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Abstract: Helmet recognition algorithms based on deep learning aim to enable unmanned full-time
detection and record violations such as failure to wear a helmet. However, in actual scenarios,
weather and human factors can be complicated, which poses challenges for safety helmet detection.
Camera shaking and head occlusion are common issues that can lead to inaccurate results and
low availability. To address these practical problems, this paper proposes a novel helmet detection
algorithm called DAAM-YOLOv5. The DAAM-YOLOv5 algorithm enriches the diversity of datasets
under different weather conditions to improve the mAP of the model in corresponding scenarios
by using Mosaic-9 data enhancement. Additionally, this paper introduces a novel dynamic anchor
box mechanism, K-DAFS, into this algorithm and enhances the generation speed of the blocked
target anchor boxes by using bidirectional feature fusion (BFF). Furthermore, by using an attention
mechanism, this paper redistributes the weight of objects in a picture and appropriately reduces
the model’s sensitivity to the edge information of occluded objects through pooling. This approach
improves the model’s generalization ability, which aligns with practical application requirements. To
evaluate the proposed algorithm, this paper adopts the region of interest (ROI) detection strategy
and carries out experiments on specific, real datasets. Compared with traditional deep learning
algorithms on the same datasets, our method effectively distinguishes helmet-wearing conditions
even when head information is occluded and improves the detection speed of the model. Moreover,
compared with the YOLOv5s algorithm, the proposed algorithm increases the mAP and FPS by 4.32%
and 9 frames/s, respectively.

Keywords: YOLOv5; attention mechanism; dynamic anchor box; helmet detection; occlusion detection

1. Introduction

Every year, the failure of workers to wear safety helmets results in significant losses
for construction sites and society. In terms of monitoring the wearing of safety helmets, it
is more common to use manual supervision. However, this method is unable to achieve
real-time and all-weather monitoring. Solutions based on computer supervision offer
advantages, such as fast response, full-time detection, and low monitoring cost, when
compared with traditional monitoring methods. However, existing computer supervision
technologies often fall short in terms of detection speed and accuracy, particularly in
complex and open scenarios. In actual scenarios, areas close to the water, open fields,
and strong winds can shake the camera during object detection, affecting the recognition
rate and detection speed of the model. Changes in weather and lighting can also lead
to difficulties in target recognition. Furthermore, the size of objects in images can differ
significantly at varying distances, making it difficult to use fixed prior bounding boxes,
resulting in inaccurate prior information and other issues. Additionally, during rush
hours, large crowds and mutual occlusion due to people holding umbrellas on rainy
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days can increase missed-recognition rates. This paper aims to address the challenges
of target occlusion and video frame shaking by proposing a helmet detection algorithm
named Dynamic Anchor Box and Attention Mechanism YOLOv5 (DAAM-YOLOv5) that
incorporates a dynamic anchor box and attention mechanisms. Our experimental results
demonstrate that the proposed DAAM-YOLOv5 algorithm outperforms YOLOv5s in terms
of both mAP (by 4.32%) and FPS (by 9 frames per second), indicating its superiority in
real-time and all-weather helmet detection. This proves its effectiveness in improving
worker safety at construction sites.

The main contributions of this paper are summarized as follows:

1. The improved Mosaic data enhancement method was used to randomly crop, scale,
and arrange of up to nine (instead of four) pictures and make appropriate adjustments
to light and angles to generate datasets with various brightness of light, angles of
rotation, and target sizes. This method effectively increases the richness of the datasets
and enhances the recognition ability of the algorithm under complex weather, light,
shaking, and other conditions.

2. A new dynamic anchor box mechanism called Dynamic Anchor Feature Selection
with K-means++ (K-DAFS) is proposed. Based on the dynamic anchor box [1], this
mechanism adopts the K-means++ [2] clustering algorithm to automatically adjust the
size of the training anchor boxes, accelerate the convergence of the target anchor boxes,
solve the problem of mismatch between prior information and truth, and achieve
faster detecting speed.

3. A new YOLOv5 model with attention mechanism is proposed. The attention mecha-
nism was introduced to enhance the weight of the header information and weaken
the background information. The ROI was pooled in the spatial attention module to
properly adjust the sensitivity of the model to the object’s marginal information to
improve the recognition rate of the model for the occlusion target.

4. It improves the GIoU in the original model structure, to CIoU, and solves the problem
of slow convergence or non-convergence caused by GIoU_Loss degenerating to IoU
when the prediction box and ground truth box are included.

2. Related Works

Currently, there are two main methods for detecting safety helmets: traditional image
recognition methods and deep learning-based image recognition methods. The former
employs a sliding window approach that performs convolution operations on each re-
ceptive field in the image, using multiple convolution kernels of varying sizes to achieve
object detection and localization. However, convoluting the entire image can cause the
model to focus too much on non-important regions, posing challenges for the accuracy
and generalization performance of the detection model. To address this issue, researchers
around the world have explored attention-based object detection methods, such as class
activation mapping [3] (CAM), stereo attention module [4] (SAM), convolutional block
attention module [5] (CBAM), and squeeze-and-excitation [6] (SE).

Computer vision algorithms based on deep learning can be divided into two detection
types: one-stage and two-stage object.

The former includes the region-based convolutional neural network (R-CNN) series
(including R-CNN [7], fast R-CNN [8], faster R-CNN [9], and mask-RCNN [10]), region-
based fully convolutional network [11] (R-FCN), and so on. The latter includes you only
look once (YOLO) series (from YOLOv1 to YOLOv5) [12–15], single-shot multiBox detec-
tor [16] (SSD) series, such as rainbow SSD [17] (R-SSD), deconvolutional SSD [18] (DSSD)
and feature-fusion SSD [19] (FSSD), and RetinaNet [20], etc. At present, YOLOv5 has
the better performance among the one-stage object detection algorithms. However, it
still has the problem of it being difficult to distinguish objects of different size, which is
determined by the one-stage property. Researchers have tried to approach the problem
in various ways. Kun Han et al. [21] adopted multiscale detection for detecting helmets
to predict a large number of small targets by adding a fourth detection dimension, which
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effectively improved the recognition accuracy. Li M et al. [22] used the method of com-
bining cascade parallel multi-scale convolution residual block and dual-channel fusion to
solve the problem of different target sizes when analyzing facial visual expressions. Unlike
them, others tried to improve the recognition of small targets by combining YOLOv5
with an attention mechanism. For example, Yan J et al. [23] proposed a feature pyramid
network based on an attention mechanism that improves the detection performance of
small targets by generating target features of different sizes in the feature pyramid network.
Tan S et al. [24] not only added a functional detection scale based on YOLOv5 but also
replaced non-maximum suppression (NMS) with DIOU-NMS, which made the bounding
box of suppression predictions more accurate and improved the accuracy of recognition
for small targets. In a real situation, there is also the phenomenon that the detected ob-
jects occlude each other. To solve this problem, some researchers, such as Li J et al. [25],
have used the head information detection algorithm to further improve detection accu-
racy by extracting the histogram of oriented gradient features of the human head, and
then they classified different labels with a support vector machine (SVM). Finally, they
realized helmet detection with color feature recognition. Other researchers, such as Tian
Qing et al. [26], employed an attention mechanism to mitigate the influence of object oc-
clusion on detection. By designing and adding a variability convolutional network [27]
and an attention mechanism to the feature network, they improved the feature extraction
ability of the model for the occlusion phenomenon. By introducing the spatial pyramid
pooling module and the squeeze-and-excitation channel attention mechanism [6] before the
YOLO input layer, to strengthen the feature fusion of pedestrians of different scales, and
then pruning the network, Xiang N et al. [28] finally improved the detection accuracy and
reduced the missed detection rate in the case of small pedestrians. Aiming at the problem
of strong interference factors, such as different light intensities and weather conditions,
Bin Dai et al. [29] used the method of multilayer fusion, taking into account shallow-level
semantic information and deep-level semantic information, and improved the safety helmet
recognition rate in conditions of insufficient light.

Based on the above research, the structure of YOLOv5 is further improved in this paper
to improve recognition accuracy and rate in the case of target occlusion, video shaking,
insufficient light, and other problems.

3. DAAM-YOLOv5
3.1. Network Structure

The network structure of DAAM-YOLOv5 is shown in Figure 1. It is also divided into
four parts, similar to YOLOv5: input, backbone, neck, and prediction.

Where the “*” is multiplication sign, taking 320*320*32 in Figure 1 as an example, it
means a photo with a length of 320 pixels, a width of 320 pixels, and a number of channels
of 32.

Compared with YOLOv5, the main changes are as follows:

1. Mosaic-4 is modified to Mosaic-9 data enhancement in the Input;
2. A CBAM [5] attention mechanism is added to the Backbone;
3. A K-DAFS dynamic anchor box is added during the training phase and recognition

phase;
4. In the Prediction part, CIoU is used to replace the original GIoU to compensate for

the inherent defects of GIoU.
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Figure 1. Schematic diagram of the DAAM-YOLOv5 network structure model.

In this algorithm, the main functions of the input are Mosaic-9 data enhancement and
the adaptive size of the anchor box. The original images generate new images through
Mosaic-9, and then the newly generated images are sent to Backbone together with the
original images. The backbone mainly contains the FOCUS structure, CBAM attention
mechanism, and Cross Stage Partial_1 (CSP1_X) structure. The main function of the FOCUS
structure is slicing the images. It splits the high-resolution feature maps into multiple
low-resolution feature maps. The schematic diagram is shown in Figure 2. While reducing
the number of parameters and network layers, FOCUS minimizes information loss and
improves the convolution speed as a whole.
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The CSP1_X structure can increase the gradient value of the backpropagation between
layers to avoid the gradient disappearance caused by gradient descent, and so extract
more fine-grained features without worrying about network degeneration [30]. The CBAM
attention mechanism redistributes the recognition weight of the targets in the image and
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appropriately reduces the edge information sensitivity. The main function of prediction
is to calculate and adjust the loss of generalized intersection over union (GIoU_Loss) and
NMS and present the inference results. CIoU_Loss is used instead of GIoU_Loss to solve
the problem that GIoU_Loss degenerates into IoU when the prediction box or the ground
truth box is completely contained by the other boxes, which further relieves the matter that
the convergence of IoU_Loss is slow. A diagram of the CIoU is shown in Figure 3, and the
calculations of CIoU_Loss are defined in Equations (1)–(4).

CIoU = IoU − d
C2 − αν, (1)

CIoULOSS = 1− CIoU, (2)

α =

{
0, IoU < 0.5
ν

(1−IoU)+ν
, IoU ≥ 0.5 , (3)

ν =
4

π2

(
tan−1 ωgt

hgt − tan−1 ωpred

hpred

)2

, (4)
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In Figure 3, where d is the Euclidean distance between the center point of the prediction
box and the ground truth box, c is the diagonal distance of the smallest circumscribed
rectangle of the two boxes. In Equations (1)–(4), α is the weight coefficient and ν is the
similarity of the aspect ratio between two boxes; the higher the similarity is, the better the
prediction effect.

3.2. Improvements over the Original
3.2.1. Mosaic-9 Data Enhancement

As shown in the representation of Mosaic-9 data enhancement workflow in Figure 4,
compared to Mosaic-4 in the original YOLOv5, this algorithm has made significant improve-
ments in the random number and adjustment methods of images. First, in the Mosaic-9
process, a maximum of nine pictures are selected for cropping, zooming, arranging, and
changing the brightness and then reintegrated and tiled to form a 640*640 picture; second,
each of these pictures is rotated by plus or minus 10 degrees to form 18 rotated pictures,
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and then these 18 pictures are tiled and resized to 640*640. In the end, a total of 19 new
dataset pictures were formed, which greatly enriched the type and quantity of the datasets.
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3.2.2. K-DAFS Dynamic Anchor Box

In the one-stage target detection to which YOLO belongs, an anchor box is generally
used instead of the target selection stage in two-stage object detection. Generally, there are
three methods for selecting an anchor box: generating an anchor box through K-means [31]
clustering, artificial regulation, and training. However, these three methods all have certain
shortcomings. The K-means method is easily affected by outliers and initial values due to
its limitations. Although manually setting anchor boxes is relatively flexible, it requires
a lot of effort to find suitable anchor boxes, which increases the difficulty of training [32].
Training to generate anchor boxes is a commonly used method, but traditional training
methods are from the top down, cannot be dynamically adjusted, and easily produce a
prior information mismatch truth. To address these issues, this paper proposes a novel
method for a dynamic anchor box, called K-DAFS, that combines dynamic anchor feature
selection (DAFS) [1] with the K-means++ algorithm [2]. The module is shown in Figure 5.
This module is constructed based on the anchor refinement module (ARM) [33]. For any
nonterminal feature map, the relevant data information about the anchor box comes from
both the upper and lower layers simultaneously.

DAAM-YOLOv5 uses manually specified anchor boxes in the initial training, uses the
K-means++ clustering algorithm to cluster the marked target anchor boxes multiple times,
and generates multiple prior bounding boxes of different sizes. It filters the anchor boxes,
which have an IoU of less than 0.5 with the ground truth box, through ARM. However,
ARM will result in a mismatch between the receptive field of the point and the anchor
boxes for some feature point, which may weaken the detection ability of the model [1].
Therefore, this paper fuses top-down and bottom-up bidirectional paths using bidirectional
feature fusion (BFF) combined with K-means++ to connect feature maps of different scales
and receive information from the upper and lower layers to dynamically adjust the anchor
boxes. Finally, the dynamic refining anchor box is obtained as the prior bounding box for
model training.
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In detail, the workflow of K-means++ in BFF is shown in Figure 6, and is as follows:

1. Among the prediction boxes, the set B is obtained through the feedback from the upper
and lower levels of BFF, the center point of a prediction box is randomly selected as
the initial center point u0.

2. The Euclidean distance di(xi, u0) between u0 and the four anchor points xi of the
ground truth box is calculated, and the farthest point xt is obtained as the new center
point u1.

di(xi, u0) = ||xi − u0||22, iε{1, 2, 3, 4}, (5)

dt(xt, u0) = Max di(xi, u0), tε{1, 2, 3, 4}, (6)

3. The minimum value E of the Euclidean distance between u1 and the anchor point xi
in all prediction boxes in B is calculated, then the anchor box j corresponding to E is
the optimal anchor box.

dj= ∑4
i=1||xi − u1||22, jεB, (7)

E = Min dj, (8)
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3.2.3. Attention Mechanism

To improve the recognition accuracy of the algorithm in a specific area, a currently
more advanced attention mechanism, CBAM [5], is introduced based on YOLOv5. The main
method is to redistribute the weights of information and filter appropriate information to fit
the current scene. Compared with the attention mechanism of SENet [6], which only focuses
on channel information, CBAM can take into account the reception of spatial information
while paying attention to channel information. Without obviously increasing the number
of convolution operation layers, it is more effective for solving the problems of small edge
areas, blurred edges, and partial information loss. Experiments have proven that [5], in
the process of training and learning, channel attention is first used in sequence, and then
spatial attention is used to achieve the best results. CBAM has a better performance in
lightweight models, but it increases the complexity of the model to a certain extent and
may reduce the detection speed by a small amount. The structural model of the CBAM
attention mechanism is shown in Figure 7:
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Figure 7. The structural model of the CBAM attention mechanism.

As shown in Figure 7, CBAM mainly includes two modules, namely, the channel
attention module and the spatial attention module. The two focus on different objects.
The former mainly focuses on the category of the current convolution object, and the
latter focuses on the position of the current object. The former half of CBAM is the channel
attention module, which first performs maximum pooling and average pooling on the input
feature map and then roughly perceives the object category using the shared multilayer
perceptron. Finally, sum up the data and then feed it into the activation function for
processing after elementwise operation. The calculation process can be briefly described as
Equations (9) and (10):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))), (9)

= σ
(

W1

(
W0

(
FC

avg

))
+ W1

(
W0

(
FC

max

)))
, (10)

where σ is the sigmoid function, C is the number of channels, and W0 and W1 are the
weights of the first layer and the second layer of the perceptron, respectively.

In CBAM, the position information of the target is supplemented by introducing the
spatial attention module. The pooling operation along the channel axis can effectively
highlight the information area [34]. First, the output feature map in the attention channel
is weighted with the original input feature map. The obtained image is pooled with the
maximum and the average. Second, a 7*7 convolution kernel is used to convolve the two
feature layers at the same time, and the two feature layers are aggregated into one feature
layer through pooling. Finally, the feature after the layer is processed by the sigmoid
function, Ms, that contains the emphasized or suppressed position information that has
been obtained. The calculation process for spatial attention can be briefly described as
Equations (11) and (12):
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Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)]
)

, (11)

= σ
(

f 7×7
([

FC
Avg; FC

Max

]))
, (12)

where σ is a sigmoid function, f 7×7 is a convolution operation with a size of 7× 7, and FC
Avg

and FC
Max are the feature layers after average pooling and maximum pooling, respectively.

4. Experimental Results and Analysis
4.1. Experimental Datasets

The dataset of 32,000 images used in this paper was collected from specific scenes
or generated by Mosaic-9 according to real images and includes 12,000 actually collected
images and 20,000 automatically generated images. Considering the influence of the nat-
ural environment on the recognition rate, the images include sunny, cloudy, rainy, day,
night, and other conditions. There were 123,688 positive samples (helmet), 75,289 negative
samples (head), 256,832 human contour samples (people), and 57,855 unlabeled samples.
The unlabeled samples had insufficient clarity, serious occlusion, or poor contour infor-
mation, so they were not used for training. Finally, the mixed datasets were divided into
training datasets, validation datasets and testing datasets, at a ratio of 7:2:1, for the ex-
periments. The partial images generated by Mosaic-9 are shown in Figure 8, and some
low-brightness images have been automatically generated to compensate for the lack of
nighttime training datasets.
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4.2. Experimental Environments

Both the training and testing of this experiment were carried out using the Windows
10 operating system. The specific software and hardware environments are listed in Table 1.

Table 1. Training Environmental Configuration.

Configuration Name Version Parameters

Operating system Windows10
Graphics (GPU) Tesla P4*4 (8G*4)
Processor (CPU) 16 core Intel(R) Xeon(R) Gold 5120 CPU @ 2.2GHz

Framework Pytorch (1.10.2)
GPU acceleration environment CUDA10.2

4.3. Experimental Hyperparation and Evaluation Criteria

To ensure the effectiveness of the experimental data, the same hyperparameters were
used for training and testing different algorithm models. Stochastic gradient descent [35]
backpropagation was used to fine-tune and optimize the network parameters, and the
parameter settings are shown in Table 2. The initial learning rate was set to 0.01, weight
decay was set to 0.00002, batch size was set to 32, IoU was set to 0.35, the momentum factor
was set to 0.937, to avoid the model training falling into local optimum, and the number of
epochs was set to 300.

Table 2. Environmental Hyperparameter Configuration.

Parameter Value

Learning rate 0.01
Weight decay 0.00002

Batch size 32
IoU 0.35

Momentum factor 0.937
Epoch 300

Model evaluation is an important task in deep learning. The evaluation of indicators
usually includes accuracy, precision, recall, mAP, parameters, and giga-floating-point
operations per second (GFLOPs).

These are described by the following equations:

Accuracy = TP + FN
TP + TN + FN + FP , (13)

Precision = TP
TP + FP , (14)

Recall = TP
TP + TN , (15)

where TP indicates the number of samples in which positive class samples are correctly
predicted as positive, TN indicates the number of samples in which negative class samples
are correctly predicted as negative, FP indicates the number of negative samples incorrectly
predicted as positive samples and FN represents the number of positive samples that are
wrongly predicted as negative samples.

The more widely used criterion in model evaluation is mAP, and the mAP calculation
is as Equation (16):

mAP = 1
K ∑N

i=1 APi; AP = ∑n−1
i=1 (ri+1 − ri)Pinter(ri + 1), (16)

where r is the recall value corresponding to each interpolation segment of Precision sorted
in ascending order.
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4.4. Training Results

Figure 9 shows the comparison of mAP under the same configurations of the diverse
algorithm models involved in this experiment for approximately 300 epochs. The results
show that the mAP of each algorithm rapidly rises in the top 20 epochs, among which
DAAM-YOLOv5 and YOLOv3 are the fastest rising; this paper’s proposed algorithm
reached a mAP of 0.91 and YOLOv3s reached 0.83. The proposed algorithm converges
stably at epoch = 52, which is later than the other algorithms. All algorithms tend to be
stable at approximately epoch = 150, and the subsequent training makes the mAP slightly
decrease, showing signs of overfitting. There is no significant difference between the CBAM
and SE attention mechanisms in the first 40 epochs, and the mAP of CBAM is slightly
higher than that of the SE attention mechanism after 40 epochs. Finally, the proposed
algorithm’s optimal mAP is 0.9636, which is higher than the 0.9204 of the YOLOv5 model
and increased by approximately 4.32%, verifying the feasibility of this improved algorithm.
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Figure 9. The mAP of related algorithms in training.

The key data points for these algorithms are shown in Table 3.

Table 3. The mAP comparison of different algorithms in different epochs.

Algorithms
mAP@0.5

Epoch = 10 Epoch = 20 Epoch = 50 Epoch = 150 Epoch = 234 Epoch = 248 Epoch = 299

YOLOv3 0.78805 0.82702 0.84067 0.89059 0.89519 0.89512 0.89322
YOLOv5 0.76171 0.80696 0.87373 0.92099 0.92049 0.92041 0.91988
YOLOX 0.83723 0.92661 0.93067 0.95289 0.95618 0.95675 0.95464

Ours 0.88596 0.90738 0.95428 0.96609 0.96234 0.96363 0.96344
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4.5. Detection Results of DAAM-YOLOv5 in Various Cases

Figure 10 shows the partial detection results of DAAM-YOLOv5 in multiple cases in
the testing datasets. Among them, (a)–(c) show the situations in which a tester rides an
electric bicycle through the detection area at a speed of 40 km/h. The algorithm can still
correctly identify the targets in the case of high speed. Figure 10d shows the detection
of ROI, the people are detected within the ROI, but not outside it. It can be seen in (e)
that a safety helmet will not be detected in the case of no human wearing a safety helmet,
because the identification of the safety helmet is not set when no one is wearing it, and the
algorithm does not appear to be misidentified. In (f), the violator intentionally obscured the
head information in an attempt to interfere with the detection results, but the algorithm still
detected it correctly, indicating that the generalization of this algorithm is in good shape.
For irregular safety helmets that do not meet the requirements of production, worn by the
personnel in (g,h), the algorithm correctly detects the violation information. In (i), there is
the case of insufficient light at night, and the detection effect is good.
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4.6. Comparison of Detection Effects
4.6.1. Comparison between the YOLOv5 Algorithm and DAAM-YOLOv5 Algorithm

Figure 11 compares the detection effects of YOLOv5 and DAAM-YOLOv5 under the
same configuration. It is obvious that the improved DAAM-YOLOv5 has good performance
in the case of occluded objects after adding the attention mechanism. It effectively reduces
the false recognition and misidentification rates of the targets.
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4.6.2. Ablation Experiment Comparison

Figure 12 shows a detailed mAP of the algorithms in Figure 9 with epochs between
200 and 290. An ablation experiment was also performed to verify the impact of each
module on the model performance. The results are shown in Table 4. The first row in the
table is the YOLOv5 algorithm without improvement. In the original algorithm, Mosaic-4
data enhancement is used by default. Mosaic-4 data enhancement is used by default in the
absence of Mosaic-9 data enhancement. The second and third rows show the comparison
of the YOLOv5+CBAM and YOLOv5+SE attention mechanisms, respectively. The fourth
row is the DAAM-YOLOv5 algorithm in this paper.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17 
 

 

4.6.2. Ablation Experiment Comparison 
Figure 12 shows a detailed mAP of the algorithms in Figure 9 with epochs between 

200 and 290. An ablation experiment was also performed to verify the impact of each 
module on the model performance. The results are shown in Table 4. The first row in the 
table is the YOLOv5 algorithm without improvement. In the original algorithm, Mosaic-4 
data enhancement is used by default. Mosaic-4 data enhancement is used by default in 
the absence of Mosaic-9 data enhancement. The second and third rows show the compar-
ison of the YOLOv5+CBAM and YOLOv5+SE attention mechanisms, respectively. The 
fourth row is the DAAM-YOLOv5 algorithm in this paper. 

Figure 12. The mAP details of related algorithms with epochs from 0 to 75 and 100 to 299. 

Table 4. Ablation experiment. 

Algorithms Accuracy Precision Recall Parameters 
(M) 

mAP@0.5 GFLOPs Recognition 
Speed (f/s) 

YOLOv5 0.8549 0.8465 0.7536 7.2 0.9204 (+0) 16.1 (+0) 135 (+0) 
YOLOv5+CBAM 0.8841 0.8631 0.7255 8.0 0.9440 (+0.0236) 14.9 (−1.2) 118 (−17) 

YOLOv5+SE 0.8658 0.8699 0.7320 8.1 0.9399 (+0.0195) 15.5 (−0.6) 127 (−8) 
YOLOv5+Mosaic-9 0.8984 0.8223 0.8428 7.5 0.9366 (+0.0162) 16.4 (+0.3) 124 (−11) 
YOLOv5+K-DAFS 0.8837 0.8037 0.8633 8.5 0.9108 (−0.0096) 16.8 (+0.7) 158 (+23) 

Ours 0.8708 0.8471 0.8221 10.3 0.9636 (+0.0432) 16.5 (+0.4) 144 (+9) 

The results showed the following: 
1. After the addition of CBAM alone, the mAP of the model has been improved by ap-

proximately 2.36%. However, compared with the YOLOv5 algorithm, the detection 
speed and recall have decreased to a certain extent, with a reduction of 17 frames/s 
and 2.81%, respectively. This indicates that the CBAM module can increase the mAP 
of the model, but it will slightly reduce the model detection speed and increase the 
missed-recognition rate. 

2. Compared with the second and fourth lines, it can be seen that the precision of the 
SE attention mechanism is slightly lower than that of the CBAM attention mecha-
nism, by 0.41%, but the detection speed is faster than that of CBAM attention mech-
anism by 9 frames/s. 

3. Compared with the first and fourth lines, it can be seen that, after improving the 
Mosaic-9 data enhancement, the algorithm’s mAP has increased by 1.62%, while the 
speed rate has decreased by 11 frames/s. In addition, this module has shown signifi-
cant improvements in both accuracy and recall, with gains of 4.35% and 8.68%, re-
spectively. 

0 25 50 75
0.0

0.2

0.4

0.6

0.8

1.0

mA
P
@0
.5

Epoch

 YOLOv3
 YOLOv5+Mosaic-4
 YOLOv5+SE+Mosaic4
 YOLOv5s+CBAM+Mosaic-4
 YOLOX
 Ours

0.0

0.2

0.4

0.6

0.8

1.0

mA
P@
0.

5

100 125 150 175 200 225 250 275
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

mA
P@

0.
5

Epoch

 YOLOv3
 YOLOv5+Mosaic-4
 YOLOv5+SE+Mosaic4
 YOLOv5s+CBAM+Mosaic-4
 YOLOX
 Ours

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

mA
P@
0.
5

Figure 12. The mAP details of related algorithms with epochs from 0 to 75 and 100 to 299.

Table 4. Ablation experiment.

Algorithms Accuracy Precision Recall Parameters
(M) mAP@0.5 GFLOPs Recognition

Speed (f/s)

YOLOv5 0.8549 0.8465 0.7536 7.2 0.9204 (+0) 16.1 (+0) 135 (+0)
YOLOv5+CBAM 0.8841 0.8631 0.7255 8.0 0.9440 (+0.0236) 14.9 (−1.2) 118 (−17)

YOLOv5+SE 0.8658 0.8699 0.7320 8.1 0.9399 (+0.0195) 15.5 (−0.6) 127 (−8)
YOLOv5+Mosaic-9 0.8984 0.8223 0.8428 7.5 0.9366 (+0.0162) 16.4 (+0.3) 124 (−11)
YOLOv5+K-DAFS 0.8837 0.8037 0.8633 8.5 0.9108 (−0.0096) 16.8 (+0.7) 158 (+23)

Ours 0.8708 0.8471 0.8221 10.3 0.9636 (+0.0432) 16.5 (+0.4) 144 (+9)

The results showed the following:

1. After the addition of CBAM alone, the mAP of the model has been improved by
approximately 2.36%. However, compared with the YOLOv5 algorithm, the detection
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speed and recall have decreased to a certain extent, with a reduction of 17 frames/s
and 2.81%, respectively. This indicates that the CBAM module can increase the mAP
of the model, but it will slightly reduce the model detection speed and increase the
missed-recognition rate.

2. Compared with the second and fourth lines, it can be seen that the precision of the SE
attention mechanism is slightly lower than that of the CBAM attention mechanism,
by 0.41%, but the detection speed is faster than that of CBAM attention mechanism by
9 frames/s.

3. Compared with the first and fourth lines, it can be seen that, after improving the
Mosaic-9 data enhancement, the algorithm’s mAP has increased by 1.62%, while
the speed rate has decreased by 11 frames/s. In addition, this module has shown
significant improvements in both accuracy and recall, with gains of 4.35% and 8.68%,
respectively.

4. According to the fifth line, it can be seen that there is a slight decrease in mAP,
by approximately 0.96%, after adding the K-DAFS dynamic anchor box. However,
the obvious improvements in the detection speed and recall of the algorithm are
23 frames/s and 10.97%, respectively. This indicates that the K-DAFS module can
significantly increase the detection speed of the model while reducing the model’s
missed-recognition rate.

5. After integrating the CBAM attention mechanism, the Mosaic-9 data augmentation,
and the K-DAFS, the model’s detection speed was only slower than the K-DAFS model
but it had the highest mAP. Compared with the original YOLOv5, the mAP, detection
speed, and recall were improved by 4.32%, 9 frames/s, and 6.85%, respectively.

5. Conclusions

The impact of safety production on businesses and society is significant. However,
existing safety helmet detection algorithms have difficulty meeting the needs of complex
open scenarios. This paper proposes a safety helmet detection algorithm, DAAM-YOLOv5,
which combines a dynamic anchor box with an attention mechanism and demonstrates
superior performance in addressing significant target variations, target occlusions, and
video frame jitter. The algorithm improves the model’s accuracy when dealing with signifi-
cant variations in targets by adjusting the Mosaic data enhancement in the input layer of
YOLOv5. In addition, a new dynamic anchor box is added, and BFF is used to dynamically
adjust anchor box sizes to improve the model’s detection speed. By incorporating an
attention mechanism to adjust the weighting of the background and target recognition, as
well as the sensitivity of the algorithm to edge information, the issue of low recognition
accuracy in occluded scenarios is resolved. Finally, the algorithm improves the original
model structure by replacing GIoU with CIoU, addressing the problem of slow or failed
convergence when the prediction box contains the ground truth box.

The results of experimental analysis show that the DAAM-YOLOv5 algorithm has
improved mAP by 4.32% and detection speed by 9 FPS. In comparison to other object
detection algorithms, we achieved higher accuracy and speed. Therefore, the improved
algorithm is better suited for scenarios such as ports, smart construction sites, and danger
warning zone. However, the algorithm’s recognition performance on flooded road surfaces
is not significant at present. In the future, we will increase our research in this field to
improve the recognition rate in this scenario.
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Abbreviations
The following abbreviations are used in this manuscript:

YOLO You Only Look Once
BFF Bidirectional Feature Fusion
ROI Region of Interest
mAP Mean Average Precision
DAFS Dynamic Anchor Feature Selection
IoU Intersection of Union
CIoU Complete Intersection over Union
GIoU Generalized Intersection over Union
SAM Stereo Attention Module
CAM Class Activation Mapping
CBAM Convolutional Block Attention Module
SE Squeeze-and-Excitation
R-CNN Region based Convolutional Neural Network
R-FCN Region-based Fully Convolutional Network
SSD Single-shot MultiBox Detector
R-SSD Rainbow Single-shot MultiBox Detector
DSSD Deconvolutional Single-shot MultiBox Detector
FSSD Feature Fusion Single-shot MultiBox Detector
NMS Non-maximum Suppression
CSP1_X Cross Stage Partial_1
ARM Anchor Refinement Module
SGD Stochastic Gradient Descent
GFLOPs Giga-floating-point Operations per Second
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