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Abstract: Aiming at the problems of feature information loss during down-sampling, insufficient char-
acterization ability and low utilization of channel information in skin cancer diagnosis of melanoma,
a skin pathological mirror classification method based on discrete wavelet down-sampling feature
reconstruction is proposed in this paper. The wavelet down-sampling method is given first, and the
multichannel attention mechanism is introduced to realize the pathological feature reconstruction
of high-frequency and low-frequency components, which reduces the loss of pathological feature
information due to down-sampling and effectively utilizes the channel information. A skin cancer
classification model is given, using a combination of depth-separable convolution and 3 x 3 standard
convolution and wavelet down-sampling as the input backbone of the model to ensure the perceptual
field while reducing the number of parameters; the residual module of the model is optimized using
wavelet down-sampling and Hard-Swish activation function to enhance the feature representation
capability of the model. The network weight parameters are initialized on ImageNet using transfer
learning and then debugged on the augmentation HAM10000 dataset. The experimental results
show that the accuracy of the proposed method for skin cancer pathological mirror classification
is significantly improved, reaching 95.84%. Compared with the existing skin cancer classification
methods, the proposed method not only has higher classification accuracy but also accelerates the
classification speed and enhances the noise immunity. The method proposed in this paper provides a
new classification method for skin cancer classification and has some practical value.

Keywords: melanoma; down-sampling; wavelet transform; image classification; transfer learning;
data augmentation

1. Introduction

Skin cancer is one of the most widespread threats to human health worldwide, and one
malignant skin tumor, also known as melanoma, is one of the swift-growing cancers in the
world. This disease can be easily treated if detected early [1]. A report has shown that the
five-year survival rate of localized malignant melanoma is 99% when diagnosed and treated
early, whereas the survival rate of advanced melanoma is only 25%; therefore, whether
the disease can be diagnosed early has a crucial impact on whether patients can improve
their survival rate [2]. The traditional examination method is to first go through a doctor’s
visual inspection and then use dermoscopic imaging to aid the diagnosis [3]. However,
benign and malignant skin cancers are extremely similar in characteristics, and the varying
levels of professional doctors and the uncertainty of subjective decision-making have led
to numerous skin cancer patients not being diagnosed early and treated timely. With the
development of artificial intelligence in the medical field, deep learning has been widely
used for the detection and classification of medical images over the past few years [4].
The application of artificial intelligence in medical image-assisted diagnosis to provide a
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second opinion to help professional doctors diagnose skin cancer has become an inevitable
trend [5]. Deep convolutional neural networks (CNNs), an important research topic in deep
learning, have been widely used in the medical field [6].

Codella et al. [7] used features from sparse coding features, low-level manual features
and deep residual networks to adjust the output of the AlexNet network and use a support
vector machine (SVM) to perform classification experiments on the ISIC database and
finally obtained 93.1% accuracy, 92.8% specificity, and 94.9% sensitivity. Pomponiu et al. [8]
used a migration learning-based AlexNet convolutional neural network and data aug-
mentation to classify skin lesion data after feature extraction using the K nearest neighbor
(KNN) algorithm and finally obtained 93.64% accuracy, 95.18% specificity, and 92.1% sen-
sitivity. Esteva et al. [9] used a skin lesion classification method based on a pre-trained
GoogleNet architecture and performed classification experiments on clinical images and
finally obtained 72.1% accuracy. Khan et al. [10] improved a novel deep CNN based on
VGG and AlexNet models to classify skin lesions, and classification tests that were per-
formed on ISIC 2016 and ISIC 2017 datasets finally obtained 92.1% and 96.5% accuracy,
respectively. Ahmed et al. [11] used three models based on deep CNN (InceptionResnetV2,
Xception and NASNetLarge) ensembles to test the pre-trained models on the ISIC2019
dataset, and finally, the CNN ensembles obtained 93.70% accuracy and 0.931 AUC and
exceeded the top-2 rankings on the ISIC2019 classification challenge leaderboard for that
year. Abayomi-Alli et al. [12] improved a new data augmentation model for skin cancer
classification, and a migration learning based pre-trained squeeze net architecture was
used to classify melanoma skin cancer. Classification experiments were performed on
the PH2 dataset and finally obtained 92.18% accuracy. Although convolutional neural
networks can classify dermoscopy images well, the issue of partial feature information
loss caused by down-sampling will be difficult to avoid as the depth and breadth of the
network increase. As the performance characteristics of malignant and benign skin diseases
are too similar, the problem of partial loss of feature information due to down-sampling
may affect the accuracy of the classification of dermoscopy images. Pooling operation
is widely used in convolutional neural networks as the main down-sampling method,
which often ignores some useful feature information and causes poor generalization ability,
which affects the performance of the model. To deal with this problem, Zeiler et al. [13]
proposed a stochastic pooling strategy that replaced the traditional deterministic pooling
operation with a stochastic process and was able to combine it with other arbitrary forms of
regularization, abandoning the dropout-like approach of discarding information in favor of
selecting from the network’s existing information, obtaining state-of-the-art performance at
the time. He et al. [14] designed a stride convolution as a learnable down-sampling method,
which was widely used in the model but introduced more parameters and overhead at the
same time. Zhao et al. [15] embedded random shifting in the down-sampling layer during
the training process and dynamically adjusted receptive fields by shifting the kernel centers
on the feature maps in different directions, effectively mitigating the loss of feature informa-
tion during down-sampling. Jiang et al. [16] introduced parameters into the pooling layer
and used parametric pooling to replace the traditional pooling process, which preserves
the features that are desired to be preserved in the convolutional neural network with a
small increase in network parameters. Although the above methods alleviate the problem
of losing feature information due to pooling operations to a certain extent, they are still
traditional pooling operations in nature, and no matter what pooling methods are used,
they will cause feature information loss and thus affect the performance of convolutional
neural networks.

Aiming at the problems of feature information loss, low utilization of channel informa-
tion and insufficient characterization capability in traditional down-sampling, this paper
proposes a discrete wavelet-based down-sampling feature reconstruction method applied
to skin cancer mirror classification. The method uses discrete wavelet transform as the
down-sampling operation and adds a multichannel attention mechanism to effectively
combine the high-frequency components and low-frequency components after wavelet
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decomposition and also effectively utilizes the channel information to enhance the char-
acterization ability of the model; a skin cancer classification model is given, based on the
ResNet50 network model, using a combination of 3 x 3 convolutional kernel and depth-
separable convolution and wavelet down-sampling as the input backbone of the model,
which reduces the number of parameters while maintaining the perceptual field of the
network. Finally, the network weight parameters are initialized on ImageNet using transfer
learning, and fine-tuned training is performed on the augmentation HAM10000 dataset to
further improve the model classification performance.

The main contributions of the proposed method to the classification of melanoma skin
cancer are as follows:

e In the current study, we developed a wavelet down-sampling feature reconstruction
method to address the problem of traditional down-sampling feature information loss,
introducing a multichannel attention mechanism to effectively combine low-frequency
components with high-frequency components, fully utilizing channel information to
reveal finer details.

e  This paper developed a wavelet down-sampling feature reconstruction method-based
convolutional neural network as a feature extractor to classify melanoma skin cancer
using skin pathological mirror.

e A data augmentation and hair removal algorithm is used to pre-process the skin patho-
logical mirror dataset HAM1000, and the pre-processing method is tested on the pre-
processing HAM10000 dataset using transfer learning. The experimental results show
that the proposed method has high accuracy for melanoma skin cancer classification.

2. Related Work

The wavelet transform is capable of focusing on arbitrary details of the signal by
multiscale refinement through telescopic translation operations and is widely used in
signal processing and pattern recognition [17-19]. In recent years, wavelets have been
analyzed by many scholars in combination with convolutional neural networks as emerging
down-sampling methods, such as Mallat et al. [20] by linking wavelet transform with
average pooling cascade, which preserves the detail information of images to a great
extent with shift-invariance features. Zhang et al. [21] introduced multi-level wavelets into
convolutional neural networks, which greatly preserves the texture information of images
by using the inverse transform of wavelets. Li et al. [22] used the low-frequency component
of the discrete wavelet transform output to replace the traditional commonly used down-
sampling method and obtained strong robustness and better network performance while
confirming the effectiveness of using the low-frequency component of the two-dimensional
discrete wavelet to replace the down-sampling layer output in the convolutional neural
network. The low-frequency component of the wavelet transform output contains the main
feature information of the image, and the high-frequency component contains detailed
information such as the texture features of the image [23]. In the existing forms of combining
wavelets and convolutional neural networks, mainly the high-frequency components
are discarded, and only the low-frequency components are used, or the high and low-
frequency components are used in equal proportions. However, both of them have certain
disadvantages: if the high-frequency components are discarded, it may cause the loss of
important texture information, leading to the problem of poor results in detail recovery and
insufficient characterization ability, while the high- and low-frequency components contain
very different amounts of information and have different effects on the loss function, so if
they are used in equal proportions, it is not reasonable enough and there is also the problem
of low utilization of channel information [24].

3. Wavelet Down-Sampling Reconstruction

The input skin mirror image (X) is feature decomposed using a 2D discrete wavelet
transform to obtain a low-frequency component (X;;) containing information on the
main pathology feature and three high-frequency components containing information on
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pathological details: the horizontal component (X1 g), the vertical component (Xp;) and
the diagonal component (Xgg). 2D discrete wavelet transform can be formulated as

(XL, XeH, XHL, XuH]= 2Dpwr(x) ey
where (Xrp, Xpy, XL, Xgy) € ¢ X % X % ¢ is the number of channels of the input skin
mirror image; and & and w are the height and width, respectively. The new high-frequency
components X'y, X'y, X'y, are obtained by summing the low-frequency components
with each high-frequency component separately and can be formulated as

X/LH =alX g+ X1
X'ur = a2Xpr + Xrr )
X'y = a3Xpn + Xir

where «i is the absolute value of the high-frequency component to which it belongs,
reflecting the severity of the pathology, i = 1,2, 3.

Based on SKNet [25] multi-branch structure selective channel attention mechanism,
each new high-frequency component in Equation (2) is integrated to obtain the texture
feature F of pathology; then, global average pooling (GAP) operation is performed to obtain
the global information s on each channel, and then the fully connected (FC) operation is
performed on s to obtain the size of the weight z accounted for by each channel; the
normalization function softmax is used to reaggregate the weights Q after normalizing z to
obtain the new pathological texture features F’ and finally obtain the integrated pathology
comprehensive feature M by jumping connection X;; to improve the characterization
ability. The whole process is shown in Figure 1. The integrated pathology comprehensive
feature M can be formulated as

Q = Softmax(cye (BN(W - GAP(F(;)))) 3)
Fr=O1 xX'1g+Qax X'y + Q3 x X'y 4)
M = concat([F/, X1]) (5)

where (i,7) € (h,w); W € d x ¢;d = max($, L); r is the scaling ratio; and L is the minimum
value of d to control the dimensionality of the output. FC is composed of the batch
normalized BN and o, activation function; in turn, M € 2¢ x % x 2.
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Figure 1. 2D discrete wavelet down-sampling reconstruction.
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Finally, the pathology comprehensive feature M is reconstructed by using 1D discrete
wavelet for feature decomposition to output the final pathology feature map. Firstly, the
comprehensive feature M is downscaled using the reshape operation to obtain a feature map
of the form 1 x n, and then the 1D discrete wavelet decomposition is performed to obtain
the low-frequency component X; and the high-frequency component Xp. Finally, the
weights of the low-frequency component and the high-frequency component are calculated
using the selective channel attention mechanism, and the final reconstructed feature rec_X
is composed according to the weights; the whole process is shown in Figure 2. The final
reconstructed feature rec_X can be formulated as

(X1, Xu] = 1Dpwr(m) ©)
q = Softmax(0yey (BN(W - GAP(XL & Xp)))) @)
rec_X = q1 X Xp + g2 X Xg (8)

where g1 and ¢, are the weights of the low-frequency component and the high-frequency
component features within each channel, g1 + g2 =1, rec_X € ¢ x % X 2.

w/2

h/2

w/2xh/2
creshape o W2 " Paaaani U"@“l o 2
X e GAP![IIIII,'FC'IIIII/ o h/2
w/2 L\.

E=———=DWT P h/2 Sa ,r.®j§. a—
2c W/2Xh/2 reshape softmax  q, =

Xy, ¢

Figure 2. 1D discrete wavelet down-sampling reconstruction.

4. Skin Cancer Classification Model

In this paper, the skin cancer classification model is based on the ResNet50 network model.
The input backbone of the ResNet50 network is mainly composed of a 7 x 7 convolutional kernel
and a maximum pooling layer. In this paper, a combination of a 3 x 3 standard convolution
and a depth-separable convolution [26] is used to replace the 7 x 7 convolutional kernel,
and wavelet down-sampling is used to replace the maximum pooling operation, which
reduces the computational effort while deepening the network depth during convolution. The
depth-separable convolution and input backbone structures are shown in Figures 3 and 4.

7x7 conv Ix1 conv

vy
: \

\

Depthwise convolution Pointwise convolution

Figure 3. Depth-separable convolution structure.
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Figure 4. Input backbone structure.

As shown in Figures 3 and 4, the wavelet down-sampling output feature map is fed
into the depth-separable convolution, and three convolution kernels of size 7 x 7 x 1 are
used. Each convolution kernel does convolution for one input channel only, and the output
feature map of size 224 x 224 x 3 is obtained. Then, using 64 point-by-point convolutions
with 1 x 1 x 3 convolution kernels, each convolution kernel will obtain a mapping of size
224 x 224 x 1, resulting in an output feature map of size 224 x 224 x 64. The improved
input backbone not only maintains the original perceptual field but also reduces the number
of parameters by 32.4% and deepens the depth of the network.

The Hard-Swish function [27] is used instead of the ReLU function in the backbone
network to avoid the “dead ReLU” problem and the problem that the output is reduced
to zero when the input is used. The Hard-Swish function is unbounded, smooth and
non-monotonic and can be formulated as

2x,x > 5%
Hard — Swish(x) ={ 0.48x2 +x'—i2A <x< % ©)
0x< %

In Equation (9), A is a trainable parameter or a custom parameter, and the output is
more likely to be set to 0 when x is smaller rather than directly equal to 0 as in the ReLU
function, which not only increases the randomness but also increases the dependence on
the input, effectively improving the robustness of the model. To avoid excessive activation
and BN layers that degrade the model performance [28], the ReLU function in the residual
block is replaced by the Hard-Swish function; the activation and BN layers after the first
convolution are discarded; the activation function before the output of the residual block is
moved to the input; and then the wavelet down-sampling method is used to improve the
learning ability of the model. The improved residual block is shown in Figure 5.
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Figure 5. 1D discrete wavelet down-sampling reconstruction: (a) Conv Block; (b) Identity Block.

5. Experiments and Analysis of Results
5.1. Dataset and Pre-Processing

The publicly available skin lesion dataset HAM10000 [29] was used to perform exper-
iments on skin cancer classification models. The dataset consists of seven skin diseases,
namely benign keratosis (BKL), actinic keratosis and intra-epithelial carcinoma (AKIEC),
dermatofibrosarcoma (DF), melanocytic nevus (NV), vascular lesion (VASC), melanoma
(MEL), and basal cell carcinoma (BCC), with a total of 10,015 images, as shown in Figure 6.

& A

F n
&«

VASC MEL BCC

Figure 6. Example of HAM10000 dataset.

Aiming at the problem that hair occlusion in the skin mirror image can affect the
diagnosis results, this paper gives a hair removal algorithm [30] to automatically remove
the hair occlusion in the skin mirror image and restore the information of the hair occlusion
area, the Algorithm 1 shows the hair removal algorithm and Figure 7 shows the comparison
before and after hair removal in the skin mirror image.

Algorithm 1: hair removal algorithm

Input: skin mirror image (img)

Output: restoration skin mirror image (imgl)

1.  use morphological closed top-hat operator to enhance the hairs with varying strength in the
skin mirror image img.

2. extract the effective measure of hairs based on the defined extension characteristic function
to describe the extension state of the stripe-like connected region.

3. the image restoration technique using partial differential equations is used to restore the
hair-obscured areas to obtain the skin mirror image img1 after hair removal.
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Figure 7. Comparison of before and after hair masking restoration. (a) Before restoration. (b) After
restoration.

Since the sample distribution in the HAM10000 dataset is extremely uneven, this paper
uses data augmentation methods including rotation, cropping and random flipping [31] to
ensure the data category balance and enhance the generalization ability of the model. The
augmentation dataset consists of 16,002 samples, which are divided into two independent
and non-intersecting datasets, the training set and the test set, with a division ratio of 8:2.

5.2. Experimental Environment and Evaluation Indicators

The experiments were run on a Windows 10 64-bit platform environment with a 12th
generation i7-12700H, 32G RAM, NVIDIA GTX3080Ti discrete graphics card with 12G
video memory and Pytorch as the deep learning framework.

AC, F1-Score was used as the evaluation indicators of the model and defined as follows:

TP + TN
AC = 1
C = PTFPFINTEN (10
o 2x TP an

T 2xTP+FP+FN

where AC is the classification accuracy; F1-Score is the summed average of accuracy and
completeness; and the higher the F1-Score value is, the better the classification performance
of individual categories is. TP, TN, FP and FN represent the number of samples with true
positives, true negatives, false positives and false negatives, respectively.

5.3. Comparative Experiments

To verify the effectiveness of the proposed method and to also determine that the
improved input backbone and wavelet down-sampling methods have improved the model
performance, ablation experiments were conducted on the test set, and the experimental
results are shown in Table 1.

Table 1. Ablation experiments of the proposed method.

Base Input Residual Data

Model Backbone Module Augmentation ACT% F1/%
Vv 90.48 90.69

Vv Vv 93.45 93.67

ResNet50 v v 94.51 94.64
v v 93.94 94.03

Vv Vv Vv 95.28 95.39

As can be seen from Table 1, the model classification performance is improved by using
the improved input backbone in this paper, and the classification accuracy is improved
by 2.97%. However, the classification performance of the model decreases significantly
when data augmentation is not used to balance the data categories. It is verified that the
data augmentation method can effectively improve the classification performance of the
network and the effectiveness of the method proposed in this paper.
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The performance of the improved ResNet50 model in the paper is compared with five
mainstream deep learning network models, AlexNet [32], VGG19 [33], MobileNet-V2 [34],
DenseNet-121 [35] and EfficientNet-B0 [36], all of which are pre-trained on the ImageNet
dataset. Pre-training is performed to initialize some of the weight parameters, and then
experiments are conducted on the augmentation HAM10000 dataset, and the experimental
results are shown in Table 2.

Table 2. Performance comparison of different classification models on the HAM1000 dataset.

Model AC/% F1/%
AlexNet 87.81 88.13
VGG19 90.34 90.61
MobileNet-V2 88.23 88.86
DenseNet-121 92.93 93.14
EfficientNet-B0 93.62 93.78
Proposed model 95.84 95.96

From Table 2, the classification accuracy and F1 values of the improved model in this
paper on the HAM10000 dataset are better than those of other network models, which are
95.84% and 95.96%, respectively, among which AlexINet has the lowest accuracy and F1 values,
which are 87.81% and 88.13%, respectively, and EfficientNet-BO has the highest accuracy and F1
values except for the model in this paper, which are 93.62% and 93.78%, respectively.

For the HAM10000 dataset, many scholars have proposed research methods, and the
research methods proposed in this paper were compared with the existing methods, and
the comparison results are shown in Tables 3 and 4.

Table 3. Comparison with existing methods on the HAM1000 dataset (AC, F1 and Parameters).

References AC/% F1/% Parameters/MB

ResNet50 + SA [37] 91.55 91.30 91.2

CNN ensembles [11] 93.09 - -
IRv2-SA [37] 93.47 93.65 181.3

Loss balance + ensemble [38] 92.60 - -
Low-cost augmentation + CNN [39] 95.79 86.14 42.0
FixCaps [40] 96.49 - 1.86
Our method 95.84 95.96 60.9

Table 4. Comparison with existing methods on the HAM1000 dataset (AUC).

Category
References AUC

AKIEC BCC BKL DF MEL NV VASC
ResNet50 + SA [37] 0.980 0.981 0.996 0.964 0.971 0.973 0.979 0.999
CNN ensembles [11] 0.929 0.902 0.934 0.885 0.968 0.925 0.951 0.941
IRv2-SA [37] 0.985 0.981 0.998 0.982 0.973 0.974 0.984 1.000
Loss balance + ensemble [38] 0.941 0.919 0.947 0.908 0.980 0.931 0.960 0.942
Low-cost augmentation + CNN [39] 0.976 0.988 0.989 0.968 0.972 0.943 0.970 0.995

FixCaps [40] - - - - - - - -
Our method 0.982 0.983 0.992 0.975 0.976 0.971 0.983 0.992

In Table 3, our method was compared with six previously reported melanoma skin
cancer classification methods, among which FixCaps method achieved the highest classi-
fication accuracy of 96.49% because its method discarded the down-sampling operation
and used the dynamic routing algorithm, which not only directly avoided the problem of
feature information loss caused by traditional down-sampling but also could read useful
feature information to the maximum extent. In addition, the other five methods and our
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method all contain down-sampling operation, among which our method achieves the
highest classification accuracy and F1 value of 95.84% and 95.96%, respectively. In terms of
the number of model parameters, FixCaps has a minimum of 1.86 MB, and IRv2-SA has a
maximum of 181.3 MB, while the model in our method is in the middle with 60.9 MB.

In Table 4, we compared the AUC scores of our method with previous melanoma skin
cancer classification methods, and the AUC score is the golden indicator of classification
model performance; the higher the AUC score is, the better the model performance is, and
the AUC score is also the ranking indicator of melanoma skin cancer classification ranking.
From Table 4, we can see that the highest AUC score of the IRv2-SA method is 0.985; the
lowest AUC score of CNN ensembles method is 0.929; and the AUC score of our method is
0.982, which is in the second place.

Combined with Tables 3 and 4, the proposed method in this paper has excellent
performance in classifying melanoma skin cancer, which exceeds most of the previously
reported melanoma skin cancer methods. Figure 8 shows the confusion matrix at the best
classification case. Figure 9 shows the ROC curve that is plotted with true positive rate
against the false positive rate of each lesion category, individually, and Table 5 shows the
corresponding classification metrics. As seen in Table 5, the highest classification accuracy of
99.16% was achieved for dermatofibrosarcoma (DF), and the lowest classification accuracy
of 93.31% was achieved for benign keratosis (BKL).

r 400
MEL

BKIL. r 300

BCC

Actual

200
AKIEC
VASC 100

DI

NV MEL BKL BCC AKIEC VASC DF
Predicted

Figure 8. Best classification confusion matrix.

Table 5. Classification indicators.

Category Precision/% Recall/% F1-Score/%
NV 92.50 94.75 93.61
MEL 97.83 91.85 94.75
BKL 91.15 95.57 93.31
BCC 98.02 97.38 97.70
AKIEC 96.11 95.24 95.67
VASC 97.65 97.42 97.54

DF 98.80 99.52 99.16
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Figure 9. ROC curve of the best classification.

6. Conclusions

This paper introduces the implementation and application of wavelet analysis as
down-sampling in convolutional neural networks to solve the problem of insufficient
network characterization ability due to the loss of feature information by down-sampling
in skin cancer classification and to solve the problem of low channel information utiliza-
tion and inability to effectively combine low-frequency and high-frequency components
by introducing the multichannel attention mechanism into wavelet analysis. Firstly, a
combination of depth-separable convolution and 3 x 3 standard convolution and wavelet
down-sampling is used as the input backbone of the ResNet50 network, and then the Hard-
Swish function and wavelet down-sampling are used to improve the residual module of
the ResNet50 network, which not only ensures the perceptual field of the original network
but also reduces the number of parameters and the feature loss of down-sampling and
improves the expression ability of the network. The experimental results show that the
method achieves excellent classification results on the augmentation HAM10000 dataset,
and the classification accuracy reaches 95.84% after combining with migration learning,
which effectively improves the skin cancer diagnosis accuracy.
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