i:;l?é electronics

Review

Enhancing Smart-Contract Security through Machine Learning:
A Survey of Approaches and Techniques

Fan Jiang 123(9, Kailin Chao ?>3(, Jianmao Xiao

and Yuanlong Cao V%3

check for
updates

Citation: Jiang, F.; Chao, K; Xiao, J.;
Liu, Q.; Gu, K,; Wy, J.; Cao, Y.
Enhancing Smart-Contract Security
through Machine Learning: A Survey
of Approaches and Techniques.
Electronics 2023, 12, 2046.
https://doi.org/10.3390/
electronics12092046

Academic Editor: Mehdi Sookhak

Received: 30 March 2023
Revised: 13 April 2023

Accepted: 18 April 2023
Published: 28 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,2,3,% 12,3 12,3

, Qinghua Liu ?3, Keyang Gu , Junyi Wu

School of Software, Jiangxi Normal University, Nanchang 330022, China; jiangfan@jxnu.edu.cn (EJ.)
Jiangxi Provincial Engineering Research Center of Blockchain Data Security and Governance,
Nanchang 330022, China

Management Science and Engineering Center, Jiangxi Normal University, Nanchang 330022, China
* Correspondence: jm_xiao@jxnu.edu.cn

2

3

Abstract: As blockchain technology continues to advance, smart contracts, a core component, have
increasingly garnered widespread attention. Nevertheless, security concerns associated with smart
contracts have become more prominent. Although machine-learning techniques have demonstrated
potential in the field of smart-contract security detection, there is still a lack of comprehensive review
studies. To address this research gap, this paper innovatively presents a comprehensive investigation
of smart-contract vulnerability detection based on machine learning. First, we elucidate common
types of smart-contract vulnerabilities and the background of formalized vulnerability detection
tools. Subsequently, we conduct an in-depth study and analysis of machine-learning techniques.
Next, we collect, screen, and comparatively analyze existing machine-learning-based smart-contract
vulnerability detection tools. Finally, we summarize the findings and offer feasible insights into
this domain.

Keywords: machine learning; safety; smart contract; vulnerability detection; survey

1. Introduction

The introduction of blockchain technology as the foundation for Bitcoin by Satoshi
Nakamoto in 2008 [1] marked the beginning of a new era in decentralized data management
frameworks with the potential to revolutionize traditional industries [2]. Over the past
decade, blockchain technology has experienced rapid development not only experienced in
the financial sector but also in various other fields, such as supply chain management [3],
the Internet of Things (IoT) [4,5], transportation [6], retail [7], healthcare [8,9], gaming [10],
and communication [11,12], among others. The impact of blockchain technology had
progressively driven global economic growth by 2020, and it is projected to contribute
1.76 trillion dollars to the global economy by 2030 by increasing traceability and trust
levels [13].

As blockchain technology progresses and permeates various domains, considering it
merely a distributed ledger no longer captures its true essence. The tremendous potential
of blockchain technology across diverse sectors has garnered significant attention and
heightened expectations. Nonetheless, to realize these expectations, several challenges
must be addressed. First, a sole consensus mechanism faces difficulties in ensuring high
security and trustworthiness in a decentralized transaction verification network within a
distributed environment where trust is not absolute. Second, the scalability challenge of
blockchain technology has considerably hindered its integration and growth across various
industries and fields.

In this context, Ethereum, as a groundbreaking blockchain platform [14], provides
a viable solution to these challenges through the implementation of smart-contract tech-
nology. Smart contracts are self-executing, blockchain-based computer protocols that

Electronics 2023, 12, 2046. https://doi.org/10.3390/ electronics12092046

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12092046
https://doi.org/10.3390/electronics12092046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0803-7505
https://orcid.org/0000-0003-3830-7377
https://orcid.org/0000-0003-3741-8104
https://orcid.org/0000-0001-7912-2702
https://orcid.org/0000-0002-5332-2359
https://orcid.org/0000-0002-6557-6559
https://doi.org/10.3390/electronics12092046
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12092046?type=check_update&version=1

Electronics 2023, 12, 2046

2 of 28

facilitate highly secure and trustworthy transactions in a decentralized environment. Con-
sequently, smart contracts have been employed in a wide range of applications, including
IoT-based smart contracts [15], trusted database systems using smart contracts [16], and
smart-contract-based medical data consent models [9,17], among others. Given the sig-
nificant sums of money involved in various smart-contract applications, ensuring their
security is of paramount importance. As a result, numerous researchers and engineers have
devoted their efforts to examining and enhancing the security of smart contracts, aiming to
unlock their full potential across a diverse array of use cases.

An effective approach to smart-contract security detection is the application of machine-
learning techniques. Over the past few decades, the field of machine learning has made
significant progress and has become one of the key areas in modern computer science.
The primary goal of machine learning is to develop algorithms capable of learning au-
tonomously from data, enabling them to make predictions, classifications, or decisions
when faced with new data.

Existing machine-learning-based smart-contract security detection has achieved a
certain scale. However, in the current literature, comprehensive reviews on the application
of machine learning in smart-contract security detection are relatively rare. To address this
gap, we have decided to write a review paper, aiming to outline the current state, challenges,
and future development trends of machine-learning techniques in smart-contract security
detection, providing a comprehensive and systematic reference for both academics and
practitioners. Our review is guided by the following core research questions:

RQ1: What machine-learning methods are suitable for smart-contract security de-
tection, and what are the advantages and limitations of these methods in vulnerability
detection?

RQ2: What existing approaches apply machine learning to smart-contract security
detection, and how do these methods perform?

RQ3: Future research directions and challenges: How can machine-learning methods
be combined with other security analysis techniques to further improve the performance of
smart-contract vulnerability detection?

In Section 2, we will introduce related review studies. In Section 3, we will introduce
the research background of the article, including common types of smart-contract vulnera-
bilities and existing non-machine-learning tools for smart-contract vulnerability detection.
In Section 4 will delve into machine-learning techniques applicable to smart-contract secu-
rity detection. In Section 5 will provide an overview and analysis of related work that has
been practically applied in smart-contract security detection. In Section 6, we will explore
in-depth the three research questions posed by this study. Finally, in Section 7, we will
summarize the main findings and conclusions of this paper.

2. Related Work

In this chapter, we have conducted an in-depth investigation of recent review liter-
ature in the field of smart-contract vulnerability detection, as well as reviews related to
vulnerability detection based on machine learning. However, during this process, we
noticed a concerning phenomenon: while machine learning has made significant progress
in smart-contract vulnerability detection, there is still a noticeable gap in the review litera-
ture specifically addressing machine-learning-based smart-contract vulnerability detection.
Therefore, the aim of this paper is to fill this void, providing researchers and developers
with a more comprehensive and systematic theoretical framework and practical reference
in this domain.

Atzei et al. [18] conducted a research investigation on Ethereum smart-contract attacks.
Their study focused on various attack types and case studies, as well as ways to improve
the security of smart contracts. Their work centered on analyzing different attack strategies,
thus providing developers with practical advice and tools on how to defend against these
attacks. Chen et al. [19] carried out a literature review on Ethereum system security, with a
particular emphasis on vulnerabilities, attacks, and defenses. Overall, their research pro-

Electronics 2023, 12, 2046

30f28

vided an in-depth understanding of the security challenges faced by the Ethereum platform
and proposed several countermeasures. Their work thoroughly assessed the security of the
Ethereum ecosystem, suggested future research directions, and highlighted the importance
of defensive measures. Liu et al. [20] surveyed and summarized the security verification of
blockchain smart contracts. Their research work mainly focused on security verification
methods and techniques for smart contracts. Their work was devoted to exploring various
verification techniques rather than being limited to a single technology (such as formal
verification), thus offering a comprehensive overview of various smart-contract security
verification methods. Kabla et al. [21] conducted a comprehensive investigation on the ap-
plicability of Intrusion Detection Systems (IDS) for Ethereum attacks. This study examined
the effectiveness of various IDS technologies in addressing security issues and detecting
potential threats on the Ethereum blockchain. The investigation not only surveyed existing
IDS methods but also provided new insights into the challenges and opportunities for
enhancing intrusion-detection capabilities within the Ethereum ecosystem. Furthermore,
the authors developed a multi-dimensional classification framework to assess and compare
different IDS technologies, deepening the understanding of their strengths and weaknesses.
Rameder et al. [22] performed a literature review on the automated vulnerability analysis
of Ethereum smart contracts. This review mainly explored various automated vulnerability
analysis techniques for smart contracts on the Ethereum platform. The review focused
more on the application and potential of automated analysis methods in the smart-contract
security domain and proposed a multi-dimensional classification framework to analyze
and evaluate different vulnerability analysis techniques. Kushwaha et al. [23] conducted
a systematic survey of security vulnerabilities in Ethereum blockchain smart contracts.
The study delved into various security vulnerabilities plaguing Ethereum smart contracts
and discussed techniques for identifying and mitigating these issues. The novelty of
this work lies in the systematic approach taken to examine security vulnerabilities and
their impacts while also identifying gaps in the current state of research and proposing
future directions for enhancing the security of smart contracts on the Ethereum platform.
Krichen et al. [24] innovatively investigate the application of formal methods in the specifi-
cation and verification of smart contracts, aiming to reduce the risk of failures and minimize
costs. Concurrently, it proposes future research directions, such as lowering verification
costs, integrating various mathematical concepts, and enhancing the accessibility and
reusability of formal methods. These insights provide novel perspectives and guidance for
the smart-contract domain. Miller et al. [25] innovatively propose utilizing formal methods
for systematic auditing and verification of smart contracts to ensure their security. Simul-
taneously, they examine the platforms, high-profile vulnerabilities, and existing analysis
tools within the smart-contract ecosystem and identify the research challenges faced by
formal methods and program analysis applied to smart contracts.

Additionally, we conducted a survey of review articles on vulnerability-detection
models based on machine-learning techniques. Ahmed et al. [26] published a machine-
learning review on software vulnerability detection at the 8th International Conference on
Contemporary Information Technology and Mathematics (ICCITM) in 2022. This review
primarily explored the application and outcomes of machine-learning methods in the
field of software vulnerability detection. Unlike other reviews, this article delved into the
practical application and effectiveness of various machine-learning techniques in software
vulnerability detection and proposed a classification framework to illustrate the types of
technologies employed by each method. Pan et al. [27] carried out a literature review on
hardware vulnerability analysis using machine learning. This review mainly investigated
the application and results of machine-learning methods in the field of hardware vulnera-
bility analysis. They thoroughly examined the practical application and effectiveness of
various machine-learning techniques in hardware vulnerability analysis and proposed a
classification framework to describe the types of technologies adopted by each method.
Zeng et al. [28] conducted a survey review on software vulnerability analysis using deep-
learning techniques. This review primarily discussed the application and effectiveness of

Electronics 2023, 12, 2046

4 of 28

deep-learning methods in the field of software vulnerability analysis and discovery. This
research did not focus on any specific technology but rather discussed the target technology
as a dimension of the classification framework. Lin et al. [29] performed a literature review
on software vulnerability detection using deep learning techniques. This review provided
an in-depth discussion of the application and outcomes of deep neural network methods
in software vulnerability detection, offering insightful perspectives and future research
directions. Additionally, this review paid particular attention to the verification aspect,
considering not only security-related issues but also functional problems.

3. Background
3.1. Classification of Smart-Contract Vulnerabilities
3.1.1. Reentrancy Attack

Reentrancy attacks are a common vulnerability in smart contracts, where an attacker
repeatedly calls functions during contract interaction, allowing them to steal assets or
disrupt contract logic. To prevent such attacks, contract developers should follow the
“check-effects-interactions” principle, ensuring state updates are completed before interact-
ing with external contracts. Employing locking mechanisms can also help avoid reentrancy.
Careful code review, testing, and adherence to programming best practices can help protect
against reentrancy attacks and other security vulnerabilities.

Figure 1 illustrates a simplified bank smart contract with a reentrancy attack vulner-
ability and an attacker’s contract designed to exploit this vulnerability. In this banking
system, users can deposit funds into their bank accounts (using the deposit() function),
check their balances (using the getBalance() function), and withdraw funds (using the
withdraw() function).

pragma solidity 0.8.0; pragma solidity "0.8.8;
contract Bank { contract Attacker {
mapping(address => uint) balances; —————_ _ _ Bank target;
function deposit() public payable { @ address attacker;
balances[nsg.sender] += msg.value; € ————__ " ~==—— = — > constructor(address targetAddr) {
} - target = Bank(targetAddr);
function withdraw(uint amount) public { €———_ _ . attacker = msg.sender;
/’> require(amount <= balances[msg.sender], ”Insuffici\ehw{Lance”); \ }
/ (bool success,) = msg.sender.call{value: amount}(""); \ \\\ function attack() public payable {
l/ require(success, "Transfer failed"); @ 1 = ——target.deposit{value: msg.value}();
\\\\balances[msg.sender] -= amount; T ———— target.withdraw(msg.value);
oo T —— }
function getBalance() Dubl‘ic‘v?eW'r‘et’Dr‘T\r(-ui-rrt—)—-{-— @ _____ 1z fallback() external payable {
return balances[msg.sender]; if (address(target).balance >= msg.value) {
} target.withdraw(msg.value);
} +
}
I3

Figure 1. Reentrancy Attack.

However, there is a flaw within the withdraw() function that attackers can exploit for a
reentrancy attack. When a user calls the withdraw() function, the contract sends a specified
amount of Ether to the user’s address. If the user’s address is a contract address and that
contract implements a fallback() function, this fallback() function could trigger a new
withdraw() call, leading to a reentrancy attack. In the example, we outline the attacker’s
process: the attacker creates a contract called Attacker, passing the target Bank contract’s
address and their own address in the constructor. In the attack() function, the attacker first
deposits a certain amount of Ether into the target Bank contract’s account, then calls the
withdraw() function. In the fallback() function, if the attacker receives enough Ether, they
transfer the Ether to the target contract and call the withdraw() function again. This causes
the target contract to repeatedly execute the withdraw() function, resulting in multiple
withdrawal operations and theft of the contract’s assets. Therefore, by implementing
a malicious contract, the attacker exploits the reentrancy attack to bypass the security
mechanisms in the target contract and successfully steal its assets.

To prevent such attacks, developers should be cautious about reentrancy vulnerabil-
ities when calling functions from other contracts and carefully consider security during

Electronics 2023, 12, 2046

50f 28

contract design and implementation. Researchers and developers can use various static and
dynamic analysis tools to detect and fix vulnerabilities during the vulnerability discovery
and remediation process. Additionally, contract audits and security assessments are crucial
steps to ensure contract safety.

3.1.2. Integer Overflow and Underflow

Smart-contract integer overflow and underflow vulnerabilities are common issues
in smart contracts. An integer overflow or underflow occurs when an integer variable’s
value exceeds or falls below the maximum or minimum value that its data type can
represent. In smart contracts, integer overflow or underflow can lead to calculation errors
or unpredictable behavior, potentially compromising the contract’s security. To address
integer overflow and underflow problems, smart-contract developers typically use the
SafeMath library, which offers a set of secure mathematical operations to prevent overflow
and underflow.

In Figure 2, we present a simplified bank system smart contract and an example of
an attack contract targeting this smart contract. In the bank contract on the left, users can
deposit funds into the bank account (using the deposit() function), check their balance
(using the getBalance() function), and withdraw funds (using the withdraw() function).
However, the balances variable in the contract is of uint type, and if a user deposits more
than 2%° ether, it may cause an integer overflow in the balances variable, resulting in a
significantly reduced user balance. Conversely, if a user attempts to withdraw an amount
greater than balances[msg.sender], it may lead to integer underflow, turning the user’s
balance into a large value or even the maximum value in the contract. The attack contract
shown on the right exploits this situation to attack the bank system. During the attack,
the attacker first creates a contract called Attacker and passes the target contract Bank’s
address in the constructor. Then, in the attack() function, the attacker deposits 22°° ether
into the target contract Bank’s account and subsequently calls the withdraw() function
to withdraw 1 ether. Due to balances[msg.sender] becoming a large value, withdrawing
1 ether causes balances[msg.sender] to transform into a small value, leading to an integer
underflow vulnerability. The attacker uses the getBalance() function to check the balance
and stores the result in a public variable called overflow, allowing other users to view it.

pragma solidity 70.8.0; pragma solidity 70.8.0;
contract Bank { = ————___ contract Attacker {
mapping(address => uint) balances; ~—=—— @ Bank target;
function deposit() public payable { ‘~\ uint public overflow = 0
balances[msg.sender] += msg.value; <€—- @ —_ \\
} "‘*~\::;_~_‘ constructor(address targetAddr) {
function withdraw(uint amount) public {———— _ - — ——-> target = Bank(targetAddr);
require(amount <= balances[msg.sender], ”Insuffic\is?nt\halance \ }
(bool success,) = msg.sender.call{value: amount}(""); \ \\ function attack() public payable {
require(success, "Transfer failed"); @ \\~—Uint amount = type(uint).max;
balances[msg.sender] -= amount; u target.deposit{value: amount}();
} \‘~_> target.withdraw(1);
function getBalance() public view returns (uint) { overflow = target.getBalance();
return balances[msg.sender]; }
¥ }
}

Figure 2. Integer Overflow and Underflow.

To prevent such attacks, developers should be cautious when using integer variables
to avoid overflow or underflow, carefully considering security in contract design and im-
plementation. In detecting and fixing vulnerabilities, researchers and developers can utilize
various static and dynamic analysis tools to help identify and resolve issues. Additionally,
contract auditing and security assessments are crucial steps in ensuring contract safety.

3.1.3. Uninitialized Storage Pointer

Uninitialized Storage Pointers in smart contracts represent a class of easily overlooked
but potentially dangerous security vulnerabilities. These vulnerabilities typically occur

Electronics 2023, 12, 2046

6 of 28

when developers use storage pointers within smart contracts without initializing them, or
when initialization is incomplete. Since storage pointers directly point to the storage space
of a smart contract, attackers can exploit these pointers to access and modify data in the
storage area, leading to incorrect reading, writing, or alteration of contract data.

In Figure 3, we present an example of a Voting System Smart Contract with an unini-
tialized storage pointer vulnerability and an attack contract targeting it. In the voting
system, users can call the vote() function to cast their votes and the getVotes() function to
query the voting results. However, the votes variable in the contract is a mapping type;
if the attacker does not initialize it before calling the getVotes() function, an uninitialized
storage pointer vulnerability may arise. Attackers can exploit this vulnerability to access
and modify data in the storage area, thereby tampering with the voting results. In the
attack contract shown on the right, the attacker creates a contract named Attacker and
passes the address of the target Voting contract in the constructor. In the attack() function,
the attacker first calls the getVotes() function, passing their own address as a parameter.
As the attacker’s address has not been voted for, the value of msg.sender is 0, leading to the
uninitialized storage pointer vulnerability. Next, the attacker calls the vote() function to cast
their vote, causing the value of votes msg.sender to be set to 1, successfully manipulating
the voting results.

pragma solidity 70.8.0; pragma solidity 70.8.0;
contract Attacker {
contract Voting { Voting target;
mapping(address => uint) votes; constructor(address targetAddr) {
function vote() public { @ O R | - -> target = Voting(targetAddr);
require(votes[msg.sender] == 0, "Already voted");” 2t
votes[msg.sender] = 1; .o oocoome-===="""" ®\ function attack() public {
} RN target.getVotes(address(this));
function getVotes(address voter) public view returns (uint) { target.vote();
return votes[voter]; +
} fallback() external payable {
} revert();
}
+

Figure 3. Uninitialized Storage Pointer.

To prevent such attacks, developers should ensure proper initialization of storage
pointers and carefully consider security during the design and implementation of smart
contracts. In detecting and fixing vulnerabilities, researchers and developers can employ
various static and dynamic analysis tools to help identify and remediate issues. Addi-
tionally, auditing and security evaluations of contracts are vital steps in ensuring contract
safety.

3.1.4. Access Control Vulnerability

Access Control Vulnerabilities refer to situations where smart contracts fail to correctly
implement permission control, allowing attackers to carry out unauthorized operations.
In general, a smart contract should verify a user’s identity before allowing certain actions.
However, if the contract fails to properly implement authentication, attackers can bypass
these measures by impersonating authorized users or, through other means, executing
unauthorized operations. Such vulnerabilities can lead to severe consequences, such
as asset theft, contract tampering, or contract shutdown. Implementing proper access
control in smart contracts is critical. Typically, functions within a contract should be
limited to the contract owner or specified users. To enforce access control, contracts often
use the require() statement in Solidity to check the caller’s permissions. When checking
permissions, contracts should adhere to the principle of least privilege, granting callers the
minimum necessary permissions to execute an operation.

In Figure 4, we present an example of a smart contract with an access control vul-
nerability, along with an attacker’s contract that exploits the vulnerability and the attack
sequence. In this example, only the contract creator (owner) can execute the doSomething()

Electronics 2023, 12, 2046

7 of 28

function, and others are not permitted. The contract sets the creator as the owner of its
constructor. The doSomething() function uses the require() statement to check if the caller
is the contract creator, and if not, the function execution fails and returns an error message.
However, if someone obtains the private key of the contract creator, they can impersonate
the creator to carry out an authorized user elevation attack and execute the doSomething()
function. Therefore, even if the contract has implemented authentication, attackers can still
bypass it if the private key is leaked or if other vulnerabilities are present.

pragma solidity 70.8.0; pragma solidity 70.8.0;
contract MyContract { contract Attacker {
address owner; MyContract target;
mapping(address => bool) authorized; €-----oo______ address attacker;
constructor() { B @ - constructor(address targetAddr) {
owner = msg.sender; T~ < target = MyContract(targetAddr);
} A attacker = msg.sender;
function doSomething() public { <€====-=---______ N }
require(msg.sender == owner || authorized[msg.sent}gﬂT*”.N‘ot authorized")| \\ function attack() public {
} ‘_ \\‘~—target.grantAccess(attacker);
function grantAccess(address user) public { h @ b target.doSomething();
require(msg.sender == owner, "Only owner can grant access"); }
authorized[user] = true; }

¥

Figure 4. Access Control Vulnerability.

Hence, implementing proper access control in smart contracts is of utmost impor-
tance. Researchers should focus on concurrency control, role and permission design, and
implementation, including aspects such as authentication and access control, to ensure the
security of smart contracts.

3.1.5. Front-End Runtime Error Vulnerability

Front-end runtime error vulnerabilities often occur in the parts of smart contracts
that interact with user interfaces. As smart contracts run within front-end applications,
various errors may arise, including logic errors, input validation errors, and exceptional
cases. These errors can lead to smart-contract execution failures or unpredictable behavior,
ultimately compromising the contract’s security.

Figure 5 is a voting system example; we create a voting system smart contract called
“Voting,” where users can call the vote() function to vote and the getVotes() function to
query the voting results. However, the vote() function in this contract has a logic error: if a
user votes multiple times, an exception is triggered, causing execution to fail. This may lead
to the contract not executing correctly or exhibiting unpredictable behavior. Consequently,
in the attack contract, the attacker exploits this function vulnerability by creating a contract
called “Attacker” and passing the target contract Voting’s address in the constructor. In
the attack() function, the attacker calls the vote() function twice, causing the contract’s
execution to fail and potentially leading to unpredictable behavior.

pragma solidity ~0.8.0; pragma solidity #8.8.0;
contract Voting { - contract Attacker {
mapping(address => uint) votes; T @ . Voting target;
function vote() public { AN constructor(address targetaddr) {
require(votes[msg.sender] == 8, "Already voted"); <:-::_“'-=---__.> target = Voting(targetAddr);
votes[msg.sender] = 1; \| }
} A function attack() public {
function getVotes(address voter) public view returns (uint) { ®“- target.vote();
return votes[voter]; target.vote();
} ¥
i fallback() external payable {
revert();

}-

Figure 5. Front-end Runtime Error Vulnerability.

To prevent such attacks, developers should carefully consider the security of smart-
contract front-end applications, including input validation, exception handling, and error

Electronics 2023, 12, 2046

8 of 28

handling. When designing and implementing contracts, developers should fully consider
potential error scenarios and adopt appropriate security measures to ensure the contract’s
correctness and safety. Additionally, researchers and developers can use various static and
dynamic analysis tools to detect and fix front-end runtime errors, helping to enhance the
security of the contracts.

3.1.6. Time Dependency

Time dependency attacks are a type of assault targeting smart contracts by exploiting
time-related operations within the contract and the inherent characteristics of blockchain.
In a blockchain, timestamps usually depend on the block generation time. However,
mining nodes possess a certain degree of timestamp manipulation capability. Attackers
may manipulate block timestamps to influence time-dependent smart-contract logic, such
as timers, auction end times, or voting deadlines. This can result in contract behavior
failure or outcomes that deviate from expectations, causing losses to contract participants.

In Figure 6, we name a deposit and withdrawal smart contract “Bank.” Users can
deposit funds by calling the deposit() function and withdraw funds using the withdraw()
function. The getBalance() function can be utilized to query user balances. However,
the contract is vulnerable to time dependency attacks. If an attacker calls the deposit()
function before a user invokes the withdraw() function, they can disrupt the target contract’s
execution order and extract the deposit before the user’s withdrawal. In the corresponding
attack contract, the attacker creates a contract called “Attacker” and passes the target
contract Bank’s address in the constructor. Within the attack() function, the attacker first
calls the deposit()function to deposit funds. Then, the attacker calls the withdraw()function
to extract 1 ether of funds. Since the deposit has been committed and included in a new
block but not yet added to the blockchain, the attacker successfully extracts the deposit
before the withdrawal, causing losses to the deposit and withdrawal system users.

pragma solidity 70.8.0; pragma solidity "0.8.0;
contract Bank { =====-----e-eeo______ contract Attacker {
mapping(address => uint) balances; @ TTTTesss---------%-> Bank target;
function deposit() public payable { constructor(address targetAddr) {
balances[msg.sender] += msg.value; <----_____ target = Bank(targetAddr);
})) }
function withdraw(uint amount) public { €--____ .. function attack() public payable {
require(balances[msq.sender] >= amount, "Insuf??c‘ipnt\balanEe");- __________ target.deposit{value: msg.value}();
balances[msg.sender] -= amount; \\ target.withdraw(1 ether);
payable(msg.sender).transfer(amount); }
} @ - fallback() external payable {
function getBalance() public view returns (uint) { IR, if (address(target).balance > 0) {
return balances[msg.sender]; target.withdraw(1 ether);
} +

Figure 6. Front-end Runtime Error Vulnerability.

To prevent such attacks, developers should carefully consider the contract’s time
dependencies and adopt appropriate security measures during design and implementation.
For instance, contracts can perform necessary state checks and input validation before
transaction execution to prevent unnecessary interference or attacks. Moreover, users
should be cautious about protecting their funds and information security when using
contracts.

In summary, time-dependency attacks can pose a significant risk to smart contracts that
rely on time-based logic. Developers need to be vigilant in addressing these vulnerabilities
and implementing robust security measures when designing and building smart contracts.
By taking the necessary precautions, both developers and users can help ensure the safety
and integrity of smart contracts on the blockchain.

Electronics 2023, 12, 2046

9 of 28

3.1.7. Other Vulnerabilities

Building upon the previously discussed smart-contract vulnerabilities, there are other
common vulnerability types in practice. Here are several representative smart-contract
vulnerabilities:

Delegatecall Vulnerability: Delegatecall operation serves as a mechanism for cross-
contract invocation in smart contracts; however, inappropriate usage may lead to security
vulnerabilities. Attackers, by crafting well-designed parameters for invocation, exploit the
execution context of the target contract to perform malicious actions, resulting in asset theft
or contract logic disruption.

Randomness Challenge: Due to the deterministic nature of blockchain, generating
reliable random numbers within smart contracts poses a significant challenge. Attackers
may predict or manipulate the random number generation process, thereby affecting the
contract execution outcome and leading to asset loss or an unfair competitive environment.

Short Address Attack: A short address attack occurs when an attacker leverages the
padding with zeros characteristic during data transmission, providing incomplete address
information to mislead the contract. Consequently, the attacker bypasses the validation
mechanism and incorrectly transfers assets to an address under their control.

Gas Limit and Optimization Issues: The execution of smart contracts requires the
consumption of Gas, with the Gas Limit serving as the budget ceiling for contract execu-
tion. When handling complex logic without optimizing the contract code, Gas resources
may be depleted, preventing the contract from functioning correctly. Moreover, attackers
can construct high Gas-consuming transactions to perform a denial of service, thereby
compromising contract availability.

The aforementioned list only covers some of the potential vulnerability types in smart
contracts. As blockchain technology evolves, new vulnerabilities may emerge. Therefore,
maintaining a focus on smart-contract security research and best practices is crucial for
ensuring contract safety.

3.2. Development of Smart-Contract Security Detection

With the rapid development and widespread application of blockchain technology,
smart contracts, as a core component, play a crucial role in implementing essential func-
tions. However, the security issues of smart contracts urgently need to be addressed,
as vulnerabilities may lead to severe economic losses and a crisis of trust. Against this
backdrop, smart-contract security detection has gradually become a critical area of research
and practice. This section will review the development history of smart-contract security
detection, from the initial methods and tools to the emerging innovative technologies,
revealing their evolution trends and future challenges.

In 2016, Luu et al. [30] were the first to introduce the smart-contract vulnerability
detection tool Oyente, a symbolic execution-based tool designed specifically to discover
potential security vulnerabilities. Oyente can detect common vulnerabilities in smart
contracts, such as reentrancy attacks, transaction order dependencies, and timestamp
dependencies. This pioneering work laid the foundation for research in the Ethereum
smart-contract security domain and had a profound impact on subsequent related studies.

Two years later, Tikhomirov et al. [31] proposed a static analysis-based smart-contract
vulnerability detection tool called SmartCheck. This tool uses ANTLR (a powerful parser
generator for building language tools) and custom Solidity syntax to generate XML parse
trees as an intermediate representation. Then, vulnerability patterns are identified by
running XPath queries on the Intermediate Representation (IR). That same year, numer-
ous other research achievements made significant progress in the field of smart-contract
security. Breidenbach et al. [32] introduced Securify, a symbolic execution-based security
analysis tool aimed at assessing the safety of Ethereum smart contracts. Securify employed
technologies such as Program Query Language (PQL) and Domain Specific Language
(DSL) to achieve automated analysis of smart contracts. Additionally, the tool utilized
dependency graph analysis, compliance checks, and violation pattern recognition meth-

Electronics 2023, 12, 2046

10 of 28

ods to identify potential security vulnerabilities within smart contracts. Brent et al. [33]
presented an Ethereum smart-contract security analysis framework called Vandal. Vandal
transformed EVM bytecode into semantic logic relations and used the Soufflé language for
declarative security analysis. The paper also introduced a new decompilation technique for
incremental control flow reconstruction. Kalra et al. [34] proposed the ZEUS framework,
which combined abstract interpretation and symbolic model-checking techniques to verify
the correctness and fairness of smart contracts. By developing a Solidity-to-LLVM bytecode
converter and using LLVM pass separation for transformation and verification checks, the
contract security verification achieved low false-positive rates and high analysis efficiency.
In this year, besides the previously mentioned static detection methods, many dynamic
detection algorithms emerged, such as fuzz testing techniques. These techniques generated
random input data and detected potential vulnerabilities during program execution, thus
supplementing the inadequacies of static analysis methods in smart-contract security vul-
nerability detection. Jiang et al. [35] introduced ContractFuzzer, a fuzz-testing framework
specifically designed for detecting security vulnerabilities in Ethereum smart contracts.
The paper provided a detailed description of ContractFuzzer’s design, including input
generation and test oracle analysis strategies, and demonstrated its effectiveness in the
high-precision detection of seven types of Ethereum smart-contract vulnerabilities through
experimental research.

One year later, Feist et al. [36] introduced a static analysis framework called Slither,
designed to provide comprehensive information about Ethereum smart contracts. This
framework achieves its goal by converting Solidity smart contracts into a dedicated inter-
mediate representation called SlithIR. Employing a Static Single Assignment (SSA) form
and a simplified instruction set, SlithIR streamlines the analysis process while preserving
semantic information that might be lost during the conversion of Solidity to bytecode.
Slither utilizes common program analysis techniques such as data flow analysis and taint
tracking to uncover potential vulnerabilities and opportunities for code optimization.
Chang et al. [37] proposed a method for automatically identifying critical paths in smart
contracts and ranking them by importance called sCompile. This method uses symbolic
execution to explore possible execution paths in smart contracts and identify those involv-
ing monetary transactions. By identifying critical paths through symbolic execution and
ranking them by importance, paths that might violate safety or correctness are prioritized
for analysis. In that year, the first machine-learning-based smart-contract vulnerability
detection model, SmartEmbed [38], emerged. This tool consists of two phases: a model
training phase and a prediction phase. The training phase comprises four main steps:
tokenization, syntax parsing, code embedding, and similarity computation. Tokenization
breaks down code into individual tokens; syntax parsing analyzes the code structure to
identify syntactic components; code embedding maps each token and syntactic element
to a high-dimensional vector space; and similarity computation compares the vectors of
different code snippets to determine their similarity. In the prediction phase, SmartEmbed
detects clones by identifying similar smart contracts based on embeddings and can also
detect vulnerabilities by comparing contracts from the existing Ethereum blockchain or
any contract provided by a developer to a vulnerability database. This tool can efficiently
verify whether a given smart contract contains known vulnerabilities without the need to
manually define vulnerability patterns.

Following this, the number of smart-contract vulnerability detection tools increased
rapidly. For example, Huang et al. [39] introduced a vulnerability detection tool that
combined graph embedding with bytecode. They normalized data and instructions, used
simulated bytecode execution to track data flow and control flow, enforced contract slicing,
and designed an unsupervised graph embedding algorithm to encode code graphs as
comparable vectors, identifying potentially vulnerable smart contracts. Chen et al. [40]
proposed DefectChecker, a method, and tool based on symbolic execution for detecting
eight types of contract defects that could lead to undesirable behavior in Ethereum smart
contracts, and validated its performance on open-source datasets. Chen et al. [41] auto-

Electronics 2023, 12, 2046

11 0f 28

matically recovered function signatures by utilizing the way EVM processes functions,
identified parameter types using Type-Aware Symbolic Execution (TASE), and developed a
tool called SigRec to recover function signatures from contract bytecode. Hu et al. [42] in-
troduced a static defect detection method based on the Solidity language knowledge graph,
called SoliDetector, which constructed an ontology layer and an instance layer, introduced
defect patterns, designed inference rules, and used SPARQL queries to locate defects.

In recent years, machine-learning-based smart-contract vulnerability detection meth-
ods have attracted widespread attention and research. These methods take full advantage
of machine-learning techniques, offering more efficient and accurate solutions for smart-
contract security analysis. However, as Chapter 5 of this paper will specifically explore
machine-learning-based smart-contract vulnerability detection techniques in-depth, further
discussion will not be provided in this background section. In subsequent chapters, we
will elaborate on the specific implementation of these methods and their application in the
security analysis of smart contracts.

4. Machine-Learning Techniques

Machine learning is committed to enabling computers to accumulate new experience
and knowledge by mining potential patterns in data, thereby improving their intelligence
and enabling them to make decisions like humans. The application of machine-learning
algorithms has become increasingly crucial in the field of smart-contract vulnerability
detection. As various industries experience sustained growth in data demand and an
escalating need for efficient data processing and analysis, numerous tailored machine-
learning algorithms have emerged. These algorithms primarily rely on mathematical and
statistical approaches to address optimization problems.

4.1. The Development of Machine Learning

The development of machine learning is shown in Figure 7. In 1943, McCulloch et al. [43]
introduced a mathematical model that depicted the fundamental structure of artificial
neural networks. This research laid the groundwork for the development of the neural
network field and had a profound impact on later machine-learning techniques. In 1950,
Turing proposed the “Turing Test” [44], marking the beginning of artificial intelligence
as an important research area. In 1957, Rosenblatt et al. [45] introduced the perceptron,
which initiated the study of computer neural networks. Hubel et al. [46] discovered a
neural network structure that provided deep insights into understanding biological visual
systems, significantly influencing later computer vision and neural network models.

1943~1960 1970~1980 1990~2016 2016~2023
1943 Foundation of 1980: First ML Interna- 1990s: Shallow Machine 2017: Transformer
Neural Networks tional Conference Learning Models
1950: Turing Test 1986: Backpropagation 2006: Emergence of Deep 2018: BERT
Introduced Algorithm Developed Learning :
1957: Birth of the 1989: Convolutional FZ’OIZI: Networks Gain 2018: GPT
Perceptron Neural Networks opularity
. -\ 2014: Introduction of

1962: Hubel-Wiesel GANs 2019: GPT2
Biological Vision Model
1969: Publication of 2015: Deep Reinforcement 2020: GPT3
"Perceptron” Learning Advances

2023: GPT4

Figure 7. A timeline of the evolution of machine learning.

The first International Conference on Machine Learning in 1980 signified the global
rise of the field. In 1986, Rumelhartd et al. [47] introduced a method to train multilayer
neural networks using the backpropagation algorithm, resulting in a major breakthrough

Electronics 2023, 12, 2046

12 of 28

in the neural network research field. The introduction of convolutional neural networks
(CNN) in 1989 further propelled the field’s development. In the 1990s, shallow machine-
learning models such as logistic regression and support vector machines emerged. In 2006,
the advent of deep learning models [48] revolutionized the machine-learning field. Deep
learning models, by extracting high-level features from data through multilayer neural
networks, significantly enhanced data representation capabilities and model accuracy.
With the widespread application of deep learning techniques in computer vision, natural
language processing, and other fields, it became a crucial driving force for the development
of artificial intelligence. The 2012 Image Net competition breakthrough pushed deep
learning to new heights.

In 2012, Graves et al. [49] first proposed the LSTM model, which addressed the
vanishing and exploding gradient problems in recurrent neural networks (RNN) when
processing long sequences, profoundly impacting sequence prediction and natural language
processing fields. In 2014, Goodfellow et al. [50] introduced the concept of GANs, which
included two competing neural networks: a generator network and a discriminator network.
This framework brought innovation to generative model research. In 2015, Mnih et al. [51]
proposed an algorithm called Deep Q-Network (DQN), which combined convolutional
neural networks (CNN) with the Q-learning algorithm to process raw pixel inputs and
action-value functions. This approach demonstrated the immense potential of combining
deep learning with reinforcement learning for the first time.

In 2017, Vaswani et al. [52] introduced a novel neural network architecture based on
the self-attention mechanism: Transformer. This had a profound impact on the Natural
Language Processing (NLP) field. In 2018, the release of the BERT model [53] brought
revolutionary changes to the natural language processing field. In the same year, OpenAl
released GPT-1 and subsequently launched GPT-2 in 2019, GPT-3 in 2020, and GPT-4 in
2023, propelling natural language processing technology to unprecedented heights.

4.2. Machine-Learning Algorithms

We divide machine-learning techniques into four categories: Supervised Learning,
Semi-Supervised Learning, Unsupervised Learning, and Reinforcement Learning. The
general overview is shown in Figure 8. In what follows, we will discuss these four categories
and their related methods in detail.

Supervised learning Semi-supervised learning Unsupervised learning Reinforcement learning
1958: Logistic Regression 1995: Self-Training 1933: PCA 1989: Q-Learning
1967: KNN 2005: Tri-Training 1957: Maximum Entropy 1992: REINFORCE
ngi Ex: 2018: BERT 1963: K-means 2006: MCTS
1997: LSTM 2018: GPT 1980s: Autoencoders 2013: Deep Q-Networks
2001: R 1996: DBSCAN 2016: GAIL
: Random Forest i
2009: GNN 2000: Spectral Clustering
2016: GCN 2014: GAN

Figure 8. Classification overview of machine-learning methods.

4.2.1. Supervised Learning

In the domain of smart-contract security analysis, supervised learning approaches
have achieved significant success and have been extensively employed in practical scenar-
ios. This can be primarily attributed to the powerful capabilities of supervised learning
algorithms in pattern recognition and knowledge representation, as well as their effective
utilization of large volumes of labeled data. By training models to identify potential secu-
rity vulnerabilities, supervised learning offers robust support for the security auditing of
smart contracts.

In the following sections, we will provide a comprehensive understanding and inspi-
ration for readers by elaborating on some representative supervised learning approaches
employed in smart-contract security analysis.

Electronics 2023, 12, 2046

13 of 28

Linear regression: This algorithm is a linear method used for modeling the relation-
ship between a dependent variable and one or more independent variables, typically
employed for predicting numerical outcomes. The fundamental equation is y = kx + b,
where k represents the slope and b denotes the intercept. Linear regression offers simplicity,
interpretability, and computational efficiency [54], and prediction problems constitute a
classic application scenario of the linear regression algorithm [55].

Logistic regression: This algorithm is a linear method introduced by David et al. [56]
in 1958 for modeling discrete target variables. The basic form of the model is y =
sigmoid(Bo + B1X1 + - - - + BrXk), where the sigmoid function is defined as sigmoid(x) =
Trexp(—x)’ making logistic regression an effective method for binary classification tasks.
Logistic regression provides ease of interpretability and can be easily extended to handle
multi-class classification problems, currently being extensively applied in areas such as
credit assessment and tumor diagnosis [57].

Support Vector Machines: This algorithm constitute a set of classical supervised
learning methods, initially proposed by Corinna et al. [58], aimed at identifying the
optimal hyperplane that maximizes the margin between distinct classes. SVM is formal-
ized as a convex optimization problem, which can be expressed as min||w||? subject to
yi(wTx; +b) > 1. These techniques are highly effective for classification and regression
tasks in high-dimensional spaces and exhibit strong robustness against overfitting; thus,
they are frequently applied in gene classification within the field of bioinformatics [59].

Random Forest: This algorithm is an ensemble learning method introduced by
Breiman et al. [60] in 2001. It improves prediction accuracy by constructing multiple
decision trees and combining their predictive outcomes using voting or averaging strate-
gies. This approach has achieved success in numerous application domains, particularly
being widely employed in classification and regression tasks [61].

K-Nearest Neighbors: This algorithm is an instance-based learning method proposed
by Cover and Hart in 1967 [62]. It operates by computing the distances between a test
data point and known data points using distance metrics, such as the Euclidean distance,
identifying the nearest K neighbors, and classifying the test point based on the labels of these
neighbors. This method holds classical significance in the field of pattern recognition [63].

Convolutional Neural Networks: This algorithm is a deep learning architecture
specifically designed for processing grid-like data, such as images, introduced by Le-
Cun et al. in 1989 [64]. CNNs employ convolutional layers to learn local features, pooling
layers to reduce spatial dimensions, and fully connected layers for classification or regres-
sion [65]. The convolution operation is defined as (f * g)(t) = [f(7)g(t — T)d7, enabling
the network to effectively capture local patterns and hierarchical features. A classic ap-
plication of CNNSs is LeNet-5, which achieved breakthrough results in handwritten digit
recognition tasks [66].

Graph Neural Networks: This algorithm is a deep learning method for processing
graph data, proposed by Scarselli et al. in 2009 [67]. They learn node representations by
performing information passing on nodes and edges. The core idea of GNNSs is to multiply
the adjacency matrix A of graph-structured data with the node feature matrix X, as in
A x X. This approach finds broad applications in areas such as social network analysis,
recommendation systems, and knowledge graphs [68].

Graph Convolutional Networks: This algorithm was introduced by Kipf et al. in
2016 [69] as a method of extending convolutional operations to graph-structured data.
GCNs perform graph convolution operations using the adjacency matrix A and the node
feature matrix X, as in Z = ReLU(Ap,; * X * W), where Ap,; is the normalized adjacency
matrix, X represents the node feature matrix, W is the weight matrix, and ReLU is the acti-
vation function. This method holds classical significance in tasks such as node classification,
graph embedding, and link prediction [70].

Recurrent Neural Networks: This algorithm is a neural network method for pro-
cessing sequence data, proposed by Rumelhart et al. in 1986 [71], capable of capturing
temporal dependencies. The core idea of RNNs is to introduce recurrent connections in

Electronics 2023, 12, 2046

14 of 28

the network’s hidden layer, allowing information to be passed between time steps, as in
hy = f(Wxx; + U xh,_q)), where h; represents the hidden state at time ¢, x; represents the
input at time f, W and U are weight matrices, and f is the activation function. RNNs find
widespread applications in fields such as natural language processing, speech recognition,
and time series prediction [72].

Long Short-Term Memory: This algorithm is a special type of Recurrent Neural
Network (RNN) introduced by Hochreiter and Schmidhuber [73] in 1997 to address the
vanishing gradient problem in long sequences. LSTMs control the storage and flow of
information in cell states by introducing forget, input, and output gates, as in f = o(Wy *
[h(4—1), xt] + bs). LSTMs are widely applied in tasks such as natural language processing,
speech recognition, and time series prediction [74].

Gated Recurrent Units: This algorithm was proposed by Cho et al. in 2014 [75]. GRUs
are a variant of LSTMs that reduce computational complexity by decreasing the number of
gates while maintaining similar performance. GRUs control the storage and flow of informa-
tion in cell states by introducing update and reset gates, as in z; = /(W * [h(;_1), x¢] + bz).
GRUs exhibit good performance in tasks such as natural language processing, speech
recognition, and time series prediction. Compared to Long Short-Term Memory (LSTM)
networks, GRUs have fewer gates, thus reducing computational requirements while main-
taining similar performance levels in many applications.

4.2.2. Semi-Supervised Learning

Although supervised learning methods have achieved significant results in smart-
contract security detection, semi-supervised learning methods have been relatively less
explored in this field. Semi-supervised learning methods combine labeled and unlabeled
data during the training process, aiming to overcome the dependency on large amounts of
labeled data in supervised learning. However, the application of semi-supervised learn-
ing methods in smart-contract security detection is limited by several factors. First, the
complexity and diversity of smart-contract vulnerabilities may lead to insufficient gener-
alization capabilities in semi-supervised learning methods. Second, the data distribution
in this field may exhibit significant imbalances, which may negatively impact the perfor-
mance of semi-supervised learning algorithms. We believe that although the application of
semi-supervised learning methods in smart-contract security detection is relatively limited,
they have potential advantages in dealing with data scarcity and reducing annotation
costs. Therefore, in the future, semi-supervised learning methods may still play a role in
smart-contract vulnerability detection, providing new solutions for security audits.

Self-training: This algorithm was first introduced by Yarowsky et al. [76]. Self-
training methods initially train a base model on a small labeled dataset, then use the model
to predict labels for unlabeled data. The main application areas of self-training methods
include image classification and natural language processing tasks [77].

Tri-training: This algorithm proposed by Zhou et al. in 2005 [78], trains three models
on a labeled dataset and uses each model to label unlabeled data. If two models agree
on the label for a data point, the label is added to the labeled dataset, and the third
model is retrained on the extended dataset. This process is repeated, improving model
performance. Classic application areas of tri-training include text classification and named
entity recognition [79].

BERT: Bidirectional Encoder Representations from Transformers, this algorithm was
introduced by Devlin et al. in 2018 [80]. It is a pre-trained natural language process-
ing model based on the Transformer architecture that undergoes pre-training on a large
amount of unlabeled text using masked language modeling (MLM) and next sentence
prediction (NSP) tasks. The key lies in its bidirectional context encoding, consisting of
E = (e1,e,...,6,). It has been widely applied in areas such as text classification, named
entity recognition, and question-answering systems [81].

GPT: Generative Pre-trained Transformer, this algorithm was proposed by Radford
et al. in 2018 [82]. This is another pre-trained natural language processing model based on

Electronics 2023, 12, 2046

15 of 28

the Transformer architecture that uses only unidirectional autoregressive language model-
ing tasks for pre-training. GPT models using the formula: P(x) = IT; P(x; | x1,...,X;_1).
This formula denotes that, given the previous word sequence x1,...,x;_1, the goal of
GPT is to maximize the conditional probability of predicting the next word x; [83]. The
main application areas of GPT include text generation, text summarization, and machine
translation [84].

4.2.3. Unsupervised Learning

Unsupervised learning is a type of machine-learning technique in which algorithms
learn from and identify patterns in unlabelled data. In contrast to supervised learning,
which relies on a dataset with labeled examples, unsupervised learning algorithms analyze
the underlying structure or distribution of the data without any prior knowledge of the
correct outputs.

K-means: This algorithm, proposed by MacQueen et al. [85], is a prototype-based
iterative clustering method aimed at minimizing the sum of squared distances between
data points within each cluster and their respective cluster centers. This method can be
expressed by the following formula: argmin Zlel e, 1x — pil 2. Here, K represents the
number of clusters, C; denotes the i-th cluster, x signifies a data point, y; stands for the
cluster center of the i-th cluster, and || - || represents the Euclidean distance. The K-means
method has extensive applications in the field of market segmentation [86,87].

Spectral Clustering: This algorithm is a graph-theoretic clustering method that cap-
tures the complex structure of data in low-dimensional space by performing dimensionality
reduction on the eigenvectors of the data’s Laplacian matrix [88]. Spectral clustering has
classical significance in the field of image segmentation [89].

Density-Based Spatial Clustering of Applications with Noise (DBSCAN): This al-
gorithm, proposed by Ester et al. [90], is a density-based clustering algorithm. This method
discovers clusters of arbitrary shapes without the need to specify the number of clusters by
connecting dense regions and distinguishing noise points. The implementation steps of
this method are: 1. Calculate the number of points within the e-neighborhood of each data
point. 2. Identify core points with an e-neighborhood containing at least MinPts points.
3. Classify density-reachable core points as clusters, non-core points as the nearest cluster
members, or noise.

Principal Component Analysis (PCA): This algorithm, proposed by Pearson et al. [91],
is a linear dimensionality reduction technique that projects the original data onto a new
orthogonal coordinate system, maximizing the data variance, thereby reducing the data
dimensionality while preserving as much information as possible. PCA has classical
significance in the field of face recognition [92].

Maximum Entropy: This algorithm, proposed by Jaynes et al. [93], is an information-
theoretic statistical modeling technique that selects the most universal and least biased
probability distribution by maximizing entropy under given constraints. The Maximum
Entropy method has extensive applications in the part-of-speech tagging task [94].

Autoencoders: This algorithm, formally proposed by Rumelhart et al. [47], is an
unsupervised neural network model that learns to compress and reconstruct data between
the encoder and decoder, thereby achieving dimensionality reduction and feature extraction
of data representation. The implementation process of autoencoders consists of three steps:
encoding, decoding, and optimization. This method has extensive applications in the field
of image denoising [95].

Generative Adversarial Network (GAN): This algorithm, proposed by Goodfellow
et al. [50], consists of generative models based on adversarial training that learn to generate
data similar to the true data distribution through a competitive process of simultaneously
optimizing the generator and discriminator. A GAN has extensive applications in the field
of image generation [96].

Electronics 2023, 12, 2046

16 of 28

4.2.4. Reinforcement Learning

In the research of smart-contract security detection, reinforcement learning, as an
important machine-learning method, has achieved significant results in multiple applica-
tion fields in recent years. By interacting with the environment, reinforcement learning
enables intelligent agents to autonomously explore the optimal strategy to maximize cu-
mulative rewards in the long term. This section will briefly introduce some methods of
reinforcement learning.

Q-Learning: This algorithm was introduced by Watkins et al. [97], as a model-free
reinforcement learning algorithm that iteratively updates the action-value function Q(s, 2)
to estimate the expected total return of executing a particular action in a given state,
enabling the agent to select the optimal action based on Q-values. The general formula for
Q-Learning is: Q(s,a) + Q(s,a) + a[r + ymax, Q(s’,a’) — Q(s, a)]. Here, a is the learning
rate, and <y is the discount factor. Q-learning has classical significance in applications such
as automatic control and network transmission [98,99].

Deep Q-Network: This algorithm was proposed by Mnih et al. [51]. It is a reinforce-
ment learning algorithm that combines deep neural networks with Q-Learning, using
neural networks to approximate the action-value function Q(s,a) and handling high-
dimensional, complex input state spaces, such as raw images. The general update formula
for DQN is: Q(s,4;0) < Q(s,a;0) + a[r + ymax, Q(s',a’;0") — Q(s,a;60)]. Here, 6 and 6’
represent the parameters of the current and target neural networks, respectively.

REINFORCE: This algorithm was introduced by Williams et al. [100]. It is a reinforce-
ment learning method that directly optimizes policy parameters by sampling trajectories
to obtain unbiased estimates of the policy gradient and updating policy parameters us-
ing gradient ascent. Its core formula is: A8 = aVylog mg(a; | s¢)G;. Here, 6 represents
policy parameters, « is the learning rate, 7ty (a; | s¢) is the probability of selecting action
a; in state s;, and G; is the cumulative reward starting from time step t. REINFORCE has
classical significance in applications such as sequence generation and natural language
processing [101].

MCTS: Monte Carlo Tree Search, this algorithm was proposed by Coulom et al. [102]
as a search method based on Monte Carlo simulations that constructs a search tree and
gradually finds an approximate optimal solution by balancing exploration and exploitation.
MCTS does not have a general formula but primarily consists of four stages: Selection, Ex-
pansion, Simulation, and Backpropagation. AlphaGo is a prominent example of combining
MCTS with deep learning [103]. In 2016, it defeated the world Go champion, Lee Sedol.

GAIL: Generative Adversarial Imitation Learning, this algorithm was introduced by
Ho et al. [104]. It is a method that combines Generative Adversarial Networks (GANSs) and
reinforcement learning by training agents to acquire efficient policies through imitation
learning of expert policies. The general formula for GAIL mainly includes generator (policy)
loss and discriminator loss.

4.3. Comparing Different Kinds of Machine Learning

As shown in Table 1, we compared the advantages and disadvantages of the four
types of supervised learning, semi-supervised learning, unsupervised learning, and rein-
forcement learning. See below for a detailed analysis.

Supervised Learning: This method is known for its high predictive accuracy and wide
applicability across different domains. However, it requires a large labeled dataset to train
effectively, which can be a limiting factor for some applications.

Semi-Supervised Learning: This approach benefits from high data utilization and
reduced labeling costs compared to supervised learning, as it can work with partially
labeled data. Nonetheless, it faces challenges such as increased algorithm complexity and
dependence on underlying assumptions, which may affect its performance.

Electronics 2023, 12, 2046

17 of 28

Table 1. Advantages and disadvantages of four machine-learning methods.

Machine-Learning Method Advantages Disadvantages

High predictive accuracy

Supervised Learning Requires large labeled dataset

Wide applicability
. . . High data utilization Algorithm complexity
Semi-supervised Learning Reduced labeling cost Dependence on assumptions
Unsupervised Learnin No need for labeled data Limited predictive
p & Discovering latent structures Challenging evaluation
: . Decision-making ability Computational complexity
Reinforcement Learning Adaptive learning Slow convergence

Unsupervised Learning: The main advantages of this method are that it does not
require labeled data and can discover latent structures within the data. However, its predic-
tive performance is generally limited compared to supervised methods, and evaluating the
quality of unsupervised models can be challenging.

Reinforcement Learning: This technique is particularly useful for decision-making
and adaptive learning in dynamic environments. However, it comes with downsides, such
as computational complexity and slow convergence, which may hinder its practicality in
some situations.

5. Case Studies of ML-Based Smart-Contract Security Detection

In this section, we will explore the application of machine-learning techniques in the
domain of smart-contract security detection. Machine-learning methods have demonstrated
their powerful capabilities in various fields, consequently offering significant potential for
smart-contract security detection. By reviewing relevant literature, we will delve into the
application cases, advantages, and limitations of these methods in smart-contract security
detection, ultimately providing valuable insights for future research and practice.

5.1. Document Retrieval

We conducted a comprehensive investigation into the application of machine learning
in the domain of smart-contract security detection. In order to gain a thorough understand-
ing of the latest advancements and trends in this field, we retrieved numerous relevant
articles from authoritative databases such as Wiley, IEEE, Springer, ACM, and Elsevier.
Given the limited number of such research works and their primary concentration within
the last five years, we did not apply any time constraints during our search. While for-
mulating the search strategy, we initially identified the main keywords and search terms,
including “smart contract,” “detection,” “vulnerability,” and “machine learning”. To ensure
the comprehensiveness of the search results, we expanded the keywords to encompass
“bug,” “fault,” “security,” “analysis,” and more while also accounting for variations in tense
and singular/plural forms by applying appropriate fuzziness. Based on these keywords
and modifications, we constructed the following search formula:

(“smart contract*”) AND (“bug” OR “fault” OR “security” OR “vulnerability”)
AND (“detection” OR “analysis”) AND (“machine learning” OR “deep learning” OR
“reinforcement learning”)

Employing this search formula with some adjustments, we retrieved a total of 176 arti-
cles. The number of related papers in each database over the years is shown in Figure 9. To
ensure the quality and relevance of the selected literature, we adopted the following screen-
ing criteria: 1. Only include English literature; 2. Focus on empirical research pertaining to
the topic; 3. Only include papers published in reputable academic journals or conferences.
After the screening process, a total of 32 articles were ultimately included in this review.

Electronics 2023, 12, 2046

18 of 28

25

20

, 1 III 0

2019 2020 2021 2022 2023

M wiley W |EEE M Springer = ACM M Elsevier

Figure 9. Related papers for each database.

5.2. Machine-Learning-Based Tools for Smart-Contract Vulnerability Detection

In this chapter, we will systematically present the smart-contract vulnerability de-
tection frameworks that have successfully employed machine-learning techniques to
date. Our discussion will be organized chronologically. Up to now, there have been
32 frameworks successfully utilizing machine-learning technologies for smart-contract
vulnerability detection.

In 2019, Gao et al. [38] first introduced SmartEmbed, marking the inaugural research
achievement in employing machine-learning techniques for detecting vulnerabilities in
smart contracts. Their paper presented a web service tool based on code embedding and
similarity detection methods. This tool achieved vulnerability detection by comparing the
similarity between existing Solidity code on the Ethereum blockchain and the code embed-
dings of known vulnerabilities. Two years later, the authors refined their tool [105]. In their
extended work, they further explored the application of machine-learning techniques in
smart-contract security analysis and proposed several innovative improvements.

In 2020, Hao et al. introduced SCscan [106], a scanning system based on Support
Vector Machines (SVM) for detecting vulnerabilities in blockchain smart contracts. The
system aimed to identify potential security risks in smart contracts that could be exploited
by attackers for illicit gains. In the same year, Lou et al. [107] proposed a Ponzi scheme
detection method in smart contracts using an improved Convolutional Neural Network.
They utilized a dataset of 3774 smart contracts for model training, including 132 Ponzi
scheme contracts and 3642 legitimate smart contracts. Qian et al. [108] presented a deep
learning approach based on bidirectional Long Short-Term Memory networks and attention
mechanisms (BiLSTM-ATT) for the precise detection of reentrancy vulnerabilities. Further-
more, they introduced a contract fragment representation for smart contracts, which aids
in capturing crucial semantic information and control flow dependencies.

In 2021, Hara et al. [109] employed machine-learning algorithms to detect Honey-
pots in Ethereum smart contracts. They proposed two feature extraction methods: one
using TF-IDF to extract word features from the bytecode of the Ethereum blockchain and
another using word2vec to extract distributed representations from the same data. These
features could be used to detect Honeypots, and machine learning enhanced the detection
performance. In the same year, Mi et al. [110] introduced a framework called VSCL for the
automatic detection of vulnerabilities in smart contracts on blockchains. First, it leveraged
a novel feature vector generation technique to extract information from the bytecode of
smart contracts, as the source code of smart contracts is rarely available in public. Then,

Electronics 2023, 12, 2046

19 of 28

the collected vectors were fed into their innovative deep neural network (DNN) based on
metric learning to obtain detection results. Wang et al. [111] utilized deep learning tech-
niques to automatically detect vulnerabilities in smart contracts. Their approach combined
various code representations, such as code tokens, ASTs, and control flow graphs, and
employed deep learning models for training and prediction. This method facilitated the
learning of more comprehensive semantic information and enhanced the accuracy and
completeness of vulnerability detection. Yu et al. [112] proposed a modular and systematic
vulnerability detection framework based on deep learning named DeeSCVHunter. The
framework focused on two types of smart-contract vulnerabilities: reentrancy and time
dependence and introduced a novel concept called Vulnerability Candidate Slices (VCS)
to help the model capture key points of vulnerabilities. Zhang et al. [113] presented a
new classification model based on an improved CatBoost algorithm. The model employed
a novel feature extraction pattern, delving deeper into the logic of smart-contract code.
This approach could be used to detect Ponzi schemes during deployment and offer better
performance, ultimately helping to prevent investor losses.

In 2022, Andrijasa et al. [114] employed deep reinforcement learning and multi-agent
fuzz testing to develop improved techniques for detecting vulnerabilities in smart contracts.
In the same year, Ashizawa et al. [115] introduced a machine-learning-based static analysis
tool called Eth2Vec. This tool utilized neural networks to automatically learn features of
vulnerable contracts and detect vulnerabilities in smart contracts by comparing the target
contract code with the learned contract code. Gupta et al. [116] trained three different
deep learning models, namely LSTM, ANN, and GRU, and applied them to predict the
existence of vulnerabilities in smart contracts. These models were trained on known mali-
cious and benign smart contracts, allowing for the automatic detection of vulnerabilities
in new, unknown smart contracts. Hu et al. [117] proposed SCSGuard, a framework that
employed machine-learning techniques to detect fraudulent behavior in smart contracts.
SCSGuard leveraged the bytecode of smart contracts as a novel feature and utilized GRU
networks and attention mechanisms to capture hidden information. Hwang et al. [118]
introduced a new Convolutional Neural Network architecture, CodeNet, for smart-contract
vulnerability detection. CodeNet addressed the issue of local information loss in existing
CNN models by preserving the semantic and contextual information of smart contracts
and demonstrated higher detection performance and faster detection times across vari-
ous types of vulnerabilities. Li et al. [119] presented a new smart-contract vulnerability
detection model called Link-DC. This model employed deep and cross networks to con-
struct high-order nonlinear features and output these features to a fully connected layer to
produce detection results. The model efficiently extracted features from raw data, thereby
enhancing the performance and training efficiency of deep learning models. Liu et al. [120]
proposed a heterogeneous graph transformation network for smart-contract anomaly de-
tection (SHGTNS) to detect financial fraud on the Ethereum platform. They first extracted
features to construct a Heterogeneous Information Network (HIN) of smart contracts, then
fed the relation matrices obtained from learned meta-paths in the transformation network
into a convolutional network, and finally utilized node embeddings for classification tasks.
Nguyen et al. [121] proposed a novel heterogeneous graph representation approach called
MANDO for learning the structure of heterogeneous contract graphs. MANDO developed
a multiplex-path heterogeneous graph attention network to learn multi-layer embeddings
of different types of nodes and their multiplex paths within the heterogeneous contract
graph. This study extensively evaluated MANDO on a large-scale smart-contract dataset,
showing that it improved the vulnerability detection results at the coarse-grained contract
level compared to other techniques. Shakya et al. [122] introduced a vulnerability detection
model named SmartMixModel, which employs machine-learning algorithms to detect
vulnerabilities in Solidity smart contracts. This model extracts features at two levels—high-
level syntactic features and low-level bytecode features of the smart contracts—to achieve
more precise vulnerability detection. Wang et al. [123] proposed a machine-learning model
called GVD-net to detect security vulnerabilities in Ethereum smart contracts. This model

Electronics 2023, 12, 2046

20 of 28

takes the compiled smart-contract bytecode as input and uses a graph embedding-based
machine-learning method for classification. Wu et al. [124] presented a deep learning-
based framework for detecting vulnerabilities in Ethereum smart contracts, employing
four deep learning models—CNN, LSTM, CNN-BiLSTM, and ResNets—to classify the
source code of the smart contracts. Xu et al. [125] constructed a vulnerability detection
model that utilized neural networks in machine learning, specifically bidirectional long
short-term memory networks (BiLSTM), and introduced a hierarchical attention mecha-
nism. This model takes code segments and account information of smart contracts as input,
divides the input samples into three levels—word level, sentence level, and document
level—and introduces attention mechanisms at different levels. By training the model to
detect re-entry vulnerabilities in smart contracts, detection accuracy is improved and false
positives are reduced. Zhang et al. [126] applied convolutional neural networks (CNN)
to detect vulnerabilities in smart contracts. The authors transformed smart-contract vul-
nerabilities into image classification problems and converted bytecodes into numerical
images based on predefined rules. They then trained and classified these numerical images
using CNN to detect vulnerabilities in smart contracts. Zheng et al. [127] built a larger
dataset and extracted numerous independent features from multiple perspectives, includ-
ing bytecode, semantics, and developers, that were not related to transactions. They then
constructed a multi-view cascading ensemble model (MulCas) using machine-learning
methods, enabling their model to identify Ponzi schemes at the time of smart-contract cre-
ation. Zhou et al. [128] first investigated the classification of security issues related to smart
contracts in BloT scenarios. To address these security issues and overcome the limitations
of existing methods, they proposed a tree-based machine-learning vulnerability detection
(TMLVD) approach to perform vulnerability analysis of smart contracts. TMLVD inputs an
intermediate representation derived from the abstract syntax tree (AST) of smart contracts
into a tree-based training network to build a prediction model. This model captures multi-
dimensional features to identify vulnerable smart contracts. The detection phase can be
quickly implemented with limited computational resources while ensuring the accuracy
of the detection results. The experimental evaluation demonstrated the effectiveness and
efficiency of TMLVD on a dataset composed of Ethereum smart contracts.

In 2023, Cai et al. [129] proposed a graph neural network (GNN)-based method for
smart-contract vulnerability detection. First, by combining abstract syntax trees (AST),
control flow graphs (CFG), and program dependency graphs (PDG), they built a graph rep-
resentation for smart-contract functions that included both syntactic and semantic features.
To further enhance the representational power of their method, they performed program
slicing to normalize the graph and eliminate redundancy unrelated to vulnerabilities. They
then employed a bidirectional gated graph neural network model with mixed attention
pooling to identify potential vulnerabilities in smart-contract functions. Jiang et al. [130]
introduced VDDL, which utilized a multi-layer bidirectional Transformer structure as its
model framework, involving multi-head attention and masking mechanisms. Multi-head
attention was applied in the encoder and decoder layers. The masking mechanism en-
abled deep bidirectional training representations by randomly masking input tokens and
predicting masked tokens using context. Furthermore, VDDL incorporated CodeBERT,
a large-scale dual-modal pretraining model for natural language and programming lan-
guage, to enhance training results. Jie et al. [131] used a multi-modal artificial intelligence
framework to detect vulnerabilities in smart contracts. The framework combined various
techniques such as natural language processing, image processing, and code analysis and
employed machine-learning algorithms like support vector machines (SVM) and long
short-term memory networks (LSTM) to improve vulnerability detection accuracy and effi-
ciency. Liu et al. [132] explored the use of graph neural networks and expert knowledge for
detecting smart-contract vulnerabilities. Specifically, they transformed the rich control and
data flow semantics of the source code into contract graphs. To highlight key nodes in the
graph, they further designed a node elimination phase to normalize the graph. They then
proposed a novel temporal message propagation network to extract graph features from

Electronics 2023, 12, 2046

21 of 28

the normalized graph, combining these features with designed expert patterns to produce
the final detection system. Extensive experiments were performed on all smart contracts
with source code on the Ethereum and VNT Chain platforms. Su et al. [133] proposed a
reinforcement learning-based vulnerability-guided fuzz testing approach called RLF, used
for generating vulnerability transaction sequences to detect complex vulnerabilities in
smart contracts. Specifically, they first modeled the process of fuzz testing smart contracts
as a Markov decision process, constructing a reinforcement learning framework. They then
designed a reward that considered vulnerabilities and code coverage to effectively guide
the fuzzer in generating specific transaction sequences to reveal vulnerabilities, especially
those related to multiple functions. Sun et al. [134] introduced a novel smart-contract
vulnerability detection framework called ASSBert, which combined active learning and
semi-supervised learning to address the issue of insufficient labeled data. ASSBert em-
ployed bidirectional encoder representations from Transformers (BERT). Active learning
was responsible for filtering highly uncertain code data from unlabeled sol files and man-
ually annotating them, while semi-supervised learning continuously selected a certain
number of high-confidence unlabeled code data from unlabeled sol files and included
them in the training set after pseudo-labeling. Zhang et al. [135] proposed a deep learning-
based two-stage smart-contract debugger, ReVulDL, for detecting and locating re-entry
vulnerabilities. ReVulDL integrated vulnerability detection and location into a unified
debugging process. The detection stage leveraged a graph-based pre-trained model to learn
complex relationships in the propagation chain; the location stage applied interpretable
machine-learning to pinpoint suspicious statements.

5.3. Comparative Analysis of Existing Machine-Learning-Based Smart-Contract Vulnerability
Detection Tools

As shown in Table 2, this is a comparative analysis table about machine learning-based
smart contract vulnerability detection tools. Within the table, we can observe detailed com-
parisons of various research studies or tools proposed by different authors and teams. The
table encompasses several key attributes: first, references are provided for readers to easily
locate relevant materials; second, the machine-learning methods employed are specified;
subsequently, the size of the datasets is included, which aids in understanding the impact of
data scale on model performance and reliability; finally, the machine-learning classification
approaches utilized by the tools, such as supervised learning, semi-supervised learning, or
reinforcement learning, are presented, assisting in comprehending the distinctions between
different methods as well as their strengths and weaknesses in addressing smart-contract
vulnerability detection issues. Through this table, we can gain a comprehensive under-
standing of various machine-learning-based smart-contract vulnerability detection tools
and provide valuable references for further research and practice.

Table 2. Comparison of machine-learning-based smart-contract vulnerability detection tools.

Model Method Dataset Size Classification Year

Gao et al. [38] Code Embedding 22,275 Supervised Learning 2019
Hao et al. [106] SVM Not provided Supervised Learning 2020
Lou et al. [107] CNN 3774 Supervised Learning 2020
Qian et al. [108] Bi-LSTM 2000 Supervised Learning 2020
Hara et al. [109] Machine Learning 151,935 Supervised Learning 2021
Mi et al. [110] DNN 40 Supervised Learning 2021
Wang et al. [111] Deep Learning More than 2000 Supervised Learning 2021

Electronics 2023, 12, 2046

22 of 28

Table 2. Cont.

Model Method Dataset Size Classification Year
Yu et al. [112] Deep Learning Mg(l;eg’g;an Supervised Learning 2021

Zhang et al. [113] CatBoost and Random Forrest 3774 Supervised Learning 2021
Andr[lialiﬁ etal Deep Reinforcement Learning Not provided Reinforcement Learning 2022
AShlZ[i“lA; L Machine Learning 95,152 Supervised Learning 2022

Gupta et al. [116] LSTM, ANN and GRU 7000 Supervised Learning 2022
Huetal. [117] GRU AND Attention More than 1000 Supervised Learning 2022

Hwang et al. [118] Machine Learning 47,518 Supervised Learning 2022

Lietal. [119] Deep Learning 3000 Supervised Learning 2022

Liu et al. [120] HGTNs 1382 Supervised Learning 2022

Nguyen et al. [121] Machine Learning 47,891 Supervised Learning 2022

Shakya et al. [122] Machine Learning 70,000 Supervised Learning 2022
Graph Embedding and . . :

Wang et al. [123] Machine Learning Not provided Supervised Learning 2022
Wu et al. [124] Deep Learning 11,881 Supervised Learning 2022
Xu et al. [125] Bi-LSTM 36,232 Supervised Learning 2022

Zhang et al. [126] CNN Not provided Supervised Learning 2022

Zheng et al. [127] Machine Learning 10,349 Supervised Learning 2022

Zhou et al. [128] Machine Learning and AST 20,567 Supervised Learning 2022
Cai et al. [129] GNN More than 9369 Supervised Learning 2023

Jiang et al. [130] BERT 47,038 Semi-Supervised Learning 2023
Jie et al. [131] Machine Learning Not provided Supervised Learning 2023
Liu et al. [132] GNN and Expert Knowledge 40,932 Supervised Learning 2023
Su et al. [133] Reinforcement 'Learmng Not provided Reinforcement Learning 2023

and Fuzzing
Sun et al. [134] BERT 20,829 Semi-Supervised Learning 2023
Zhang et al. [135] Deep Learning 47,398 Supervised Learning 2023

6. Discussion

In this section, we will comprehensively explore the three key research questions
proposed in this paper, delving into existing methods and techniques for each question to
provide valuable insights for researchers and practitioners.

RQ1: There are numerous methods that can be applied to the field of smart-contract
security detection, including supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning. Most of the currently implemented machine-learning-
based smart-contract security detection methods primarily rely on supervised learning,
which is the most common machine-learning technique in smart-contract vulnerability
detection. The main advantage of supervised learning methods is that they are trained on a
large amount of labeled data, allowing the patterns and features learned from the training

Electronics 2023, 12, 2046

23 of 28

data to be effectively applied to new data. However, the downside of these methods is that
they require a substantial amount of labeled data for training. Semi-supervised learning
approaches are less commonly used in smart-contract vulnerability detection but have great
potential. The advantage of these methods is that the pre-training process does not require
labeled training data, enabling the development of such methods based on pre-trained large
models. The limitation of semi-supervised learning methods is that they may struggle to
capture specific vulnerability features. Unsupervised learning methods are rarely applied
in smart-contract vulnerability detection. The advantage of these methods is that they do
not require labeled training data, while their limitation lies in their potential difficulty in
capturing specific vulnerability features. Reinforcement learning is a machine-learning
technique based on the interaction between an agent and its environment.

RQ2: Supervised learning, semi-supervised learning, and reinforcement learning
methods have all been applied in the field of smart-contract security detection. However,
the vast majority of applications are actually based on supervised learning methods. This
paper posits that this is likely due to the current maturity of supervised learning methods
and because labeled datasets enable achieving better results with smaller amounts of
data. However, as the amount of data in smart-contract datasets continues to grow, semi-
supervised learning is also becoming a promising research direction.

RQ3: In the field of smart-contract security detection, machine learning can be com-
bined with static analysis, dynamic analysis, and fuzz testing methods. To integrate with
static analysis, features (such as code patterns and function calls) can be extracted from the
smart contract’s source code or bytecode and used to train machine-learning models to
identify potential vulnerabilities. To combine with dynamic analysis, runtime data (such as
state changes and transaction flows) can be collected during contract execution and used
in conjunction with machine-learning models to detect anomalous behavior and potential
vulnerabilities. To integrate with fuzz testing methods, random or semi-random input
data can be generated, and the contract execution results can be observed. Machine learn-
ing can then be employed to analyze the execution process and outcomes, automatically
discovering new vulnerabilities or abnormal behaviors.

7. Conclusions and Future Work

Although machine learning has made some progress in the detection of defects in smart
contracts, there is still a noticeable gap in the literature regarding a comprehensive review
of machine-learning-based smart-contract defect detection. To address this shortcoming,
this paper innovatively delves into the application of machine learning in the field of
smart-contract security detection, aiming to provide valuable references and inspiration for
researchers. The paper conducts an in-depth analysis and classification of machine-learning
techniques, exploring the effectiveness of different technologies in smart-contract defect
detection. Furthermore, this paper investigates and compares existing machine-learning-
based smart-contract defect detection models. In future research, we will explore the
possibility of combining machine-learning techniques with formal methods.

Author Contributions: Conceptualization, J.X.; methodology, Q.L.; formal analysis, K.G.; data
curation,].W.; writing—original draft preparation, EJ. and K.C.; writing—review and editing, FJ. and
K.C,; supervision, Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Jiangxi Provincial Natural Science Foundation
under Grant No. 20224ACB202007, and in part by the Jiangxi Province 03 Special Project and 5G
Project under Grant No. 20224ABC03A13.

Acknowledgments: The authors would like to thank the editor and the reviewers for the valuable
and constructive comments. They have been very helpful in the revision of this paper and allowed us
to improve the technical content and presentation quality.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Electronics 2023, 12, 2046 24 of 28

References

1. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. In Decentralized Business Review; Satoshi Nakamato Institute: Austin,
TX, USA, 2008; p. 21260.

2. Gad, A.G.; Mosa, D.T.; Abualigah, L.; Abohany, A.A. Emerging Trends in Blockchain Technology and Applications: A Review
and Outlook. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 6719-6742. [CrossRef]

3. Sahoo, S.; Kumar, A.; Mishra, R.; Tripathi, P. Strengthening Supply Chain Visibility With Blockchain: A PRISMA-Based Review.
IEEE Trans. Eng. Manag. 2022, 1-17. [CrossRef]

4. Liu, Y; Qian, K,; Wang, K.; He, L. BCmaster: A Compatible Framework for Comprehensively Analyzing and Monitoring
Blockchain Systems in IoT. IEEE Internet Things |. 2022, 9, 22529-22546. [CrossRef]

5. Tyagi, AK,; Dananjayan, S.; Agarwal, D.; Thariq Ahmed, H.F. Blockchain—Internet of Things Applications: Opportunities and
Challenges for Industry 4.0 and Society 5.0. Sensors 2023, 23, 947. [CrossRef]

6. Xu, S.; Guo, C,; Hu, R.Q.; Qian, Y. Blockchain-Inspired Secure Computation Offloading in a Vehicular Cloud Network.
IEEE Internet Things J. 2022, 9, 14723-14740. [CrossRef]

7. Liu, D.; Alahmadi, A.; Ni, J.; Lin, X.; Shen, X. Anonymous Reputation System for IloT-Enabled Retail Marketing Atop PoS
Blockchain. IEEE Trans. Ind. Inf. 2019, 15, 3527-3537. [CrossRef]

8. Han, Y,; Zhang, Y.; Vermund, S.H. Blockchain Technology for Electronic Health Records. Int.]. Environ. Res. Public Health 2022,
19, 15577. [CrossRef]

9. Jaiman, V.; Urovi, V. A Consent Model for Blockchain-Based Health Data Sharing Platforms. IEEE Access 2020, 8, 143734-143745.
[CrossRef]

10. Liu, X.; Wang, W.; Niyato, D.; Zhao, N.; Wang, P. Evolutionary Game for Mining Pool Selection in Blockchain Networks.
IEEE Wirel. Commun. Lett. 2018, 7, 760-763. [CrossRef]

11. Gurzhii, A.; Islam, A K.M.N.; Haque, A K.M.B.; Marella, V. Blockchain Enabled Digital Transformation: A Systematic Literature
Review. IEEE Access 2022, 10, 79584-79605. [CrossRef]

12. Sunny, EA.; Hajek, P; Munk, M.; Abedin, M.Z; Satu, M.S.; Efat, M..A ; Islam, M.]. A systematic review of blockchain applications.
IEEE Access 2022, 10, 59155-59177. [CrossRef]

13. Blockchain Boosts Global Economy: A PWC Digital Report. Available online: https://www.pwc.com/gx/en/news-room/press-
releases /2020 /blockchain-boost-global-economy-track-trace-trust.html (accessed on 13 October 2020).

14. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1-32.

15. Cheng, H.; Hu, Q.; Zhang, X.; Yu, Z.; Yang, Y.; Xiong, N. Trusted Resource Allocation Based on Smart Contracts for Blockchain-
Enabled Internet of Things. IEEE Internet Things J. 2022, 9, 7904-7915. [CrossRef]

16. Zhu,S.; Cai, Z.; Hu, H.; Li, Y,; Li, W. zkCrowd: A Hybrid Blockchain-Based Crowdsourcing Platform. IEEE Trans. Ind. Inf. 2020,
16, 4196-4205. [CrossRef]

17. Saini, A.; Zhu, Q.; Singh, N; Xiang, Y.; Gao, L.; Zhang, Y. A Smart-Contract-Based Access Control Framework for Cloud Smart
Healthcare System. IEEE Internet Things J. 2021, 8, 5914-5925. [CrossRef]

18. Atzei, N.; Bartoletti, M.; Cimoli, T. A survey of attacks on ethereum smart contracts (sok). In Principles of Security and Trust: 6th
International Conference, POST 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, 22-29 April 2017, Proceedings 6; Springer: Berlin/Heidelberg, Germany, 2017; pp. 164-186.

19. Chen, H.; Pendleton, M.; Njilla, L.; Xu, S. A survey on ethereum systems security: Vulnerabilities, attacks, and defenses.
ACM Comput. Surv. CSUR 2020, 53, 1-43. [CrossRef]

20. Liu,]J.; Liu, Z. A survey on security verification of blockchain smart contracts. IEEE Access 2019, 7, 77894-77904. [CrossRef]

21. Kabla, A.H.H.; Anbar, M.; Manickam, S.; Alamiedy, T.A.; Cruspe, P.B.; Al-Ani, A K.; Karupayah, S. Applicability of intrusion
detection system on Ethereum attacks: A comprehensive review. IEEE Access 2022, 10, 71632-71655. [CrossRef]

22. Rameder, H.; Di Angelo, M.; Salzer, G. Review of automated vulnerability analysis of smart contracts on Ethereum.
Front. Blockchain 2022, 5, 814977. [CrossRef]

23. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain
smart contract. IEEE Access 2022, 10, 6605-6621. [CrossRef]

24. Krichen, M.; Lahami, M.; Al-Haija, Q.A. Formal Methods for the Verification of Smart Contracts: A Review. In Proceedings of
the 15th International Conference on Security of Information and Networks (SIN), Sousse, Tunisia, 11-13 November 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 01-08.

25. Miller, A; Cai, Z,; Jha, S. Smart contracts and opportunities for formal methods. In Leveraging Applications of Formal Methods,
Verification and Validation. Industrial Practice: 8th International Symposium, ISOLA 2018, Limassol, Cyprus, 5-9 November 2018,
Proceedings, Part IV 8; Springer International Publishing: Cham, Switzerland, 2018; pp. 280-299.

26. Ahmed, S.J.; Taha, D.B. Machine Learning for Software Vulnerability Detection: A Survey. In Proceedings of the 8th International
Conference on Contemporary Information Technology and Mathematics (ICCITM), Mosul, Iraq, 31 August—1 September 2022;
pp- 66-72.

27. Pan, Z.; Mishra, P. A survey on hardware vulnerability analysis using machine learning. IEEE Access 2022, 10, 49508—49527.
[CrossRef]

28. Zeng, P; Lin, G.; Pan, L.; Tai, Y.; Zhang, J. Software vulnerability analysis and discovery using deep learning techniques: A survey.

IEEE Access 2020, 8, 197158-197172. [CrossRef]

http://doi.org/10.1016/j.jksuci.2022.03.007
http://dx.doi.org/10.1109/TEM.2022.3206109
http://dx.doi.org/10.1109/JIOT.2022.3182004
http://dx.doi.org/10.3390/s23020947
http://dx.doi.org/10.1109/JIOT.2021.3054866
http://dx.doi.org/10.1109/TII.2019.2898900
http://dx.doi.org/10.3390/ijerph192315577
http://dx.doi.org/10.1109/ACCESS.2020.3014565
http://dx.doi.org/10.1109/LWC.2018.2820009
http://dx.doi.org/10.1109/ACCESS.2022.3194004
http://dx.doi.org/10.1109/ACCESS.2022.3179690
https://www.pwc.com/gx/en/news-room/press-releases/2020/blockchain-boost-global-economy-track-trace-trust.html
https://www.pwc.com/gx/en/news-room/press-releases/2020/blockchain-boost-global-economy-track-trace-trust.html
http://dx.doi.org/10.1109/JIOT.2021.3114438
http://dx.doi.org/10.1109/TII.2019.2941735
http://dx.doi.org/10.1109/JIOT.2020.3032997
http://dx.doi.org/10.1145/3391195
http://dx.doi.org/10.1109/ACCESS.2019.2921624
http://dx.doi.org/10.1109/ACCESS.2022.3188637
http://dx.doi.org/10.3389/fbloc.2022.814977
http://dx.doi.org/10.1109/ACCESS.2021.3140091
http://dx.doi.org/10.1109/ACCESS.2022.3173287
http://dx.doi.org/10.1109/ACCESS.2020.3034766

Electronics 2023, 12, 2046 25 of 28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Lin, G.; Wen, S.; Han, Q.L.; Zhang, J.; Xiang, Y. Software vulnerability detection using deep neural networks: A survey. Proc. IEEE
2020, 108, 1825-1848. [CrossRef]

Luuy, L.; Chu, D.-H,; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24-28 October 2016; pp. 254-269.

Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. SmartCheck: Static Analysis of
Ethereum Smart Contracts. In Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for
Blockchain, Gothenburg, Sweden, 27 May 2018; pp. 9-16.

Tsankov, P; Dan, A.; Cohen, D.D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart Contracts.
arXiv 2018, arXiv:1806.01143.

Brent, L.; Jurisevic, A.; Kong, M.; Liu, E.; Gauthier, F.; Gramoli, V.; Holz, R.; Scholz, B. Vandal: A Scalable Security Analysis
Framework for Smart Contracts. arXiv 2018, arXiv:1809.03981.

Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. ZEUS: Analyzing Safety of Smart Contracts. In Proceedings of the 2018 Network and
Distributed System Security Symposium, San Diego, CA, USA, 18-21 February 2018.

Jiang, B.; Liu, Y.; Chan, WK. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In Proceedings of the 2018
33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), Montpellier, France, 3-7 September 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 259-269. [CrossRef]

Feist,].; Grieco, G.; Groce, A. Slither: A Static Analysis Framework For Smart Contracts. In Proceedings of the 2019 IEEE/ACM
2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada, 26
May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 8-15. [CrossRef]

Chang, J.; Gao, B.; Xiao, H; Sun, J.; Cai, Y.; Yang, Z. sCompile: Critical Path Identification and Analysis for Smart Contracts. arXiv
2019, arXiv:1808.00624.

Gao, Z.; Jayasundara, V.; Jiang, L.; Xia, X.; Lo, D.; Grundy, J. SmartEmbed: A Tool for Clone and Bug Detection in Smart Contracts
through Structural Code Embedding. In Proceedings of the 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Cleveland, OH, USA, 29 September—4 October 2019; pp. 394-397.

Huang, J.; Han, S.; You, W.; Shi, W.; Liang, B.; Wu,].; Wu, Y. Hunting Vulnerable Smart Contracts via Graph Embedding Based
Bytecode Matching. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2144-2156. [CrossRef]

Chen, J.; Xia, X.; Lo, D.; Grundy, J.; Luo, X.; Chen, T. DefectChecker: Automated Smart Contract Defect Detection by Analyzing
EVM Bytecode. IEEE Trans. Softw. Eng. 2022, 48, 2189-2207. [CrossRef]

Chen, T; Li, Z.; Luo, X.; Wang, X.; Wang, T.; He, Z.; Fang, K.; Zhang, Y.; Zhu, H.; Li, H.; et al. SigRec: Automatic Recovery of
Function Signatures in Smart Contracts. IEEE Trans. Softw. Eng. 2022, 48, 3066-3086. [CrossRef]

Hu, T; Li, B.; Pan, Z.; Qian, C. Detect Defects of Solidity Smart Contract Based on the Knowledge Graph. IEEE Trans. Reliab. 2023,
1-17. [CrossRef]

McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115-133.
[CrossRef]

Turing, A.M. Computing Machinery and Intelligence; Springer: Dordrecht, The Netherlands, 2009; pp. 23-65.

Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65,
386—408. [CrossRef]

Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol.
1962, 160, 106-154. [CrossRef] [PubMed]

Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
[CrossRef]

Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504-507.
[CrossRef] [PubMed]

Graves, A.; Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 37-45.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139-144. [CrossRef]

Mnih, V,; Kavukcuoglu, K; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement
learning. arXiv 2013, arXiv:1312.5602.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In
Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017.

Devlin, J.; Chang, M.-W.; Lee, K,; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv 2019, arXiv:1810.04805v2.

Kim, S.J.; Bae, S.J.; Jang, M.W. Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration
Using Limited Climate Data. Sustainability 2022, 14, 11674. [CrossRef]

Maulud, D.; Abdulazeez, A.M. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends
2020, 1, 140-147. [CrossRef]

Cox, D.R. The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B Methodol. 1958, 20, 215-232. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2020.2993293
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1109/WETSEB.2019.00008
http://dx.doi.org/10.1109/TIFS.2021.3050051
http://dx.doi.org/10.1109/TSE.2021.3054928
http://dx.doi.org/10.1109/TSE.2021.3078342
http://dx.doi.org/10.1109/TR.2023.3233999
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1113/jphysiol.1962.sp006837
http://www.ncbi.nlm.nih.gov/pubmed/14449617
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.3390/su141811674
http://dx.doi.org/10.38094/jastt1457
http://dx.doi.org/10.1111/j.2517-6161.1958.tb00292.x

Electronics 2023, 12, 2046 26 of 28

57.

58.
59.

60.
61.

62.
63.

64.

65.

66.

67.

68.

69.
70.

71.
72.

73.
74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Aniche, M.; Maziero, E.; Durelli, R.; Durelli, V.H. The effectiveness of supervised machine learning algorithms in predicting
software refactoring. IEEE Trans. Softw. Eng. 2020, 48, 1432-1450. [CrossRef]

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]

Gigovi¢, L.; Pourghasemi, H.R.; Drobnjak, S.; Bai, S. Testing a new ensemble model based on SVM and random forest in forest fire
susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests 2019, 10, 408. [CrossRef]

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Gonzélez, C.; Astudillo, C.A.; Lépez-Cortés, X.A.; Maldonado, S. Semi-supervised learning for MALDI-TOF mass spectrometry
data classification: An application in the salmon industry. Neural Comput. Appl. 2023, 35, 1-11. [CrossRef]

Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21-27. [CrossRef]

Gallego, A.].; Rico-Juan, J.R.; Valero-Mas,] .J. Efficient k-nearest neighbor search based on clustering and adaptive k values.
Pattern Recognit. 2022, 122, 108356. [CrossRef]

LeCun, Y,; Boser, B.; Denker,].S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten
zip code recognition. Neural Comput. 1989, 1, 541-551. [CrossRef]

Yudistira, N.; Kavitha, M.S.; Kurita, T. Weakly-Supervised Action Localization, and Action Recognition Using Global-Local
Attention of 3D CNN. Int. J. Comput. Vis. 2022, 130, 2349-2363. [CrossRef]

Wei, G.; Li, G.; Zhao,].; He, A. Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 2019,
19, 217. [CrossRef] [PubMed]

Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July—4 August 2005; IEEE: Piscataway, NJ, USA, 2015; Volume 2,
pp. 729-734.

Ciano, G.; Rossi, A.; Bianchini, M.; Scarselli, F. On inductive-transductive learning with graph neural networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2021, 44, 758-769. [CrossRef] [PubMed]

Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.

Chen, T.; Zhang, X.; You, M.; Zheng, G.; Lambotharan, S. A GNN-based supervised learning framework for resource allocation in
wireless IoT networks. IEEE Internet Things J. 2021, 9, 1712-1724. [CrossRef]

Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179-211. [CrossRef]

Mikolov, T.; Karafiat, M.; Burget, L.; Cernocky, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings
of the Interspeech, Makubhari, Japan, 12-16 September 2010; Volume 2, pp. 1045-1048.

Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef] [PubMed]

Polat, H.; Tiirkoglu, M.; Polat, O.; Sengiir, A. A novel approach for accurate detection of the DDoS attacks in SDN-based SCADA
systems based on deep recurrent neural networks. Expert Syst. Appl. 2022, 197, 116748. [CrossRef]

Cho, K.; Van Merriénboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv 2014, arXiv:1409.1259.

Yarowsky, D. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of the 33rd Annual Meeting
of the Association for Computational Linguistics, Cambridge, MA, USA, 26-30 June 1995; pp. 189-196.

Xu, H; Li, L.; Guo, P. Semi-supervised active learning algorithm for SVMs based on QBC and tri-training. |. Ambient Intell.
Humaniz. Comput. 2021, 12, 8809-8822. [CrossRef]

Zhou, Z.H.; Li, M. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 2005, 17, 1529-1541.
[CrossRef]

Ning, X.; Wang, X.; Xu, S.; Cai, W.; Zhang, L.; Yu, L.; Li, W. A review of research on co-training. Concurr. Comput. Pract. Exp. 2021,
€6276. [CrossRef]

Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

Yang, N.; Jo, J.; Jeon, M.; Kim, W.; Kang,]. Semantic and explainable research-related recommendation system based on
semi-supervised methodology using BERT and LDA models. Expert Syst. Appl. 2022, 190, 116209. [CrossRef]

Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. OpenAl
Technical Report. 2018. Available online: https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
(accessed on 15 March 2023).

Floridi, L.; Chiriatti, M. GPT-3: Its nature, scope, limits, and consequences. Minds Mach. 2020, 30, 681-694. [CrossRef]

Katz, D.M.; Bommarito, M.J.; Gao, S.; Arredondo, P. GPT-4 Passes the Bar Exam. SSRN. 2023. Available online: https://ssrn.com/
abstract=4389233 (accessed on 15 March 2023).

MacQueen, J. Classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, Los Angeles, CA, USA, 21-23 June 1967; University of California: Berkeley, CA, USA,
1967; Volume 1, pp. 281-297.

Punj, G.; Stewart, D.W. Cluster analysis in marketing research: Review and suggestions for application.]. Mark. Res. 1983, 20,
134-148. [CrossRef]

Dolnicar, S. A review of unquestioned standards in using cluster analysis for data-driven market segmentation. . Mark.
Theory Pract. 2002, 10, 1-12.

Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395-416. [CrossRef]

http://dx.doi.org/10.1109/TSE.2020.3021736
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.3390/f10050408
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s00521-023-08333-2
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1016/j.patcog.2021.108356
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1007/s11263-022-01649-x
http://dx.doi.org/10.3390/s19010217
http://www.ncbi.nlm.nih.gov/pubmed/30626158
http://dx.doi.org/10.1109/TPAMI.2021.3054304
http://www.ncbi.nlm.nih.gov/pubmed/33493112
http://dx.doi.org/10.1109/JIOT.2021.3091551
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.eswa.2022.116748
http://dx.doi.org/10.1007/s12652-020-02665-w
http://dx.doi.org/10.1109/TKDE.2005.186
http://dx.doi.org/10.1002/cpe.6276
http://dx.doi.org/10.1016/j.eswa.2021.116209
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://dx.doi.org/10.1007/s11023-020-09548-1
https://ssrn.com/abstract=4389233
https://ssrn.com/abstract=4389233
http://dx.doi.org/10.1177/002224378302000204
http://dx.doi.org/10.1007/s11222-007-9033-z

Electronics 2023, 12, 2046 27 of 28

89.

90.

91.
92.

93.
94.

95.

96.

97.
98.
99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Ng, A; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver BC, Canada, 3-8 December 2001; Volume 14, pp. 849-856.

Ester, M; Kriegel, H.P; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR, USA,
2—4 August 1996; Volume 96, pp. 226-231.

Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag.]. Sci. 1901, 2, 559-572.
[CrossRef]

Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71-86. [CrossRef]

Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [CrossRef]

Toutanova, K.; Klein, D.; Manning, C.D.; Singer, Y. Feature-rich part-of-speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for
Computational Linguistics, Edmonton, AB, Canada, 27 April-1 May 2003; pp. 252-259.

Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In
Proceedings of the 21st International Conference on Artificial Neural Networks (ICANN 2011), Espoo, Finland, 14-17 June 2011;
Part I21; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52-59.

Karras, T.; Aila, T,; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2017,
arXiv:1710.10196.

Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2017.

Clifton, J.; Laber, E. Q-learning: Theory and applications. Annu. Rev. Stat. Its Appl. 2020, 7, 279-301. [CrossRef]

Cao, Y.; Ji, R, Ji, L; Lei, G.; Wang, H.; Shao, X. I2-MPTCP: A Learning-Driven Latency-Aware Multipath Transport Scheme for
Industrial Internet Applications. IEEE Trans. Ind. Inform. 2022, 18, 8456-8466. [CrossRef]

Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Reinforcement Learning;
Springer: Boston, MA, USA, 1992; pp. 5-32.

Naeem, M.; Rizvi, S.T.H.; Coronato, A. A gentle introduction to reinforcement learning and its application in different fields.
IEEE Access 2020, 8, 209320-209344. [CrossRef]

Coulom, R. Efficient selectivity and backup operators in Monte-Carlo tree search. In Proceedings of the Computers and Games:
5th International Conference, CG 2006, Turin, Italy, 29-31 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 72-83.
Silver, D.; Huang, A.; Maddison, C.J.; Guez, A ; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484-489. [CrossRef]
Ho, J.; Ermon, S. Generative adversarial imitation learning. In Proceedings of the Annual Conference on Neural Information
Processing Systems 2016, Barcelona, Spain, 5-10 December 2016.

Gao, Z,; Jiang, L.; Xia, X.; Lo, D.; Grundy, J. Checking Smart Contracts With Structural Code Embedding. IEEE Trans. Softw. Eng.
2021, 47, 2874-2891. [CrossRef]

Hao, X.; Ren, W.; Zheng, W.; Zhu, T. SCScan: A SVM-Based Scanning System for Vulnerabilities in Blockchain Smart Contracts.
In Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), Guangzhou, China, 29 December-1 January 2020; pp. 1598-1605.

Lou, Y.;; Zhang, Y.; Chen, S. Ponzi Contracts Detection Based on Improved Convolutional Neural Network. In Proceedings of the
IEEE International Conference on Services Computing (SCC), Beijing, China, 7-11 November 2020; pp. 353-360.

Qian, P; Liu, Z,; He, Q.; Zimmermann, R.; Wang, X. Towards Automated Reentrancy Detection for Smart Contracts Based on
Sequential Models. IEEE Access 2020, 8, 19685-19695. [CrossRef]

Hara, K.; Takahashi, T.; Ishimaki, M.; Omote, K. Machine-learning Approach using Solidity Bytecode for Smart-contract Honeypot
Detection in the Ethereum. In Proceedings of the IEEE 21st International Conference on Software Quality, Reliability and Security
Companion (QRS-C), Hainan, China, 6-10 December 2021; pp. 652-659.

Mi, E; Wang, Z.; Zhao, C.; Guo, J.; Ahmed, F; Khan, L. VSCL: Automating Vulnerability Detection in Smart Contracts with Deep
Learning. In Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Sydney, Australia, 3-6
May 2021; pp. 1-9.

Wang, B.; Chu, H.; Zhang, P.; Dong, H. Smart Contract Vulnerability Detection Using Code Representation Fusion. In Proceedings
of the 28th Asia-Pacific Software Engineering Conference (APSEC), Taipei, Taiwan, 6-9 December 2021; pp. 564-565.

Yu, X.; Zhao, H.; Hou, B.; Ying, Z.; Wu, B. DeeSCVHunter: A Deep Learning-Based Framework for Smart Contract Vulnerability
Detection. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18-22 July 2021;
pp- 1-8.

Zhang, Y.; Kang, S.; Dai, W.; Chen, S.; Zhu, J. Code Will Speak: Early detection of Ponzi Smart Contracts on Ethereum. In
Proceedings of the 2021 IEEE International Conference on Services Computing (SCC), Chicago, IL, USA, 5-10 September 2021;
pp- 301-308.

Andrijasa, MLE,; Ismail, S.A.; Ahmad, N. Towards Automatic Exploit Generation for Identifying Re-Entrancy Attacks on Cross-
Contract. In Proceedings of the IEEE Symposium on Future Telecommunication Technologies (SOFTT), Johor Baharu, Malaysia,
14-16 November 2022; pp. 15-20.

Ashizawa, N.; Yanai, N.; Cruz, J.P.; Okamura, S. Eth2Vec: Learning contract-wide code representations for vulnerability detection
on Ethereum smart contracts. Blockchain Res. Appl. 2022, 3, 100101. [CrossRef]

http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1162/jocn.1991.3.1.71
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1146/annurev-statistics-031219-041220
http://dx.doi.org/10.1109/TII.2022.3151093
http://dx.doi.org/10.1109/ACCESS.2020.3038605
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/TSE.2020.2971482
http://dx.doi.org/10.1109/ACCESS.2020.2969429
http://dx.doi.org/10.1016/j.bcra.2022.100101

Electronics 2023, 12, 2046 28 of 28

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Gupta, R.; Patel, M.M.; Shukla, A.; Tanwar, S. Deep learning-based malicious smart contract detection scheme for internet of
things environment. Comput. Electr. Eng. 2022, 97, 107583. [CrossRef]

Hu, H.; Bai, Q.; Xu, Y. Scsguard: Deep scam detection for ethereum smart contracts. In Proceedings of the IEEE INFOCOM
2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA, 2-5 May 2022;
pp- 1-6.

Hwang, S.-J.; Choi, S.-H.; Shin, J.; Choi, Y.-H. CodeNet: Code-Targeted Convolutional Neural Network Architecture for Smart
Contract Vulnerability Detection. IEEE Access 2022, 10, 32595-32607. [CrossRef]

Li, N,; Liu, Y.; Li, L.; Wang, Y. Smart Contract Vulnerability Detection Based on Deep and Cross Network. In Proceedings of the
2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer
Engineering and Applications (CVIDL & ICCEA), Changchun, China, 2022 May 2022; pp. 533-536.

Liu, L.; Tsai, W.-T.; Bhuiyan, M.Z.A; Peng, H.; Liu, M. Blockchain-enabled fraud discovery through abnormal smart contract
detection on Ethereum. Future Gener. Comput. Syst. 2022, 128, 158-166. [CrossRef]

Nguyen, H.H.; Nguyen, N.M.; Xie, C.; Ahmadi, Z.; Kudendo, D.; Doan, T.N.; Jiang, L. MANDO: Multi-Level Heterogeneous
Graph Embeddings for Fine-Grained Detection of Smart Contract Vulnerabilities. In Proceedings of the IEEE 9th International
Conference on Data Science and Advanced Analytics (DSAA), Online, 13-16 October 2022; pp. 1-10.

Shakya, S.; Mukherjee, A.; Halder, R.; Maiti, A. Chaturvedi, SmartMixModel: Machine Learning-based Vulnerability Detection of
Solidity Smart Contracts. In Proceedings of the 2022 IEEE International Conference on Blockchain (Blockchain), Espoo, Finland,
22-25 August 2022; pp. 37-44.

Wang, Z.; Zheng, Q.; Sun, Y. GVD-net: Graph embedding-based Machine Learning Model for Smart Contract Vulnerability
Detection. In Proceedings of the International Conference on Algorithms, Data Mining, and Information Technology (ADMIT),
Xi’an, China, 23-25 September 2022; pp. 99-103.

Wu, Z,; Li, S.; Wang, B.; Liu, T,; Zhu, Y.; Zhu, C.; Hu, M. Detecting Vulnerabilities in Ethereum Smart Contracts with Deep
Learning. In Proceedings of the 4th International Conference on Data Intelligence and Security (ICDIS), Shenzhen, China, 24-26
August 2022; pp. 55-60.

Xu, G; Liu, L.; Zhou, Z. Reentrancy Vulnerability Detection of Smart Contract Based on Bidirectional Sequential Neural Network
with Hierarchical Attention Mechanism. In Proceedings of the 2022 International Conference on Blockchain Technology and
Information Security (ICBCTIS), Huaihua, China, 15-17 July 2022; pp. 56-59.

Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Smart contract vulnerability detection combined with multi-objective
detection. Comput. Netw. 2022, 217, 109289. [CrossRef]

Zheng, Z.; Chen, W.; Zhong, Z.; Chen, Z.; Lu, Y. Securing the ethereum from smart ponzi schemes: Identification using static
features. ACM Trans. Softw. Eng. Methodol. 2022. [CrossRef]

Zhou, Q.; Zheng, K.; Zhang, K.; Hou, L.; Wang, X. Vulnerability Analysis of Smart Contract for Blockchain-Based IoT Applications:
A Machine Learning Approach. IEEE Internet Things J. 2022, 9, 24695-24707. [CrossRef]

Cai, J.; Li, B.; Zhang, J.; Sun, X.; Chen, B. Combine sliced joint graph with graph neural networks for smart contract vulnerability
detection. J. Syst. Softw. 2023, 195, 111550. [CrossRef]

Jiang, E; Cao, Y,; Xiao, J.; Yi, H; Lei, G.; Liu, M.; Deng, S.; Wang, H. VDDL: A deep learning-based vulnerability detection model
for smart contracts. In Proceedings of the International Conference on Machine Learning for Cyber Security, Nadi, Fiji, 2—4
December 2023; pp. 72-86.

Jie, W,; Chen, Q.; Wang, J.; Koe, A.S.V,; Li,].; Huang, P; Wu, Y.; Wang, Y. A Novel Extended Multimodal Al Framework towards
Vulnerability Detection in Smart Contracts. Inf. Sci. 2023, 636, 118907. [CrossRef]

Liu, Z.; Qian, P; Wang, X.; Zhuang, Y.; Qiu, L.; Wang, X. Combining Graph Neural Networks With Expert Knowledge for Smart
Contract Vulnerability Detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 1296-1310. [CrossRef]

Su, J.; Dai, H.-N.; Zhao, L.; Zheng, Z.; Luo, X. Effectively generating vulnerable transaction sequences in smart contracts with
reinforcement learning-guided fuzzing. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, Rochester, MI, USA, 10-14 October 2023.

Sun, X,; Tu, L.; Zhang, J.; Cai, J.; Li, B.; Wang, Y. ASSBert: Active and semi-supervised bert for smart contract vulnerability
detection. . Inf. Secur. Appl. 2023, 73, 103423. [CrossRef]

Zhang, Z.; Lei, Y.; Yan, M.; Yu, Y.; Chen,].; Wang, S.; Mao, X. Reentrancy vulnerability detection and localization: A deep learning
based two-phase approach. In Proceedings of the 37th IEEE/ ACM International Conference on Automated Software Engineering,
Rochester, MI, USA, 10-14 October 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compeleceng.2021.107583
http://dx.doi.org/10.1109/ACCESS.2022.3162065
http://dx.doi.org/10.1016/j.future.2021.08.023
http://dx.doi.org/10.1016/j.comnet.2022.109289
http://dx.doi.org/10.1145/3571847
http://dx.doi.org/10.1109/JIOT.2022.3196269
http://dx.doi.org/10.1016/j.jss.2022.111550
http://dx.doi.org/10.1016/j.ins.2023.03.132
http://dx.doi.org/10.1109/TKDE.2021.3095196
http://dx.doi.org/10.1016/j.jisa.2023.103423

	Introduction
	Related Work
	Background
	Classification of Smart-Contract Vulnerabilities
	Reentrancy Attack
	Integer Overflow and Underflow
	Uninitialized Storage Pointer
	Access Control Vulnerability
	Front-End Runtime Error Vulnerability
	Time Dependency
	Other Vulnerabilities

	Development of Smart-Contract Security Detection

	Machine-Learning Techniques
	The Development of Machine Learning
	Machine-Learning Algorithms
	Supervised Learning
	Semi-Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Comparing Different Kinds of Machine Learning

	Case Studies of ML-Based Smart-Contract Security Detection
	Document Retrieval
	Machine-Learning-Based Tools for Smart-Contract Vulnerability Detection
	Comparative Analysis of Existing Machine-Learning-Based Smart-Contract Vulnerability Detection Tools

	Discussion
	Conclusions and Future Work
	References

