communication security, relevant
departments must reinforce the supervision of communication signals. This requires the ef-
fective identification of interference information embedded within signals, and modulation
recognition can play a crucial role in achieving the efficient allocation of spectrum resources.

Most current modulation recognition techniques are based on likelihood ratio theory
or feature extraction algorithms, which involve intricate steps and exacting conditions.
A primary drawback of these approaches is that feature extraction and selection may result
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in the loss of some signal information. Consequently, neural network-based modulation
recognition algorithms have garnered attention, as they can achieve end-to-end recognition
without manual feature extraction. This class of algorithms can retain the signal information
to the maximum extent and achieve better results. Neural network-based modulation
recognition techniques for communication signals are more suitable for the emerging
modulation types. However, the deep features extracted by neural networks cannot
effectively recognize all modulation types, resulting in confusion among certain modulation
types. The existing methods attempt to resolve this issue by increasing the number of
network layers, such as implementing deep neural networks such as residual network 50
(ResNet50), to improve the modulation recognition rates. Nonetheless, when the dataset is
large and the network has numerous parameters to learn, it takes a long time to train the
network, thereby diminishing model efficiency. Furthermore, when the neural network is
initialized with random weights and trained several times on the same dataset, the network
recognition performance in each training process considerably varies. The modulation
recognition rates of the same network trained with signals at high SNRs and low SNRs also
exhibit significant disparities.

In this paper, we focus on the problem that existing neural network-based modulation
recognition algorithms achieve poor recognition of signals with noise interference or easily
confused. To enhance the recognition performance, a method based on fine-tuning and
feature re-extraction is proposed to effectively recognize 11 modulation types in the dataset
RadioML2016.10a (RML2016.10a), i.e., 16-ary quadrature amplitude modulation (16QAM),
64-ary quadrature amplitude modulation (64QAM), binary phase-shift keying (BPSK),
quaternary phase-shift keying (QPSK), eight-level phase-shift keying (8PSK), continuous-
phase frequency-shift keying (CPFSK), Gaussian frequency-shift keying (GFSK), four-level
pulse-amplitude modulation (PAM4), amplitude modulation single sideband (AM-SSB),
amplitude modulation double sideband (AM-DSB) and wideband frequency modulation
(WBFM). Firstly, the dataset is divided into several subregions according to the SNR values.
Secondly, the modulated signals at high SNRs (source data) are used to train the source
network. Thirdly, the weights of the trained source network are transferred to the untrained
target network as the initial weights. Fourthly, the untrained target network is trained with
the signals at low SNRs (target data). Finally, feature re-extraction is performed if the target
network has been trained. The main contributions of this paper are outlined as follows:

(1) A novel modulation recognition algorithm based on fine-tuning and feature re-extraction
is proposed, and the proposed algorithm can improve the performance of the neural
network in the recognition of the signals that are easily confused at low SNRs.

(2) With the fine-tuning method, we can transfer the weights of the networks trained with
the modulated signals at different SNRs. This can improve the recognition accuracy
for signals at low SNRs, as well as the stability of the network.

(3) Since neural networks cannot achieve good recognition of all modulation types, we
propose the feature re-extraction method. With the method, deeper features are
extracted from the outputs of the trained network’s penultimate layer, thus achieving
the effective recognition of easily confused modulation types.

(4) Finally, the combination of fine-tuning and feature re-extraction can improve recogni-
tion performance to the maximum extent.

The simulation results confirm that the proposed algorithm achieved better recognition
performance than state-of-the-art modulation recognition algorithms. We further explored
the rationality of our proposed algorithm with controlled groups of experiments and
analyzed the aspects of the confusion matrix and model complexity.

The rest of this paper is organized as follows: We review related literature in Section 2
and present the system model in Section 3. Then, we propose a modulation recognition
algorithm combining fine-tuning and feature re-extraction and discuss the algorithm design
process in Section 4. Simulation results and performance evaluation are provided in
Section 5. Finally, the conclusion is drawn in Section 6.
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2. Literature Review of Related Works

In communication systems, a baseband signal needs to be modulated for transmission
in the channel. With the development of communication technology, there are various
modulation types with different characteristics. Modulation recognition is a two-step
process: pre-processing the communication signals and using the appropriate classifier to
recognize the modulation types [8]. The modulation recognition algorithms for communica-
tion signals can be divided into three categories at present [9], which are likelihood-based,
feature-based and deep learning-based algorithms.

The modulation recognition algorithm based on the likelihood function, which suc-
cessfully distinguishes between BPSK and QPSK signals, was firstly proposed in [10]. More
specifically, the authors calculated the probability density functions of signal parameters,
such as the symbol transmission rate, the SNR and the carrier frequency; obtained the
corresponding log-likelihood ratio; and then estimated the modulation order of the signals.
However, the derivation process of the likelihood function is computationally complex and
requires a priori knowledge about the distribution of statistics [11]. Moreover, the specific
decision criteria for the likelihood ratio are also different for different practical problems,
so likelihood-based modulation recognition algorithms are less generalizable. In addition,
it is difficult to obtain accurate values of signal parameters at low SNRs, which affects the
recognition of the modulation types.

The modulation recognition algorithm based on signal feature extraction [12,13] con-
sists of the following three steps: Firstly, we should pre-process the modulated signals,
mainly including signal down-sampling, digital filtering, etc. Secondly, we can extract the
features from different angles to realize effective signal description. Finally, based on the
differences among the corresponding signal eigenvalues, we can recognize the modulated
signals by setting appropriate thresholds. Zhang et al. [14] constructed six characteristic pa-
rameters based on instantaneous information and signal spectrum. The proposed method
correctly classified the modulated signals of two-level amplitude-shift keying (2ASK),
four-level amplitude-shift keying (4ASK), two-level frequency-shift keying (2FSK), BPSK,
minimum shift keying (MSK), frequency modulation (FM), lower sideband (LSB) and
upper sideband (USB) with more than 95% recognition rate at SNR = 6 dB. On the basis of
high-order cumulants, combined with peak features of the FFT spectrum and instantaneous
signal features, Yang et al. [15] proposed a new method for digital modulation recognition
based on mixed signal features. The new method successfully and efficiently recognized
six classical digital modulation types and achieved satisfactory recognition results even at
rather low SNRs. By considering the different cumulant combinations of 2FSK, 4FSK, BPSK,
QPSK, 2ASK and 4ASK signals, Xie et al. [16] established new signal parameters to achieve
better recognition of these digital modulation types. The overall recognition accuracy was
99% at SNR = −5 dB and 100% at SNR = −2 dB. Wang et al. [17] used the fourth-order
cumulants of four signals (8PSK, 16QAM, PAM4 and BPSK) as the recognition parameters.
Under additive white Gaussian noise (AWGN) channels, the recognition accuracy reached
more than 90% when the number of symbols was above 250 and SNR > 10 dB. Hassanpour
et al. [18] proposed a wavelet-based algorithm for the recognition of binary digital modula-
tion types, including 2ASK, 2FSK and BPSK, in the presence of AWGN. The average rates
of 99.97%, 99.71% and 97.34% were obtained for the recognition of the three modulations at
−5 dB,−7 dB and−10 dB. Yang et al. [19] converted the time-domain diagrams of different
complex modulated signals into spectrogram images using the wavelet transform. Then,
the authors adopted AlexNet to classify the eight modulated signals of 2ASK, 4ASK, 2PSK,
4PSK, 2FSK, 4FSK, 16QAM and 64QAM. The recognition accuracy of the eight modulation
types was almost 100% at higher SNRs. In [20], a new blind modulation classification (BMC)
method was proposed for classifying the three modulated signals of QPSK, offset-QPSK
(OQPSK) and π/4-QPSK, based on the second-order and fourth-order cyclic cumulants.
The proposed feature-based BMC algorithm added robustness against various impair-
ments and worked well even in the frequency-selective fading channels. Wei et al. [21]
proposed a novel method for the automatic modulation classification (AMC) of digital
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communication signals using a support vector machine (SVM) based on hybrid features,
cyclostationarity and information entropy. Moreover, the authors proposed three new
features, which did not require any prior information and had a strong anti-noise ability.
Shi [22] extracted Box fractal dimension, Katz fractal dimension, Higuchi fractal dimension,
Petrosian fractal dimension and Sevcik fractal dimension from eight modulated signals.
In addition, back-propagation (BP) neural network, gray relation analysis (GRA), random
forest (RF) and K-nearest neighbor (KNN) were used to recognize the different modulated
signals based on the fractal features. The results indicated that RF had better recognition
performance with 96% accuracy at SNR = 10 dB. Wang et al. [23] proposed a low-complexity
graphic constellation projection (GCP) algorithm for AMC, and adopted the deep belief
network (DBN) to learn the underlying features in these constellations. The recognition
accuracy was beyond 95% at SNR = 0 dB. Yan et al. [24] presented an innovative AMC
method using graph-based constellation analysis for M-ary QAM signals. The proposed
method with lower computational complexity could provide superior performance com-
pared with existing subtractive clustering techniques and was robust to the residual phase
and timing offsets. In summary, modulation recognition performance can be improved by
extracting features with significant differences among the modulation types from multiple
perspectives. Moreover, it is necessary to select an appropriate classifier in order to obtain
better recognition performance. The feature-based modulation recognition algorithm is
less computationally intensive and simpler to implement than the likelihood-based one,
but the recognition performance depends on the number of features and the differences
among features. Moreover, it is difficult to accurately extract features in non-ideal channels.

In recent years, with the rapid development of deep learning, researchers have started
applying it to signal processing [25–30]. The main innovation point of deep learning-based
methods is that the novel network architectures with tens or even hundreds of layers
and network training methods are allowed to be used for recognition. On the one hand,
the deep learning-based modulation recognition algorithm can extract artificial features
from the original signals and then utilize the extracted features as the inputs of neural
networks. Lee et al. [31] proposed an enhanced blind modulation classification (BMC)
method based on deep neural network (DNN) for fading channels. Then, the authors
adopted DNN to recognize 16QAM, 64QAM, BPSK, QPSK and 8PSK based on 28 signal
features. The experimental results showed that the recognition rate was enhanced with the
increase in the number of signal features. Kim et al. [32] adopted deep connected neural
network (DCNN) with artificial features as the network inputs to successfully recognize
PSK and QAM signals with different orders. The authors discussed the interference of
Gaussian white noise and Doppler frequency shift with the network recognition perfor-
mance and confirmed that DCNN had stronger generalization ability and signal recognition
ability. Mendis et al. [33] proposed an automatic modulation classification (AMC) method
based on a spectral correlation function (SCF) pattern. The authors used DBN to ab-
stract the complex signal features that were represented by the associated SCF patterns
and then distinguished among five kinds of digitally modulated signals using the features.
The proposed method had low sensitivity to Gaussian white noise channels. In addi-
tion, the recognition accuracy was greatly reduced in the AWGN environment. To solve
the problem, a multi-carrier recognition system based on CNN and principal component
analysis (PCA) was proposed in [34]. The PCA-based processing method could suppress
AWGN and reduce the dimension of the network inputs. The system correctly identified
three kinds of multi-carrier waveforms in a dense transmission environment and achieved
good recognition results even at low SNRs. Gou et al. [35] proposed a semi-supervised
learning method based on data-driven models that combined contrastive predictive coding
with an unsupervised pre-training algorithm, as well as a supervised learning algorithm.
The authors constructed a joint DNN composed by long short-term memory (LSTM) and
ResNet50 and then extracted the instantaneous features using the Hilbert transform as the
network inputs to recognize 11 modulation types. The semi-supervised joint neural net-
work structure improved the recognition accuracy by 3∼20% compared with the previous
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methods and reached an average recognition accuracy of 94% at SNR levels ranging from
0 dB to 18 dB.

On the other hand, deep learning-based recognition algorithms can directly utilize
the original signals as the network inputs and realize end-to-end recognition. This class
of algorithms have strong generalization ability and robustness for various modulation
recognition tasks. O’Shea et al. [36] developed a new end-to-end modulation recogni-
tion algorithm based on deep residual network (DRN). The proposed algorithm was
feasible in realistic communication environments and achieved higher recognition ac-
curacy at low SNRs than the other methods mentioned in the paper. Zhang et al. [37]
used DBN and temporal in-phase and quadrature (IQ) data representation to identify
11 modulation types. The method obtained high recognition accuracy at high SNRs.
Vanhoy et al. [38] proposed a branch convolutional neural network (B-CNN) to recognize
more than 20 modulated signals. Xu et al. [39] proposed an effective multi-stream net-
work structure, namely, multi-channel convolutional long short-term deep neural network
(MCLDNN). The network structure utilized the information of I-channel data, Q-channel
data and I/Q-multi-channel data of the original signals and integrated one-dimensional
(1D) convolutional, two-dimensional (2D) convolutional and LSTM layers to extract spatio-
temporal features. MCLDNN performed significantly better than other network structures
above −4 dB SNR and reached an average recognition accuracy of 92% at SNR levels
ranging from 0 dB to 18 dB, an improvement of 2∼10% over the others.

In practical scenarios, it is difficult to construct large-scale well-annotated datasets for
all domains of interest, and the recognition model performs weakly in the domain with
insufficient data. To address this problem, Bu et al. [40] proposed an adversarial transfer
learning architecture (ATLA), incorporating adversarial training and knowledge transfer
in a unified way. The proposed ATLA substantially boosted the performance of the target
model. More specifically, the target model achieved the recognition accuracy of 82% with
half of the training data reduced, and the accuracy was increased by 17.3% with respect to
that of supervised learning with one-tenth of training data. In addition, there are generally
few labeled samples and large unlabeled samples in realistic communication scenarios. It is
almost impossible to implement previously proposed deep learning-based AMC algorithms
in this case. Wang et al. [41] proposed a TL-based semi-supervised AMC (TL-AMC) method
in a zero-forcing-aided multiple-input and multiple-output (ZF-MIMO) system. TL-AMC
performed better than CNN-based AMC with the limited samples, and TL-AMC also
achieved recognition accuracy at high SNRs similar to that of CNN-based AMC trained on
massive labeled samples. Most of existing AMC methods have been designed under the
assumption that the classifier has prior knowledge of the signal and channel parameters.
Perenda et al. [42] proposed two possible directions to make AMC more robust to signal
shape transformations introduced by unknown signal and channel parameters. Spatial
transformer networks (STNs) and TL were embedded into a light ResNeXt (ResNet next
dimension)-based classifier. This proposed method improved the average recognition
accuracy up to 10∼30% in specific unseen scenarios, with only 5% of labeled data for a
large dataset of 20 complex higher-order modulation types. Finally, Table 1 presents the
summary of the above-mentioned deep learning-based modulation recognition algorithms
and compares deep learning-based algorithms and the proposed algorithm in terms of
advantages, limitations and recognition accuracy.

With the rapid development of communication technology, the demand for automatic
modulation recognition (AMR) in signal processing scenarios has become increasingly
urgent. According to the review of the related literature on modulation recognition algo-
rithms, deep learning-based algorithms can automatically extract deep features to achieve
AMR, but there are still some problems. Therefore, an improved modulation recognition
algorithm based on fine-tuning and feature re-extraction is proposed in this paper.
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Table 1. Comparison of deep learning-based algorithms and the proposed algorithm.

Reference Method Modulation Set Advantages Limitations Recognition Accuracy

[31]
28 statistical
features
+ DNN

BPSK, QPSK,
16QAM, 64QAM and
8PSK

Good performance
and robust to
fading channels

Poor recognition of
16QAM and 64QAM

Acc = 86.43%
when the Doppler
frequency and
SNR are set to
100 Hz and 5 dB

[32]
21 statistical
features
+ DNN

BPSK, QPSK,
16QAM, 64QAM and
8PSK

Good discrimination
of modulation types
for high-Doppler
fading channels

Unreliable performance
comparison with previous
methods (inconsistent
network inputs)

Acc = 100%
when SNR > 0 dB

[33] SCF patterns
+ DBN

4FSK, 16QAM,
BPSK, QPSK and
OFDM

Robust at low SNRs Poor recognition of
BPSK and QPSK

Acc > 90%
when SNR > −2 dB

[34]
Instantaneous
amplitude
+ CNN

OFDM-QAM,
FBMC-OQAM and
UFMC

Good discrimination
of multicarrier
waveforms
in dense transmission
environment; low
computational
complexity

Raw amplitude
features are not
effective at low SNRs

Acc = 97.4%
at SNRs
ranging from
−5 dB to 20 dB

[35]
Instantaneous
parameters
+ LSTM-
ResNet

RML2016.10a

Good recognition of
modulation types under
small-sample-
scale conditions

High model complexity;
poor recognition of
8PSK and QPSK,
16QAM and 64QAM, and
WBFM and AM-DSB

Acc = 92%
at 0 dB

[36] IQ data
+ ResNet RML2018.01a

Good performance
on the difficult
signal database

Poor recognition of
high-order modulation types
(16-/32-PSK and
64-/128-/256-QAM)
and AM modes;
requires high SNRs;
requires many samples

Acc = 80%
at 10 dB

[37] IQ data
+ DBN RML2016.10a Simple model

structure

Poor recognition of
16QAM and 64QAM;
requires high SNRs

Acc = 92.12%
at 18 dB

[38]
IQ data +
CLDNN with
hierarchical
structure

MGFSK, MCPFSK,
MPAM, MQAM,
AM, WBFM,
IFM, OFDM,
MASK and MPSK

Different network
structures for
different families
of modulations

Poor recognition of
high-order modulations;
recognition rate is
enhanced with the
increase in
sample size

Acc > 75%
when SNR > 0 dB;
maximum
rate is 80%

[39] IQ data
+ MCLDNN RML2016.10a Efficient

convergence speed

Poor recognition of
16QAM and 64QAM, and
WBFM and AM-DSB

Acc = 92%
at SNRs
ranging from
0 dB to 18 dB

[40] IQ data
+ ATLA RML2016.10a

Good recognition
performance with
insufficient data
and under various
imperfections
(frequency offset, etc.)

Poor recognition of
16QAM and 64QAM, and
WBFM and AM-DSB

Acc = 82% with half
of the training data;
Acc increased
by 17.3% with
one-tenth of
training data

[41] IQ data
+ TL-AMC

BPSK, QPSK,
8PSK and 16QAM

Good performance
at high SNRs

Poor recognition of
16QAM and 8PSK
at low SNRs

Acc = 100%
at 10 dB

[42] IQ data
+ ResNeXt

RML2016.10a
+ RML2018.01a

Robust to signal
shape transformations
introduced by
unknown signal and
channel parameters

Vulnerable to out-
of-distribution data

Acc increased
by 10∼30%
with only 5%
of labeled data

Proposed
algorithm

Fine-tuned
MCLDNN
+ Feature
re-extraction

RML2016.10a

Better recognition
of modulation types
that are at low SNRs
and easily confused

Comparatively high
network complexity

Acc = 96.65%
at 0 dB;
Acc = 91.28%
at SNRs
ranging from
−8 dB to 18 dB
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3. System Model
3.1. Signal Model

This paper considers a single-input single-output communication system, and the
received signal, r(t), can be represented by

r(t) = s(t) ∗ h(t) + n(t) , (1)

where s(t) is the modulated signal from the transmitter, h(t) is the channel impulse re-
sponse, n(t) denotes AWGN and ∗ represents the convolution operation. The received
signal, r(t), is sampled n times at a sampling rate fs = 1/Ts (sampling period) by the
analog-to-digital converter, which generates the discrete-time observed signal, r(n).

3.2. Network Model

Communication signals contain both spatial characteristics and temporal correlations,
so MCLDNN [39], which integrates CNNs, LSTMs and fully connected (FC) deep neural
networks in a unified structure, can utilize their synergy for spatiotemporal feature ex-
traction. Moreover, the imbalance between signal amplitude and phase deteriorates the
orthogonality between the I channel and the Q channel and leads to an inherent difference
between the two channels. So, the features extracted from the I-channel, the Q-channel and
the I/Q-multi-channel data are complementary.

MCLDNN comprises four distinct functional parts: multi-channel inputs, spatial
characteristic mapping, temporal characteristic extraction and fully connected classification
(local feature integration). The framework is shown in Figure 1. Specifically, the corre-
sponding convolution operations are firstly performed on the modulated signals of each
input channel. Then, the multiple feature maps obtained after convolution are spliced and
fused using the concatenate layer. Finally, the fused features are transmitted to the LSTM
layer to further extract the temporal correlation features and classify the signals.

 Multi-channel inputs

Concatenate1

Concatenate2

LSTM1

Dense1

Conv4

Conv1 Conv2 Conv3

I channel Q channel I/Q channel

S
p

atial ch
aracteristics m

ap
p

in
gConv5

Temporal characteristics extraction

Dense2

LSTM2

Local features Integration

Softmax

Figure 1. MCLDNN network structure diagram.

Signal modulation is essentially a process of converting the amplitude, phase and
frequency of signals according to specific laws. The backbone neural network adopted in
this paper adds instantaneous frequency and instantaneous phase as the network inputs
on the basis of MCLDNN, making it theoretically applicable to various modulation types.
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3.3. Recognition Methods

The improved scheme proposed in this paper focuses on the deep learning-based
modulation recognition of signals transmitted in single-user noisy channels in the non-
cooperative communication scenario. In this scenario, the neural networks with randomly
initialized weights have large differences in the recognition of signals at high SNRs and low
SNRs. Thus, we firstly use the second-order and fourth-order moment (M2M4) algorithm
to divide the received signals into three categories according to the SNR values. Then,
we transfer the network weights based on the fine-tuning method, thereby improving
the network recognition performance of noisy signals. Furthermore, the transmitter can
control the data rate and signal bandwidth using signal modulation; then, the receiver
may not identify some modulated signals with similar attributes. To solve the problem,
the feature re-extraction method is proposed to obtain the more discriminative features of
easily confused signals and achieve effective recognition.

3.3.1. SNR Estimation Based on the M2M4 Algorithm

SNR values are important indicators to measure channel quality. However, in realistic
communication scenarios, the receiver does not have any known information about the re-
ceived signals, so it is necessary to estimate the SNR values of the signals. D. R. Pauluzzi [43]
sketched the derivation of the M2M4 estimator for complex channels and then showed how
the estimator could be modified for application to real channels using the same approach.
Let M2 and M4 denote the second-order and fourth-order moments of the sampled data yn:

M2 = E{yny∗n} = E{ana∗n + wnw∗n + anw∗n + a∗nwn} , (2a)

M4 = E
{
(yny∗n)

2
}
= E

{
(ana∗n)

2 + (wnw∗n)
2 + (anw∗n)

2

+ (a∗nwn)
2 + 4(ana∗nwnw∗n) + 2(ana∗nanw∗n) + 2(ana∗na∗nwn)

+ 2(wnw∗nanw∗n) + 2(wnw∗na∗nwn)
}

.

(2b)

where an is the signal constituent of yn and wn is the noise constituent of yn.
Assuming that the signal and noise are zero-mean, independent random processes,

and that the in-phase and quadrature components of the noise are independent, (2a) and
(2b) are written as

M2 = E{ana∗n}+ E{wnw∗n} , (3a)

M4 = E
{
(ana∗n)

2 + (wnw∗n)
2 + 4(ana∗nwnw∗n)

}
= E

{
(ana∗n)

2
}
+ E

{
(wnw∗n)

2
}
+ 4E{ana∗n}E{wnw∗n} ,

(3b)

and for the sake of a simple notation, the following abbreviations are introduced:

S := E{ana∗n} , (4a)

N := E{wnw∗n} , (4b)

where S is the average energy of an and N is the average energy of wn. Therefore,
(3a) and (3b) can be written as

M2 = S + N , (5a)

M4 = kaS2 + kwN2 + 4SN , (5b)

where ka = E
{
|an|4

}
/E
{
|an|2

}2 and kw = E
{
|wn|4

}
/E
{
|wn|2

}2 are the kurtosis of the
signal and the kurtosis of the noise, respectively. By solving for S and N, one obtains
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N = M2 − S , (6a)

S =
M2(kw − 2)±

√
(4− kakw)M2

2 + M4(ka + kw − 4)

ka + kw − 4
, (6b)

and the estimator formed as the ratio of S to N is denoted as the M2M4 estimator. As an
example, for any M-ary PSK signal, ka = 1, and for complex noise, kw = 2, so that

ρM2 M4,complex =

√
2M2

2 −M4

M2 −
√

2M2
2 −M4

. (7)

In a similar manner, assuming that yn is real, M2 = E
{

y2
n
}

is equivalent to (5a),
but M4 = E

{
y4

n
}

is given by

M4 = kaS2 + kwN2 + 6SN , (8)

solving (5a) and (8) for N gives the same expression as (6a), but the solution for S is

S =
M2(kw − 3)±

√
(9− kakw)M2

2 + M4(ka + kw − 6)

ka + kw − 6
, (9)

as an example, for BPSK signals, ka = 1, and for real noise, kw = 3, so that

ρM2 M4,real =
0.5
√

6M2
2 − 2M4

M2 − 0.5
√

6M2
2 − 2M4

. (10)

In practice, the second-order and fourth-order moments are estimated using their
respective time averages for both real and complex channels as

M2 ≈
1
M

M

∑
n=1
|yn|2 , (11a)

M4 ≈
1
M

M

∑
n=1
|yn|4 , (11b)

where M denotes the number of the floating-point time I/Q samples for each signal datum.
The M2M4 algorithm [44] has low computational complexity, and it is insensitive

to carrier deviation and phase deviation. Moreover, since the algorithm allows blind
estimation to be conducted, it is widely applied in practice. Related studies have shown that
as the number of samples increases, the estimates are closer to the true values. In addition,
the algorithm can obtain a desired SNR estimator by introducing the combination of
higher-order moments according to the actual situation and performance requirements.

3.3.2. Fine-Tuning

Transfer learning is to transfer the knowledge learned from the source domain to
the target domain. It includes two important concepts: domain and task [45], where a
domain D is composed of a d-dimensional feature space X and a marginal probability
distribution function P(X), where X = {x1, · · · , xn} ∈ X , i.e., D = {X , P(X)}. Given a
specific domain D, a task T is composed of a label space Y and a predictive function f (·),
i.e., T = {Y , f (·)}. The function f (·) can be used to predict the corresponding label, f (x),
of a new sample x. From a probabilistic viewpoint, f (x) is approximately equal to P(y|x),
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that is, the probability distribution of y under the condition of a given x. Based on the
above, transfer learning can be defined as follows: Given source domain

DS =
{
(xs

1, ys
1), (xs

2, ys
2), · · · ,

(
xs

ns , ys
ns

)}
, (12)

and learning task TS, and target domain

DT =
{(

xt
1, yt

1
)
,
(
xt

2, yt
2
)
, · · · ,

(
xt

nt , yt
nt

)}
, (13)

and learning task TT , transfer learning aims to help improve the learning of the target predic-
tive function fT(·) inDT using the knowledge inDS and TS, where xs

i ∈ XS(i = 1, 2, · · · , ns)
and xt

j ∈ XT(j = 1, 2, · · · , nt) are the data samples from the source and target domain, re-
spectively; ys

i ∈ YS and yt
j ∈ YT are the class labels corresponding to the source and target

domain sample, respectively; and DS 6= DT or TS 6= TT .
Fine-tuning is a typical transfer learning method that has been widely used in deep

neural networks [46,47]. As shown in Figure 2, the central idea is to transfer the weights of
the source network to the target network as its initial weights according to the similarities
between the source domain and the target domain. Moreover, the network may have
some abnormal conditions with a small sample size, such as the inability to converge, low
recognition accuracy, over-fitting and poor generalization ability during the actual training
process. Fine-tuning can effectively alleviate the above problems, because most of the source
networks have been trained on a large number of data, which is equivalent to expanding
the target dataset. With this method, the final target network has strong scalability and
robustness. In summary, fine-tuning can avoid retraining the new network and save
computational resources and training time, as well as improving model performance.

Weight    transfer

Source domain network

Target domain network

Figure 2. Fine-tuning schematic diagram.

In this paper, we utilize the parameters learned from signals at high SNRs as the initial
weights of the backbone neural network at low SNRs. The recognition performance of the
modulated signals at low SNRs is effectively improved. The source task and the target
task are the same in this case, both of which aim to identify different modulation types.
However, the source domain has relatively ideal inputs, while the data in the target domain
are more contaminated by noise and interference.

4. Algorithm Design
4.1. Data

GNUradio is an open-source collection of signal processing routines, together with the
inception of commercially available software radio front-ends to complete the signal chain.
T. J. O’Shea [48] used this software toolkit to generate communication signals; then, the
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author used the Hilbert transform on the signals to obtain the transformed signals. The orig-
inal signals and the corresponding transformed signals were used as the I-channel data
and Q-channel data, respectively, and the corresponding SNR value and modulation type
of each sample were marked. Finally, multiple modulated signal datasets were generated.

This paper adopted an open-source dataset, RML2016.10a, which includes
220,000 modulated signals with 11 modulation types: BPSK, QPSK, 8PSK, 16QAM, 64QAM,
PAM4, CPFSK, GFSK, AM-SSB, AM-DSB and WBFM. The SNR values of the modulated sig-
nals vary from -20 dB to +18 dB, at 2 dB intervals. Out of 1000 samples of each modulation
type per SNR, 600 samples were randomly selected as training data, 200 samples as valida-
tion data and 200 samples as test data. Each sample in the dataset has 128 complex floating-
point time I/Q samples and was generated in harsh simulated propagation environments,
corrupted by AWGN, multi-path fading, sampling rate offset and center frequency offset
to resemble practical environments.

Figures 3–6 display the waveform, instantaneous amplitude, instantaneous frequency
and instantaneous phase of one sample of the 11 modulation types. In Figure 3, the blue
curve represents the I-channel data, and the red curve represents the Q-channel data. It can
be observed in the four figures that the I-channel data, Q-channel data and instantaneous
parameters of the 11 modulated signals present large differences. Regarding instantaneous
amplitude, BPSK, PAM4, CPFSK, GFSK, AM-SSB, AM-DSB and WBFM are different from
each other. However, QPSK is similar to 8PSK, and 16QAM is similar to 64QAM. Regarding
instantaneous frequency and phase, the 11 modulation types are different from each other.
Therefore, the backbone neural network adds instantaneous frequency and phase as two
new input channels on the basis of MCLDNN.

BPSK QPSK 8PSK QAM16

QAM64 PAM4 CPFSK GFSK

AM-SSB AM-DSB WBFM

Figure 3. Waveform graphs of 11 modulation types.
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Figure 4. Instantaneous amplitude of 11 modulation types.
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Figure 5. Instantaneous frequency of 11 modulation signals.
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Figure 6. Instantaneous phase of 11 modulation signals.

4.2. Backbone Neural Network
4.2.1. Network Structure

The backbone neural network adds two input channels on the basis of MCLDNN.
The network inputs adopt five channels, which are I-channel data rI(n), Q-channel data
rQ(n), I/Q-multi-channel data r(I,Q)(n), instantaneous frequency rF(n) and instantaneous
phase rP(n) of the received signal, r(n). The network structure is shown in Figure 7.

Conv 7

)(nr I
Conv 1

1128N

)(nrQ
Conv 2

1128N

)(),( nr QI
Conv 3

11282 N

)(nrP
Conv 4

1128N

)(nrF
Conv 5

1128N

Conv 6

Conv 8 LSTM 1 LSTM 2
Flatten Dense layer

+

Softmax

: Concatenation

Figure 7. Backbone neural network structure diagram.

In the backbone neural network, Conv1, Conv2, Conv4 and Conv5 are all 1D convo-
lutional layers using 50 convolution kernels with a size of 8, the causal-padding scheme
and the Glorot uniform initializer; Conv3 is a 2D convolutional layer using 50 convolution
kernels with a size of 2 × 8, the same-padding scheme and the Glorot uniform initializer;
Conv6 and Conv7 are 2D convolutional layers using 50 convolution kernels with a size of
1 × 8, the same-padding scheme and the Glorot uniform initializer; Conv8 is a 2D convolu-
tional layer using 100 convolution kernels with a size of 2 × 5, the valid-padding scheme
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and the Glorot uniform initializer. These convolutional layers provide superior features
to the LSTM layers by reducing noise variance and feeding higher-level abstraction of the
input data. Then, both LSTM1 and LSTM2 are LSTM layers with 128 cells to effectively
process sequential data and extract temporal correlations of each sample. For mapping
features to a more separable space, we added two dense layers with 128 neurons to deepen
our network. The output layer uses the softmax function, with 11 neurons corresponding
to a modulation mode.

4.2.2. Parameter Optimization

Many hyperparameters need to be tuned to generate a robust neural network that can
accurately recognize modulation types. In addition, these hyperparameters can affect the
performance of the network, along with its time to convergence. It is difficult to analyze
the recognition performance of the neural network using the mathematical derivation, so
this section will present the optimal hyperparameters determined with controlled groups
of experiments. Specifically, we utilized five modulation types (BPSK, GFSK, AM-SSB,
QAM16 and WBFM) in the RML2016.10a dataset as the experimental data to investigate the
optimal selection of the network hyperparameters. In this paper, the selection of learning
rate and batch size was considered.

The main idea of the BP algorithm [49] is to minimize the cost function by continuously
updating the network parameters. This often involves some iterative procedure that applies
changes to the parameters at each iteration of the algorithm. We consider the gradient
descent algorithm that attempts to optimize the objective function by following the steepest
descent direction given by the negative of the gradient. This approach can be applied
to update any parameters for which a derivative can be obtained, and the update rule is
defined as

θn+1 = θn − η
∂J(θn)

∂θn
, (14)

where θn+1 and θn are the parameter values at the (n + 1)-th iteration and n-th iteration,
respectively; J(·) denotes the cost function; ∂(·) means the partial derivatives; and so ∂J(θn)

∂θn
is the gradient of the parameters at the n-th iteration. η is a learning rate that controls how
large of a step to take in the direction of the negative gradient.

Setting the learning rate typically involves a tuning procedure in which the optimal
learning rate is chosen by hand. Choosing higher than this rate can cause the network
to diverge in terms of the objective function, and choosing this rate as too low results in
slow learning. In this paper, the optimal learning rate was determined using simulation
experiments, and the experimental results are shown in Table 2 and Figure 8.

Table 2. The complexity of the backbone neural network under different learning rates (batch
size = 512).

Learning Rate Training Time
(Seconds/Epoch) Training Epochs Total Training Time

(Seconds)

0.1 299 11 3289
0.05 327 11 3597
0.01 780 28 21,840
0.005 720 24 17,280
0.001 312 43 13,416

0.0005 295 68 20,060
0.0001 358 136 48,688

0.00005 364 198 72,072

Table 2 presents the training time of the backbone neural network at different learning
rates, and Figure 8 displays the corresponding recognition accuracy curves. It can be
observed that the recognition accuracy reached the highest when the learning rate was in
the range of 0.0005∼0.001. When the learning rate was greater than 0.001, the recognition
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accuracy sharply declined, and the network failed to converge. When the learning rate was
less than 0.0005, the recognition accuracy had a slight decrease, but the total training time
started to dramatically increase. Therefore, the optimal learning rate was set to 0.001 in
this paper.

In addition, the batch size, which is the number of samples used in every epoch to train
the network, is also an important hyperparameter. To scale the stochastic gradient-based
methods to more processors, it is necessary to increase the batch size to make full use of
the computational power of each GPU. However, increasing the batch size often leads to
significant loss in test accuracy. In this paper, the batch sizes were in the range of [16, 32,
64, 128, 256, 512, 1024, 2048]. The corresponding training time and training epochs are
presented in Table 3. Figure 9 displays the training loss and validation loss of the network
for different batch sizes.
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Learning rate=0.1

Learning rate=0.05

Learning rate=0.01

Learning rate=0.005

Learning rate=0.001

Learning rate=0.0005

Learning rate=0.0001

Learning rate=0.00005

Figure 8. The recognition accuracy of the backbone neural network at different learning rates (batch
size = 512).

Table 3. The complexity of the backbone neural network for different batch sizes (learning
rate = 0.001).

Batch Size Training Time
(Seconds/Epoch) Training Epochs Total Training Time

(Seconds)

16 875 24 21,000
32 640 27 17,280
64 455 30 13,650

128 420 38 15,960
256 345 43 14,835
512 312 43 13,416

1024 302 70 21,140
2048 270 70 18,900

It can be seen in Table 3 and Figure 9 that setting the batch size too high made the
network take too long to achieve convergence (no more gain in accuracy). However, if the
hyperparameter was too low, it made the network bounce back and forth without achieving
acceptable performance, and the training time per epoch sharply increased. When the batch
size was 512, the total training time was relatively short, and the validation loss curve was
relatively smooth, so the optimal batch size of the backbone neural network was set to 512.

According to the above simulation results, the initial learning rate started at 0.001
and multiplied by a factor of 0.8 if the validation loss did not decrease within 5 epochs
to improve the training efficiency. The batch size was set to 512 to avoid the local value
and speed up the training process. The adaptive moment estimation (Adam) was used in
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this paper to minimize the loss function [50], and a dropout rate of dr = 0.5 was adopted
to avoid overfitting. We stopped the training process when the validation loss did not
decrease for 20 epochs and used minimum validation loss to predict the modulation types.
All experiments were implemented in the TensorFlow back-end using the Keras deep
learning library, supported by a 1 Tesla V100 32 GB GPU.
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Figure 9. The loss curves of the backbone neural network for different batch sizes (learning
rate = 0.001). (a) Training loss and (b) validation loss.

4.3. Signal Feature Extraction
4.3.1. High-Order Cumulant Features

Higher-than-second-order cumulants of Gaussian noise tend to zero, so the noise can
be removed from modulated signals using high-order cumulants. In addition, the cumu-
lant values of the signal depend on its modulation type [51,52]. Therefore, high-order
cumulants can be used for the recognition of modulated signals with Gaussian white noise.
Concretely, let x(n) be a k-th order stationary random process with zero mean, and de-
note cum(x1, x2, · · · , xk) as the k-th order cumulant of the random vector. The k-th order
cumulant of x(n) is defined as

Ckx(τ1, τ2, · · · , τk−1) = cum(x(n), x(n + τ1), · · · , x(n + τk−1)) , (15)

the p-th order mixed moment of x(n) is defined as

Mpq = E
{
[x(n)p−q][x∗(n)]q

}
, (16)

where ()∗ denotes the conjugate operation of a function.
For communication signals, the specific calculation process of high-order cumulants is

as follows: The Hilbert transform is firstly used on the received signal, x(n), to obtain the
transformed signal, xa(n). Then, x(n) and xa(n) are used as the real and imaginary parts to
obtain the corresponding analytical signal, z(n), of x(n). Finally, the high-order cumulants
of x(n) can be obtained by calculating the mixed moments of z(n). The commonly used
higher-order cumulants, C20, C21, C40, C41, C42, C60, C63 and C80 are defined as follows:

C20 = cum(x, x) = M20 , (17a)

C21 = cum(x, x∗) = M21 , (17b)

C40 = cum(x, x, x, x) = M40 − 3M20
2 , (17c)

C41 = cum(x, x, x, x∗) = M41 − 3M20M21 , (17d)

C42 = cum(x, x, x∗, x∗) = M42 −M20
2 − 2M21

2 , (17e)

C60 = cum(x, x, x, x, x, x) = M60 − 15M20M40 + 30M20
3 , (17f)
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C63 = cum(x, x, x, x∗, x∗, x∗) = M63 − 6M41M20 − 9M42M21 + 18M20
2M21

+ 12M21
3 ,

(17g)

C80 = cum(x, x, x, x, x, x, x, x) = M80 − 28M20M60 − 35M40
2 + 420M40M20

2

− 630M20
4 .

(17h)

In this paper, the following seven features were extracted on the basis of the second-
order, fourth-order, sixth-order and eighth-order cumulants of the modulated signals.

F0 = |C20|/|C21| , (18a)

F1 = |C40|/|C21|2 , (18b)

F2 = |C41|/|C21|2 , (18c)

F3 = |C42|/|C21|2 , (18d)

F4 = |C60|/|C21|3 , (18e)

F5 = |C63|/|C21|3 , (18f)

F6 = |C20|2/|C41| . (18g)

4.3.2. Frequency-Domain Features

Some signals have the same feature values in the time-domain analysis, which requires
a further analysis of the signals in other transform domains. In general, the time–frequency
transformation of non-periodic dynamic signals can be realized using the Fourier transform,
the wavelet transform, the Wigner–Ville distribution and so on [53–55]. The resulting
frequency-domain features can distinguish between FM and AM signals.

With the frequency-domain analysis of the difference in the sequence of the instanta-
neous amplitude of the signals, the characteristic parameter F7 can be extracted. The calcu-
lation process is as follows: {

F7 = max(|FFT(a1(n))|) , (19a)

a1(n) = |a(n)| − |a(n− 1)| , (19b)

where a(n) is the amplitude of the sample sequence of the received signal, the correspond-
ing difference is a1(n) and FFT(·) denotes the fast Fourier transform.

With the frequency-domain analysis of the sample sequence, the characteristic param-
eter F8 can be extracted. The calculation process is as follows:

x1(n) = x(n)4 − E[x(n)4] , (20a)

s1(n) = [abs(FFT(x1(n)))]2 , (20b)

F8 =

√
D[s1(n)]

E[s1(n)]
, (20c)

where x(n) is the sample sequence of the received signal, E(·) denotes the mathematical
expectation, D(·) denotes the mean-square deviation and abs(·) is the absolute value.

4.3.3. Spectrum Features

Power spectrum refers to power spectral density (PSD), which can intuitively reflect
the power distribution of the modulated signal in frequency. Since the amplitude modu-
lation (AM) signal contains direct current components, its power spectrum has a carrier
component, while other signals, such as MPSK, do not have the component at the carrier
frequency. Moreover, the number of prominent single-frequency components in the spectral
line can be used for the intra-class recognition of MFSK signals [56,57]. On the basis of the
cubic, hex and oct spectrums, which are the power spectra of the signal after the operations
of cubic, hex and oct powers, the three spectrum features F9, F10 and F11 were obtained in
this paper.



Electronics 2023, 12, 2134 17 of 29

We can take F9 as an example. Firstly, the analytical signal sequence xa(n) can be
obtained using the Hilbert transform on the sample sequence x(n). Then, by using the
Fourier transform on the auto correlation function of xa(n), the estimated value of the
signal power spectrum ca(n) is obtained. Finally, F9 can be extracted by calculating the
standard deviation coefficient of the square of the modulus of ca(n). The cubic operation is
to increase the difference in the spectrum power distribution of the signal, and the standard
deviation coefficient is used to measure the degree of variation. The detailed calculation
process is as follows: 

xa(n) = H
[

x(n)3
]

, (21a)

ca(n) = FFT{E[xa(n)xa(n + τ)]} , (21b)

da(n) = |ca(n)|2 , (21c)

F9 =

√
D[da(n)]

E[da(n)]
. (21d)

The calculations of F10 and F11 are similar to the above process, replacing the cubic
power with the sixth and eighth power.

4.3.4. Envelope Features

In an ideal noise-free environment, the envelope of a non-amplitude-modulated signal
is generally constant. Although the envelope slightly changes in rare cases, it can still
be regarded as constant envelope modulation, while the envelope represents obvious
fluctuations for the amplitude-modulated signal. The kurtosis of the normalized–centered
instantaneous amplitude [58] can reflect the difference in the amplitude distribution of
square QAM signals. The detailed calculation process is defined as

F12 =
E[α4

cn(n)]

E[α2
cn(n)]

2 , (22a)

αcn(n) =
a(n)
mα
− 1 , (22b)

mα =
1
N

N

∑
n=1

a(n) , (22c)

where αcn(n) is the normalized–centered instantaneous amplitude of the signal and a(n) is
the instantaneous amplitude.

4.4. Implementation Details

The flow chart of the modulation recognition algorithm based on fine-tuning and
feature re-extraction is shown in Figure 10. The detailed operation steps are as presented
below.

(1) Based on the M2M4 algorithm, the eigenvalue of each modulated signal in the
dataset is calculated. Then, the dataset can be divided into three SNR regions: [12 dB,
18 dB], [0 dB, 6 dB] and [−8 dB, −2 dB].

(2) Based on the fine-tuning method, the weights of network N1 trained with the
modulated signals at higher SNRs are used as the initial weights of untrained network N2
at lower SNRs. Then, network N2 is trained with the modulated signals at lower SNRs,
and the classification results are obtained.

(3) According to the classification results, we can calculate the recalling rate of each
modulation type. If the recalling rate is greater than the threshold, the corresponding
modulated signal is classified as the non-confused class, and the classification result is
directly outputted. Otherwise, the modulated signal is classified as the confused class.

(4) For the modulated signals belonging to the confused class, on the basis of the
deep features extracted by the backbone neural network, the kurtosis of the normalized–
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centered instantaneous amplitude is re-extracted to obtain the deeper features with better
recognition performance.

(5) For the features obtained in step (4), we use a classifier to identify them and acquire
the final classification results.

Modulated signal

SNR region classification

Weight 1

[12 dB, 14 dB, 16 dB, 18 dB]

Weight 2

[0 dB, 2 dB, 4 dB, 6 dB]

Weight 3

[−8 dB, −6 dB, −4 dB, −2 dB]

Classifier 1

backbone neural network

Feature re-extraction

Classifier 2

Recognition result

Recalling rate > TH
Yes

No

Fine-tune Fine-tune

Figure 10. The modulation recognition algorithm flow chart.

5. Simulation Results
5.1. SNR Region Classification

The eigenvalues of all modulated signals calculated by the M2M4 algorithm were
averaged in segments. Then, by comparing the mean values with the thresholds, the dataset
was divided into three SNR subregions. Figure 11 shows the eigenvalue distribution curves
of the modulated signals at different SNRs. Figure 11a displays the eigenvalue distribution
curves in the SNR region of [12 dB, 18 dB], corresponding to 18 dB, 16 dB, 14 dB and 12 dB,
from top to bottom. Figure 11b displays the eigenvalue distribution curves in the SNR
region of [0 dB, 6 dB], corresponding to 6 dB, 4 dB, 2 dB and 0 dB from top to bottom.
Figure 11c displays the eigenvalue distribution curves in the SNR region of [−8 dB, −2 dB],
corresponding to −2 dB, −4 dB, −6 dB and −8 dB from top to bottom.

It can be observed in Figure 11 that the signal eigenvalues in the high-SNR region of
[12 dB, 18 dB] were in the range of 200∼6000, the signal eigenvalues in the medium-SNR
region of [0 dB, 6 dB] were in the range of 5∼55 and the signal eigenvalues in the low-SNR
region of [−8 dB, −2 dB] were in the range of 2∼5. The modulated signal eigenvalues in
the three SNR regions could be clearly distinguished, and the classification accuracy was
99.44%.

5.2. Network with Randomly Initialized Weights

Firstly, the backbone neural network for modulation recognition was constructed ac-
cording to Figure 7. Then, the network with randomly initialized weights was trained with
the modulated signals in three SNR regions, and the recognition results of 11 modulation
types in each SNR region are shown in Figure 12.
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Figure 11. The eigenvalue distribution curves for SNR region classification in (a) [12 dB, 18 dB],
(b) [0 dB, 6 dB] and (c) [−8 dB, −2 dB].

It can be seen in Figure 12 that the average recognition accuracy values of 11 modula-
tion types were 91.96%, 82.44% and 54.82% in the three SNR regions of [12 dB, 18 dB], [0
dB, 6 dB] and [−8 dB, −2 dB]. The recognition accuracy shows large differences between
the network with randomly initialized weights at high SNRs and that at low SNRs.
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Figure 12. Modulation recognition accuracy of neural networks with randomly initialized weights in
the three SNR regions of (a) [12 dB, 18 dB], (b) [0 dB, 6 dB] and (c) [−8 dB, −2 dB].
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The confusion matrices for the 11 modulated signals in the high-SNR region of [12 dB,
18 dB] and the medium-SNR region [0 dB, 6 dB] are given in Figure 13. As shown in the
figure, BPSK, QPSK, 8PSK, PAM4, CPFSK, GFSK and AM-SSB could be well distinguished
by the backbone neural network, except for AM-DSB and WBFM, and 16QAM and 64QAM,
which were still confused with each other.
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Figure 13. Confusion matrix of the network with randomly initialized weight in the SNR regions of
(a) [12 dB, 18 dB] and (b) [0 dB, 6 dB].

5.3. Network with Weight Transfer

The modulated signals in the lower-SNR regions were used to verify the recognition
performance of the fine-tuning-based network weight transfer method. The weights of
the network trained with the signals in the high-SNR region of [12 dB, 18 dB] notated
as w1 were transferred to the untrained network in the medium-SNR region of [0 dB, 6
dB] as its initial weights. Similarly, the weights of the network trained with the signals in
the medium-SNR region of [0 dB, 6 dB] notated as w2 were transferred to the untrained
network in the low-SNR region of [−8 dB, −2 dB] as its initial weights. The recognition
accuracy comparison of the network with randomly initialized weights and the network
with weight transfer is shown in Figure 14.
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Figure 14. Recognition accuracy comparison between the network with randomly initialized weights
and the network with weight transfer in the two lower-SNR regions: (a) [0 dB, 6 dB] and (b) [−8 dB,
−2 dB].

In Figure 14, the circular line represents the accuracy curve of the network with
randomly initialized weights, and the diamond line represents the accuracy curve of the
network with the aforementioned w1 as the initial weights. As can be seen in Figure 14a,
the average recognition accuracy of the network with randomly initialized weights in the



Electronics 2023, 12, 2134 21 of 29

medium-SNR region of [0 dB, 6 dB] was 82.44%, while the average accuracy of the network
with weight transfer was 88.11%. The accuracy was improved by about 6%. Similarly,
in Figure 14b, the average recognition accuracy of the network with randomly initialized
weights in the low-SNR region of [−8 dB, −2 dB] was only 54.82%, while the network with
weight transfer yielded better performance, with an average recognition rate of 65.63%,
up by about 11%.

The confusion matrices of the 11 modulated signals in [0 dB, 6 dB] and [−8 dB, −2 dB]
are displayed in Figure 15. It can be found that although the modulation recognition
performance of the network with weight transfer in the two SNR regions was greatly
improved, the four modulation types of AM-DSB, WBFM, 16QAM and 64QAM were still
confused with each other.
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Figure 15. Confusion matrix of the network with weight transfer in the SNR regions of (a) [0 dB,
6 dB] and (b) [−8 dB, −2 dB].

5.4. Feature Re-Extraction

The deep features extracted by the backbone neural network could not effectively
identify all modulated signals, and there were still some modulated signals that were
confused. Therefore, based on the deep features extracted by the network, we considered
re-extracting new, deeper features to obtain better recognition results. The above-mentioned
13 signal features, F0 ∼ F12, were extracted, and the feature distribution curves of four
confused modulated signals in three SNR regions are displayed in Figures 16–18.

As shown in the three figures, in the high-SNR region of [12 dB, 18 dB], only F3, F4, F5
and F12 could distinguish among the four confused signals. In the medium-SNR region
of [0 dB, 6 dB], F3 could not distinguish among 16QAM, WBFM and 64QAM; F5 could
not distinguish between 16QAM and WBFM; and only F4 and F12 could better distinguish
among the four confused signals. In the low-SNR region of [−8 dB,−2 dB], it can be seen in
the distribution curves of F3, F4 and F5 that among the eigenvalue ranges of the four easily
confused signals varying degrees of overlap existed. Only F12 could distinguish among the
four confused signals.

In addition, the eigenvalue distributions of F12 in different SNR regions were more
stable than the other three features, that is, all four eigenvalues of 16QAM and 64QAM
were consistently larger than those of the other two signals, AM-DSB and WBFM. Therefore,
the importance order of the four features was F12 > F4 > F5 > F3, and the other nine features
were not involved in the ranking because they could not distinguish among 16QAM,
64QAM, WBFM and AM-DSB even at high SNRs.

In Figure 19, for the signals in [12 dB, 18 dB], the modulation recognition accuracy
of the network with randomly initialized weights was 91.96%, while the accuracy based
on feature re-extraction was 98.66%, which is an improvement of about 7%. In [0 dB,
6 dB], the modulation recognition accuracy of the network with randomly initialized
weights was 82.44%. The accuracy based on feature re-extraction was 95.95%, which is an
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improvement of about 14%. In [−8 dB, −2 dB], the modulation recognition accuracy of
the network with randomly initialized weights was 54.82%, while the accuracy based on
feature re-extraction was 71.68%, which is an improvement of about 17%. The experimental
results reveal that the feature re-extraction method can greatly improve the modulation
recognition performance.
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Figure 16. The distribution curves of features (a) F3, (b) F4, (c) F5 and (d) F12 in [12 dB, 18 dB].
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Figure 17. The distribution curves of features (a) F3, (b) F4, (c) F5 and (d) F12 in [0 dB, 6 dB].
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Figure 18. The distribution curves of features (a) F3, (b) F4, (c) F5 and (d) F12 in [−8 dB, −2 dB].
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Figure 19. Recognition accuracy comparison before and after feature re-extraction by the network
with randomly initialized weights in the three SNR regions: (a) [12 dB, 18 dB], (b) [0 dB, 6 dB] and
(c) [−8 dB, −2 dB].

Figure 20 shows the confusion matrices of the 11 modulated signals after feature
re-extraction in the high-SNR region of [12 dB, 18 dB]. Seven modulation types could be
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fully identified by the backbone neural network, and the other four confused modulation
types, AM-DSB and WBFM, and 16QAM and 64QAM, could be well distinguished using
feature re-extraction; thus, the effectiveness of the feature re-extraction method in confused
signal recognition was further demonstrated.
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Figure 20. Confusion matrix of (a) the four confused modulation types and (b) the seven non-confused
modulation types.

5.5. Combination of Fine-Tuning and Feature Re-Extraction

In this subsection, the comparison of modulation recognition results in the four cases
of weight random initialization, weight transfer based on fine-tuning, feature re-extraction,
and the combination of weight transfer and feature re-extraction in the two lower-SNR
regions of [0 dB, 6 dB] and [−8 dB, −2 dB] is presented in Figure 21. In the figure, the trian-
gular connection line represents the modulation recognition accuracy of the network with
randomly initialized weights. The square connection line represents the modulation recog-
nition accuracy of the network with weight transfer. The circular connection line represents
the modulation recognition accuracy of feature re-extraction. The diamond connection line
represents the modulation recognition accuracy of the combination of weight transfer and
feature re-extraction. Figure 21a reveals that the average modulation recognition accuracy
values of the above four cases were 82.44%, 88.11%, 95.95% and 98.23% in the medium-SNR
region of [0 dB, 6 dB]. Similarly, Figure 21b reveals that the average modulation recognition
accuracy values of the above four cases were 54.82%, 64.37%, 71.68% and 76.73% in the
low-SNR region of [−8 dB, −2 dB].
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Figure 21. Recognition accuracy comparison in four cases in the two lower-SNR regions: (a) [0 dB,
6 dB] and (b) [−8 dB, −2 dB].
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In summary, transfer learning and feature re-extraction can improve the modulation
recognition performance to different extents, and feature re-extraction performs better.
Moreover, combining fine-tuning and feature re-extraction can achieve the best modulation
recognition accuracy.

5.6. Performance Comparison of the Proposed MR Algorithm and Other Existing Algorithms

In order to verify the superiority of the proposed method in terms of recognition accu-
racy and complexity, we compared the proposed algorithm with four existing algorithms,
namely, CNN-IQ [59], LSTM-IQ [60], CLDNN-IQ [61] and MCLDNN-IQ [39]. IQ means
that the network inputs are I-channel data and Q-channel data. We used the number of
learned parameters and floating-point operations (FLOPs) as the measures of network
complexity. The experimental results are presented in Figure 22 and Table 4.
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Figure 22. The comparison of the proposed algorithm and existing algorithms in terms of recogni-
tion accuracy.

Table 4. The comparison of the proposed algorithm and existing algorithms in terms of complexity.

MR Algorithm Learned Parameters FLOPs

CNN-IQ 129,867 130,132
LSTM-IQ 297,611 558,473

CLDNN-IQ 334,225 594,943
MCLDNN-IQ 405,175 665,742

Proposed algorithm 476,125 736,545

It can be observed in Figure 22 that CNN-IQ had relatively low classification accuracy.
Its average recognition rate was 73.53% at SNRs ranging from −8 dB to 18 dB, and the
maximum accuracy was 82.91% at SNR = 6 dB, which shows that CNN is relatively low-
performing in the feature extraction of time-series signals. LSTM-IQ had better recognition
results than CNN-IQ, but it has high computational requirements and requires a long
training time to obtain good results. The CLDNN-IQ model had higher recognition accuracy
than LSTM-IQ and CNN-IQ at low SNRs. The average accuracy of CLDNN-IQ was
78.49% at SNRs ranging from −8 dB to 18 dB, and the maximum accuracy was 87.44% at
12 dB. MCLDNN-IQ had better performance than CLDNN-IQ when SNR ≥ −6 dB. Its
maximum recognition accuracy was 93.38% at SNR = 12 dB, and the average accuracy was
82.99% at SNRs ranging from−8 dB to 18 dB. Regarding the optimization scheme proposed
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in this paper, its recognition accuracy reached 58.53% at SNR = −8 dB and 96.65% at SNR
= 0 dB. The average accuracy was 91.28% at SNRs ranging from −8 dB to 18 dB, which
is an improvement of 8% to 17% compared with that of the other four existing schemes.
The simulation results prove that the proposed scheme is an advanced method in terms of
recognition accuracy.

Table 4 provides the comparison of the proposed algorithm and existing algorithms
in terms of complexity. It can be seen that the network complexity of the five algorithms,
including CNN-IQ, LSTM-IQ, CLDNN-IQ, MCLDNN-IQ and the proposed algorithm,
sequentially increases. Although the complexity of the proposed algorithm is the highest,
the increase is slight compared with MCLDNN-IQ. Moreover, considering the significant
improvement in recognition accuracy, the complexity of the proposed algorithm is within
the acceptable limits.

6. Conclusions

In this paper, an optimization scheme for deep learning-based modulation recognition
algorithms is proposed to address the fact that neural networks have poor recognition
effects in some cases. Using transfer learning, the knowledge (network weights) learned
from high-SNR data can be transferred to the low-SNR network, which improves the
scalability and robustness of the network at low SNRs. The deeper and more discriminative
feature representation of the original signal can be obtained using feature re-extraction,
thereby effectively identifying confused modulation types. In addition, the improved
recognition method combining deep learning and traditional machine learning or the
likelihood ratio test will be investigated in future work.

Author Contributions: Conceptualization, L.Z., Z.Y. (Zhutian Yang) and L.W.; Methodology, Y.W.,
Z.Y. (Zhendong Yin) and Y.Z.; Software, Y.W.; Validation, Y.W.; Writing—original draft preparation,
Y.W., L.Z. and Z.Y. (Zhutian Yang); Writing—review and editing, Z.Y. (Zhutian Yang), Z.Y. (Zhendong
Yin) and Y.Z.; Project administration, L.W. and Y.Z.; Funding acquisition, Z.W. and Y.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by General Program of National Natural Science Founda-
tion of China (grant No. 62071143) and by National Natural Science Foundation of China (grant
No. 62071153).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editor-in-chief, the editor, and the anony-
mous reviewers for their valuable reviews.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. Survey of automatic modulation classification techniques: Classical approaches and

new trends. IET Commun. 2007, 1, 137–156. [CrossRef]
2. Huang, Z.; Yang, J.; Wang, X.; Cui, X.; Wang, Y. A Survey of modulation recognition algorithms in non-cooperative communication.

Sci. Technol. Rev. 2019, 37, 55–62. [CrossRef]
3. Zebarjadi, M.; Teimouri, M. Non-cooperative burst detection and synchronisation in downlink TDMA-based wireless communi-

cation networks. IET Commun. 2019, 13, 863–872. [CrossRef]
4. Liu, C.; Wang, H.; Zhang, J.; He, Z. Wideband spectrum sensing based on single-channel sub-Nyquist sampling for cognitive

radio. Sensors 2018, 18, 2222. [CrossRef]
5. Yang, Z.; Li, D.; Zhao, N.; Wu, Z.; Li, Y.; Niyato, D. Secure precoding optimization for NOMA-aided integrated sensing and

communication. IEEE Trans. Commun. 2022, 70, 8370–8382. [CrossRef]
6. Ma, R.; Tang, J.; Zhang, X.; Wong, K.K.; Chambers, J. Energy Efficiency Optimization for Mutual-Coupling-Aware Wireless

Communication System based on RIS-enhanced SWIPT. IEEE Internet Things J. 2023. [CrossRef]
7. Liu, M.; Zhang, H.; Liu, Z.; Zhao, N. Attacking Spectrum Sensing With Adversarial Deep Learning in Cognitive Radio-Enabled

Internet of Things. IEEE Trans. Reliab. 2022, 1–14. [CrossRef]
8. Mohammed Tag Elsir Awad, E.; Xiong, Y.; Wang, J.; Tang, B. A new approach for high order MQAM signal modulation recognition.

In Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–23 May
2016; pp. 1036–1040. [CrossRef]

http://doi.org/10.1049/iet-com:20050176
http://dx.doi.org/10.3981/j.issn.1000-7857.2019.04.010
http://dx.doi.org/10.1049/iet-com.2018.5536
http://dx.doi.org/10.3390/s18072222
http://dx.doi.org/10.1109/TCOMM.2022.3216636
http://dx.doi.org/10.1109/JIOT.2023.3241168
http://dx.doi.org/10.1109/TR.2022.3179491
http://dx.doi.org/10.1117/12.2245162


Electronics 2023, 12, 2134 27 of 29

9. Kumar, A.; Majhi, S.; Gui, G.; Wu, H.C.; Yuen, C. A Survey of Blind Modulation Classification Techniques for OFDM Signals.
Sensors 2022, 22, 1020. [CrossRef]

10. Kim, K.; Polydoros, A. Digital modulation classification: The BPSK versus QPSK case. In Proceedings of the MILCOM 88, 21st
Century Military Communications-What’s Possible?’. Conference Record. Military Communications Conference, San Diego, CA,
USA, 23–26 October 1988; pp. 431–436. [CrossRef]

11. Wei, W.; Mendel, J.M. Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 2000,
48, 189–193. [CrossRef]

12. Majhi, S.; Gupta, R.; Xiang, W.; Glisic, S. Hierarchical hypothesis and feature-based blind modulation classification for linearly
modulated signals. IEEE Trans. Veh. Technol. 2017, 66, 11057–11069. [CrossRef]

13. Gupta, R.; Majhi, S.; Dobre, O.A. Design and implementation of a tree-based blind modulation classification algorithm for
multiple-antenna systems. IEEE Trans. Instrum. Meas. 2018, 68, 3020–3031. [CrossRef]

14. Zhang, X.; Ge, T.; Chen, Z. Automatic modulation recognition of communication signals based on instantaneous statistical
characteristics and SVM classifier. In Proceedings of the 2018 IEEE Asia-Pacific Conference on Antennas and Propagation
(APCAP), Auckland, New Zealand, 5–8 August 2018; pp. 344–346. [CrossRef]

15. Yang, Y.; Yang, L.; Hu, M. A method for digital modulation recognition based on mixed signal features. In Proceedings of the 2019
International Conference on Electronic Engineering and Informatics (EEI), Nanjing, China, 8–10 November 2019; pp. 195–199.
[CrossRef]

16. Xie, W.; Hu, S.; Yu, C.; Zhu, P.; Peng, X.; Ouyang, J. Deep learning in digital modulation recognition using high order cumulants.
IEEE Access 2019, 7, 63760–63766. [CrossRef]

17. Wang, A.; Li, R. Research on digital signal recognition based on higher order cumulants. In Proceedings of the 2019 International
Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 12–13 January 2019; pp. 586–588.
[CrossRef]

18. Hassanpour, S.; Pezeshk, A.M.; Behnia, F. A robust algorithm based on wavelet transform for recognition of binary digital
modulations. In Proceedings of the 2015 38th International Conference on Telecommunications and Signal Processing (TSP),
Prague, Czech Republic, 9–11 July 2015; pp. 508–512. [CrossRef]

19. Yang, J.; Liu, F. Modulation recognition using wavelet transform based on AlexNet. In Proceedings of the 2019 IEEE 7th Interna-
tional Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 19–20 October 2019; pp. 339–342.
[CrossRef]

20. Majhi, S.; Gupta, R.; Xiang, W. Novel blind modulation classification of circular and linearly modulated signals using cyclic
cumulants. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–5. [CrossRef]

21. Wei, Y.; Fang, S.; Wang, X. Automatic modulation classification of digital communication signals using SVM based on hybrid
features, cyclostationary, and information entropy. Entropy 2019, 21, 745. [CrossRef] [PubMed]

22. Shi, C. Signal pattern recognition based on fractal features and machine learning. Appl. Sci. 2018, 8, 1327. [CrossRef]
23. Wang, F.; Wang, Y.; Chen, X. Graphic constellations and DBN based automatic modulation classification. In Proceedings of the

2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [CrossRef]
24. Yan, X.; Zhang, G.; Wu, H.C. A Novel Automatic Modulation Classifier Using Graph-Based Constellation Analysis for M-ary

QAM. IEEE Commun. Lett. 2018, 23, 298–301. [CrossRef]
25. Liu, M.; Liu, C.; Chen, Y.; Yan, Z.; Zhao, N. Radio Frequency Fingerprint Collaborative Intelligent Blind Identification for Green

Radios. IEEE Trans. Green Commun. Netw. 2022. [CrossRef]
26. Ding, Y.; Feng, Y.; Lu, W.; Zheng, S.; Zhao, N.; Meng, L.; Nallanathan, A.; Yang, X. Online Edge Learning Offloading and Resource

Management for UAV-Assisted MEC Secure Communications. IEEE J. Sel. Top. Signal Process. 2023, 17, 54–65. [CrossRef]
27. Lu, W.; Mo, Y.; Feng, Y.; Gao, Y.; Zhao, N.; Wu, Y.; Nallanathan, A. Secure Transmission for Multi-UAV-Assisted Mobile Edge

Computing Based on Reinforcement Learning. IEEE Trans. Netw. Sci. Eng. 2022, 1–12. [CrossRef]
28. Peng, S.; Jiang, H.; Wang, H.; Alwageed, H.; Yao, Y. Modulation classification using convolutional neural network based deep

learning model. In Proceedings of the 2017 26th Wireless and Optical Communication Conference (WOCC), Newark, NJ, USA,
7–8 April 2017; pp. 1–5. [CrossRef]

29. Matuszewski, J.; Pietrow, D. Recognition of electromagnetic sources with the use of deep neural networks. In Proceedings of
the XII Conference on Reconnaissance and Electronic Warfare Systems, Oltarzew, Poland, 19–21 November 2018; Volume 11055,
pp. 100–114. [CrossRef]

30. Matuszewski, J.; Pietrow, D. Specific radar recognition based on characteristics of emitted radio waveforms using convolutional
neural networks. Sensors 2021, 21, 8237. [CrossRef]

31. Lee, J.; Kim, B.; Kim, J.; Yoon, D.; Choi, J.W. Deep neural network-based blind modulation classification for fading channels. In
Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Republic of Korea, 18–20 October 2017; pp. 551–554. [CrossRef]

32. Kim, B.; Kim, J.; Chae, H.; Yoon, D.; Choi, J.W. Deep neural network-based automatic modulation classification technique. In
Proceedings of the 2016 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Republic of Korea, 19–21 October 2016; pp. 579–582. [CrossRef]

http://dx.doi.org/10.3390/s22031020
http://dx.doi.org/10.1109/MILCOM.1988.13427
http://dx.doi.org/10.1109/26.823550
http://dx.doi.org/10.1109/TVT.2017.2727858
http://dx.doi.org/10.1109/TIM.2018.2868556
http://dx.doi.org/10.1109/APCAP.2018.8538057
http://dx.doi.org/10.1109/EEI48997.2019.00050
http://dx.doi.org/10.1109/ACCESS.2019.2916833
http://dx.doi.org/10.1109/ICITBS.2019.00146
http://dx.doi.org/10.1109/TSP.2015.7296315
http://dx.doi.org/10.1109/ICCSNT47585.2019.8962474
http://dx.doi.org/10.1109/PIMRC.2017.8292480
http://dx.doi.org/10.3390/e21080745
http://www.ncbi.nlm.nih.gov/pubmed/33267459
http://dx.doi.org/10.3390/app8081327
http://dx.doi.org/10.1109/VTCSpring.2017.8108670
http://dx.doi.org/10.1109/LCOMM.2018.2889084
http://dx.doi.org/10.1109/TGCN.2022.3185045
http://dx.doi.org/10.1109/JSTSP.2022.3222910
http://dx.doi.org/10.1109/TNSE.2022.3185130
http://dx.doi.org/10.1109/WOCC.2017.7929000
http://dx.doi.org/10.1117/12.2524536
http://dx.doi.org/10.3390/s21248237
http://dx.doi.org/10.1109/ICTC.2017.8191038
http://dx.doi.org/10.1109/ICTC.2016.7763537


Electronics 2023, 12, 2134 28 of 29

33. Mendis, G.J.; Wei, J.; Madanayake, A. Deep learning-based automated modulation classification for cognitive radio. In Proceedings
of the 2016 IEEE International Conference on Communication Systems (ICCS), Shenzhen, China, 14–16 December 2016; pp. 1–6.
[CrossRef]

34. Duan, S.; Chen, K.; Yu, X.; Qian, M. Automatic multicarrier waveform classification via PCA and convolutional neural networks.
IEEE Access 2018, 6, 51365–51373. [CrossRef]

35. Gou, Z.; Xu, H.; Zheng, W.; Feng, L.; Bai, P. Semi-supervised Joint Neural Network Based Recognition Algorithm of Modulation
Signal. J. Signal Process. 2020, 36, 168–176. [CrossRef]

36. O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 2018,
12, 168–179. [CrossRef]

37. Zhang, Y.; Liu, T.; Zhang, L.; Wang, K. A deep learning approach for modulation recognition. In Proceedings of the 2018 IEEE
23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [CrossRef]

38. Vanhoy, G.; Thurston, N.; Burger, A.; Breckenridge, J.; Bose, T. Hierarchical modulation classification using deep learning.
In Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA,
29–31 October 2018; pp. 20–25. [CrossRef]

39. Xu, J.; Luo, C.; Parr, G.; Luo, Y. A spatiotemporal multi-channel learning framework for automatic modulation recognition. IEEE
Wirel. Commun. Lett. 2020, 9, 1629–1632. [CrossRef]

40. Bu, K.; He, Y.; Jing, X.; Han, J. Adversarial transfer learning for deep learning based automatic modulation classification. IEEE
Signal Process. Lett. 2020, 27, 880–884. [CrossRef]

41. Wang, Y.; Gui, G.; Gacanin, H.; Ohtsuki, T.; Sari, H.; Adachi, F. Transfer learning for semi-supervised automatic modulation
classification in ZF-MIMO systems. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 10, 231–239. [CrossRef]

42. Perenda, E.; Rajendran, S.; Bovet, G.; Pollin, S.; Zheleva, M. Learning the unknown: Improving modulation classification
performance in unseen scenarios. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications,
Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [CrossRef]

43. Pauluzzi, D.R.; Beaulieu, N.C. A comparison of SNR estimation techniques for the AWGN channel. IEEE Trans. Commun. 2000,
48, 1681–1691. [CrossRef]

44. Qun, X.; Jian, Z. Improved SNR estimation algorithm. In Proceedings of the 2017 International Conference on Computer Systems,
Electronics and Control (ICCSEC), Dalian, China, 25–27 December 2017; pp. 1458–1461. [CrossRef]

45. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
46. Niu, S.; Liu, Y.; Wang, J.; Song, H. A decade survey of transfer learning (2010–2020). IEEE Trans. Artif. Intell. 2020, 1, 151–166.

[CrossRef]
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