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Abstract: Chemical-reaction optimization not only increases the yield of chemical processes but also
reduces impurities and improves the performance of the resulting products, contributing to important
innovations in various industries. This paper presents a novel barycentric kernel for chemical-reaction
optimization using Bayesian optimization (BO), a powerful machine-learning method designed to
optimize costly black-box functions. The barycentric kernel is specifically tailored as a positive
definite kernel for Gaussian-process surrogate models in BO, ensuring stability in logarithmic and dif-
ferential operations while effectively mapping concentration space for solving optimization problems.
We conducted comprehensive experiments comparing the proposed barycentric kernel with other
widely used kernels, such as the radial basis function (RBF) kernel, across six benchmark functions in
concentration space and three Hartmann functions in Euclidean space. The results demonstrated the
barycentric kernel’s stable convergence and superior performance in these optimization scenarios.
Furthermore, the paper highlights the importance of accurately parameterizing chemical concentra-
tions to prevent BO from searching for infeasible solutions. Initially designed for chemical reactions,
the versatile barycentric kernel shows promising potential for a wide range of optimization problems,
including those requiring a meaningful distance metric between mixtures.

Keywords: barycentric kernel; Bayesian optimization; chemical-reaction optimization; concentration
space

1. Introduction

Chemical-reaction optimization aims to maximize functional properties of chemical
reactions, such as yield [1,2]. Conducting chemical experiments in the lab can be time-
consuming and expensive, which limits the number of reaction conditions that can be
observed. As a result, the field of cheminformatics has sought computer-assisted methods
to accelerate the chemical-reaction optimization process [3]. The fundamental idea behind
computer-assisted chemical-reaction optimization is predicting the properties of unob-
served points. While various regression models have been proposed for chemical-reaction
optimization, selecting an appropriate model remains a challenge due to the unique charac-
teristics of this domain. One challenge is that the observed data available for the regression
model is limited due to its cost. Another challenge is that the reaction conditions space is
often high-dimensional and non-linear. These challenges make chemical-reaction optimiza-
tion problems hard to solve with the artificial neural network models outperforming in
other domains. Therefore, Bayesian optimization (BO) has emerged as a popular method
for chemical-reaction optimization [4–6]. BO is expected to find a global optimum in a
multi-dimensional space [7].

In our research, we introduce a barycentric kernel for BO. This kernel calculates co-
variances between points in concentration space and is based on the barycentric distance, a
more mathematically sophisticated metric in concentration space. Unlike other reaction
conditions, such as temperature or reactants, concentrations are continuous scalars and
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conjugated fractions of 1. The conjugated fraction implies that if a fraction in a mixture in-
creases, the other fractions must decrease accordingly. Thus, the concentration data should
carefully consider conjugated constraints between the chemicals in the same mixture [8,9].
The barycentric distance accounts for this conjugation, enabling the barycentric kernel to
perform better in concentration space. We conducted experiments on benchmark functions
and chemical-reaction datasets to compare the convergence of the barycentric kernel with
other popular kernels, such as the radial basis function (RBF) kernel. Our results indicate
that the barycentric kernel converges stably in experiment space with concentration data,
which makes this method promising for chemical-reaction optimization.

This paper presents the barycentric metric and generalizes it to n-dimensions. The
barycentric space is equivalent to the chemical concentration space. We investigated the
effects of dimensionalities on the barycentric kernel and compared our kernel in a cubic
space, which is not a concentration space.

State-of-the-art techniques in chemical-reaction optimization have employed various
approaches, such as genetic algorithms, particle swarm optimization, and deep-learning
models. However, these methods often struggle with limited data. Despite the limited
observed data, BO is iterative, allowing chemists to perform regression repeatedly, obtain
recommendations, and conduct experiments to observe the ground-truth value of given
points until satisfactory results are achieved.

2. Preliminary
2.1. Bayesian Optimization and Kernels

Bayesian optimization (BO) is a powerful optimization technique widely used in
various domains. It is particularly suited to problems that require an expensive evaluation
process. The core idea of BO is to construct a probabilistic model of the objective function
and utilize this model to guide the optimal search.

BO consists of an acquisition function and a surrogate model. Gaussian-process
regression (GP) and expected improvement functions (EI) are among the most common
configurations of BO. GP is a stochastic model that assumes a prior distribution for the
function and updates this distribution based on observed function evaluations [10]. The
prior distribution is used as a predictive variance to provide additional explanatory power
to the chemist during optimization. EI balances exploitation and exploration throughout
the optimization process [11].

GP has two essential components: a mean function and a kernel. It is reasonable
to set the mean function to constant when there is insufficient information. The kernel
defines and calculates the covariance between data points, and the covariance matrix of
the data forms a surrogate model for the objective function. The kernel should reflect the
characteristics of the space the GP wants to explore [12].

2.2. Concentration Space

Concentration space is a space in which coordinates represent the fractions of specific
materials in a mixture [13]. Consider a mixture M composed of i number of ingredients
with concentrations c = (c1, . . . , ci). Since each concentration is a fraction of the mixture,
concentrations are constrained such that 0 ≤ c ≤ 1 after normalization by the amount of
the mixture. Additionally, since each of c1,...,i is a fraction of the mixture, there is a second
constraint: ∑i ci = 1. Each vector x1,...,i can represent each ingredient, and the mixture can
be considered as a linear combination of these ingredients.

M =
i

∑
0

cixi = Xcᵀ, X =


x1
...

xi

 (1)
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2.3. Barycentric Coordinate System and Distance

The barycentric coordinate system is a mathematical representation of a point in a
simplex, which generalizes a triangle to higher dimensions. In this coordinate system, a
point in a simplex is represented as a set of weights that determine its position relative to
the vertices of the simplex. Each weight corresponds to a vertex of the simplex, and the
sum of the weights equals 1. The weights are unique for each point in the simplex [14].
These properties make the barycentric coordinate system a valuable tool for representing
points in high-dimensional spaces, such as the concentration space of chemical mixtures.

A space of fraction generated by the basis set of ingredients c = (c1, . . . , ci) forms a
simplex on Ri. For example, Figure 1 is a simplex in R3 with vertices (1, 0, 0), (0, 1, 0), and
(0, 0, 1). The i-dimensional barycentric coordinate b can be mapped to Ri−1 by the given
constraint [15].

(1, 0, 0)

(0, 1, 0) (0, 0, 1)

(0.3̇, 0.3̇, 0.3̇)

(0.5, 0.5, 0)

(0, 0.5, 0.5)

(0.5, 0, 0.5)

Figure 1. Example of a two-dimensional simplex in three-dimensional cartesian coordinate. The
points on the simplex are on the barycentric coordinate system.

3. Methodology
3.1. Barycentric Metrics

A mixture M is a simplex in the space Ri, which can be mapped to Ri−1. The simplex
represents the space of barycentric coordinates b = (b1, . . . , bi), where bi = 1− ∑j 6=i bj.
A barycentric metric can define the distance between two mixtures. Defining the metric
in a ternary coordinate system allows you to measure the distance between mixtures in
concentration space, subject to the constraints ∑i bi = 1 and 0 ≤ bi ≤ 1. For the barycentric
metric, consider the p = 2 metric, defined as follows.

b = (b1, . . . , bi)bary = ∑
i

bixi (2)

b′ = (b′1, . . . , b′i)bary = ∑
i

b′ixi (3)

‖xi − x1‖2 = M1i (4)

B = M−M·1T − 1T M1 (5)

‖b− b′‖ = ‖∑
i
(bi − b′i)xi‖ (6)

= ∑
i,j
(bi − b′i)(bj − b′j)xi · xj (7)

= −1
2 ∑

i,j

(
bi − b′i

)(
bj − b′j

)(
Mij −Mi1 −Mj1

)
(8)

= −1
2
〈b− b′, B(b− b′)〉 (9)
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This definition of the barycentric metric allows us to calculate the distance between
mixtures in concentration space. This metric provides a natural way to measure distance
in coordinate-constrained spaces, such as the concentration space of a chemical mixture.
In addition, the barycentric metric is not restricted to mixtures in concentration space.
Still, it can be applied to any b ∈ Ri, making it versatile for measuring distance in higher
dimensional spaces.

3.2. Barycentric Kernel

We developed a barycentric kernel for Bayesian optimization in the concentration
space of chemical mixtures. The barycentric kernel is designed to handle the unique
characteristics of the concentration space, considering the constraints on the coordinates.
The kernel function is the exponential of the negative norm of the distance between two
mixtures. The negative sign and the exponential function make the barycentric kernel a
covariance kernel, ensuring stability in logarithm and differential and guaranteeing the
positive definiteness of the kernel matrix.

The barycentric kernel provides a meaningful distance metric between mixtures,
allowing Bayesian optimization to search for the optimum over the concentration space.
The kernel function is an exponential function of the barycentric distance as (10).

Kb(b, b′) = e−‖b−b′‖ (10)

where ‖b− b′‖ is the barycentric distance between b and b′. This kernel can be effectively
used for concentration data to encode chemical-reaction optimization.

We designed the barycentric kernel as a definite positive kernel for Bayesian opti-
mization in the concentration space, equivalent to the chemical concentration space. We
demonstrate that the barycentric kernel can effectively map the concentration space and
solve chemical-reaction optimization problems. Using the barycentric kernel in Bayesian
optimization, we can more accurately model the relationships between points in the con-
centration space and improve the optimization process for chemical-reaction datasets. We
built a model to compare the barycentric kernel to other popular kernels, such as a radial
basis function (RBF) kernel. The barycentric kernel is expected to outperform other kernels
in capturing the unique properties of the concentration space.

3.3. Implementation

We implement the barycentric kernel functions in Python to ensure compatibility with
Scikit-learn, a popular machine-learning library. This implementation allows for seamless
integration with existing tools and methods provided by the library. The barycentric kernels
are designed to replace Gaussian process regression kernels for Bayesian optimization in
barycentric or concentration space. This allows us to leverage the unique properties of
barycentric kernels to better model and optimize chemical reactions in concentration space.

The implemented barycentric-kernel class takes the barycentric coordinates of two
points as input and returns the log-transformed covariance between the two points. This
design choice provides a meaningful distance metric between mixtures, resulting in a stable,
positive, static covariance kernel. In addition, the barycentric-kernel class is inherited from
Scikit-learn’s kernel class, ensuring compatibility with other components in the library.
This implementation makes it simple to use barycentric kernels as a drop-in replacement
for traditional kernels in Bayesian optimization, allowing users to take full advantage of
the benefits they offer for optimizing chemical reactions in concentration space.

The barycentric-kernel implementation has been made publicly available on GitHub,
allowing researchers and practitioners to access and utilize the code in their projects
efficiently. The repository, found at https://github.com/saankim/barycentric (accessed on
28 April 2023), includes detailed documentation and usage instructions.

https://github.com/saankim/barycentric
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4. Experiments
4.1. Experimental Setup

In our experimental study, we compared the performance of the Barycentric kernel
(our proposed kernel) with several other kernels, including radial basis, Matern and Laplace
(widely used kernels), Constant and White (baseline kernels), and DotProduct (a simple
kernel). This comparison aimed to comprehensively understand how the barycentric kernel
performs against various kernels in optimization problems.

We evaluated the kernels on six different benchmark functions in the concentration
space, where the barycentric kernel is specifically designed to excel. By comparing the
barycentric kernel’s performance to that of other widely used kernels on these benchmark
functions, we aimed to gain valuable insights into its practical utility.

The first three benchmark functions we tested were well-known Hartmann functions
with dimensions of 3, 4, and 6. These functions commonly assess optimization algorithms
and are generally convex with a few local minimums. The Hartmann functions are defined
within each dimension’s [0, 1] Euclidean coordinate space. To model the concentration
space, we mapped the n-1-dimensional simplex within the cubic space and used it as the
problem space for optimization. These functions also allowed us to examine the impact of
dimensionality on the kernels’ performance.

The remaining three benchmark functions were emulator functions based on pre-
trained artificial neural networks using chemical datasets. The EmulBOB dataset comprises
colors created by mixing different proportions of five colored dyes, resulting in a five-
dimensional space [16]. The EmulCN9 dataset involves colors created by mixing three
colored dyes (red, green, and blue) in varying amounts, leading to a three-dimensional
space [16]. Lastly, the PCE10 dataset consists of the degradation of polymer blends for
organic solar cells under light exposure with a four-dimensional space [17].

f (x) = −
4

∑
i=1

αi exp

(
−

6

∑
j=1

Aij
(
xj − Pij

)2
)

where α = (1.0, 1.2, 3.0, 3.2)T

A =


10 3 17 3.50 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



P = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381



(11)

In addition to the concentration space, we evaluated the Euclidean-space kernels using
the Hartmann functions. This allowed us to test the performance of the Barycentric kernel
under both simplex (concentration space) and cubic (Euclidean space) conditions, demon-
strating its effectiveness and versatility compared to other kernels specifically designed for
cubic spaces.

Our experiments tested seven kernels, including the Barycentric kernel, on six bench-
mark functions in the concentration space. We also experimented with the same seven
kernels in Euclidean space using three Hartmann functions. Each experimental condition
was repeated 40 times with different random seeds to ensure the consistency of the results.
The Bayesian optimizer observed 30 iterations before terminating each trial.
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4.2. Results

The values are normalized by minimum and maximum from their space. The normal-
ized value reflects is how close to the known minimum the optimum that the optimizer,
based on each kernel, found. One hundred means the optimizer observed the optimum
before 30 iterations.

In the first table, Table 1, we present the results of the Bayesian optimizer on concen-
tration space. The best result is marked in bold, and the second-best result is underlined.
It is evident from the table that the barycentric kernel consistently finds a competitive
optimum during the iterations. The White and Constant kernel does not infer information
through iterations, so they perform worst, as shown in Table 1. However, it is essential to
note that the emulation benchmark functions are relatively simple, necessitating further
investigation using another method, such as the survival test presented in Table 2. We also
found that the Matern kernel finds a good optimum. We also investigate this in Table 2.
The Laplace kernel shows great performance on the Hartmann functions. The barycentric
kernel is defeated on the Hartmann6D. This result is because the barycentric kernel is
sensitive to dimensionality.

Table 1. Normalized results of the Bayesian optimizer on the concentration space.

Hartmann Emulation
Kernels 3D(%) 4D(%) 6D(%) BOB(%) CN9(%) PCE10(%)

Barycentric 42.1 87.6 40.8 94.2 87.0 100.0
RadialBasis 41.6 75.8 25.4 94.1 86.9 100.0

Matern 44.1 78.1 43.3 95.0 87.0 100.0
Laplace 43.9 91.6 45.2 94.0 86.8 100.0

DotProduct 33.2 41.9 12.4 91.2 86.6 99.9
White 27.1 34.1 5.8 87.5 69.4 98.0

Constant 27.1 34.1 5.8 87.5 69.4 98.0
In each column, the most favorable value is indicated in bold text, while the second-best option is highlighted
with an underline. Each experiment was repeated 40 times with different random seeds to ensure consistency of
results. The experimental value for the following experimental condition is not included in the results because it
was not derived because of an error: (DotProduct kernel, CN9 emulator, random seed 38).

Table 2 shows the resulting p-values of the survival test of the Bayesian optimizer on
concentration space, specifically for the emulation benchmark functions. We conducted
a survival test by fitting the Kaplan–Meier survival curve. The survival test compares
the barycentric kernel with others from the perspective of the probability of finding the
optimum in more than 90% convergence (normalized y value). This additional analysis
provides information about the convergence speed (iteration count until finding 90% of the
optimum). The result shows that the barycentric kernel converges relatively faster than
other kernels, especially compared with the Matern kernel in EmulCN9 and EmulPCE10
and the Laplace kernel in EmulBOB, EmulCN9, and EmulPCE10. Thus, the Matern and
Laplace kernels are relatively better in Table 1 but cannot converge as quickly as the
barycentric kernel.

Table 2. p-Values of the survival test of Bayesian optimizer on the concentration space, emulation
benchmark functions.

Kernels EmulBOB EmulCN9 EmulPCE10

RadialBasis 0.133 0.192 0.050
Matern 0.210 <0.005 <0.005
Laplace <0.005 <0.005 <0.005

DotProduct <0.005 <0.005 <0.005
White <0.005 <0.005 <0.005

Constant <0.005 <0.005 <0.005
Each experiment was repeated 40 times with different random seeds to ensure consistency of results.
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In contrast to the previous two paragraphs, which focus on concentration space, the
third paragraph discusses the results of the Bayesian optimizer on Euclidean space. Table 3
presents the normalized result, similarly to Table 1. Table 3 shows that the barycentric
kernel can also find optimum in the Euclidean space. Since the barycentric kernel is based
on the mixture of the fraction of ingredients, the conjugated effect disappears when the
dimensionality of the search space increases. Thus, the barycentric kernel performs worse
in six or more dimensions in Euclidean space.

Table 3. Normalized results of the Bayesian optimizer on the Euclidean space.

Kernels Hartmann3D (%) Hartmann4D (%) Hartmann6D (%)

Barycentric 93.4 92.1 40.1
RadialBasis 82.5 86.2 26.4

Matern 86.9 85.2 56.6
Laplace 43.9 91.6 45.2

DotProduct 82.5 87.1 40.6
White 85.5 87.5 49.2

Constant 86.4 87.4 49.3
In each column, the most favorable value is indicated in bold text, while the second-best option is highlighted
with an underline. Each experiment was repeated 40 times with different random seeds to ensure consistency
of results.

These three tables thoroughly examine the barycentric kernel’s performance in various
contexts. By comparing its performance in both concentration and Euclidean spaces, we
can better understand the potential advantages and limitations of the barycentric kernel
when used in chemical-reaction optimization and other applications.

In addition, we created a heatmap visualization; Figure 2 is an example of the entire
history of optimization results. The figure shows the history of the optimizer performed on
the Hartman3D in cubic space. The values from each random seed are aggregated by their
average. The figure shows that the barycentric kernel converges faster than other kernels in
a small space, even if the space is not simplex (concentration space). Since this optimization
experiment set the goal of minimization, the color of each cell should be close to purple
during iterations.

Figure 2. This is a heatmap of 30 iterations performed on the Hartmann 3D function in concentra-
tion space.

5. Conclusions

In conclusion, our research focused on developing a new approach to optimizing prob-
lems in concentration space, the barycentric kernel, with specific application to chemical-
reaction optimization. Our kernel can be used efficiently in small spaces, including concen-
tration datasets. The barycentric kernel provides a meaningful distance metric between
mixtures, ensuring stability under algebraic and differential operations while ensuring the
positive definiteness of the kernel matrix. While the kernel was designed with chemical
reactions in mind, it is versatile enough to be applied to other scenarios involving fractional
composition, such as the softmax output of a classification neural network.
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Our experiments compared the barycentric kernel with several other popular ker-
nels and a baseline kernel for six benchmark functions in concentration space and three
Hartmann functions in Euclidean space. The results demonstrated the barycentric kernel’s
effectiveness and versatility in various optimization problems. We performed 30 iterations
for each experimental condition to ensure consistency of results, further solidifying the
practical utility of the barycentric kernel in both concentration and Euclidean space.

It is important to note that while the barycentric kernel was designed with chemical
reactions in mind, its potential applications are not limited to this domain. The kernel’s
ability to perform effectively in various fractional configurations, such as the softmax
output of a classification neural network, highlights its adaptability and usefulness in
a wide range of optimization problems. As a result, the barycentric kernel represents a
promising avenue for future research and development in optimization, particularly in
problems that require a meaningful distance metric between mixtures.
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