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Abstract: The aquaculture production sector is one of the suppliers of global food consumption
needs. Countries that have a large amount of water contribute to the needs of aquaculture production,
especially the freshwater fisheries sector. Indonesia is a country that has a large number of large
bodies of water and is the top-five producer of aquaculture production. Technology and engineering
continue to be developed to improve the quality and quantity of aquaculture production. One aspect
that can be observed is how the condition of fish pond water is healthy and supports fish growth.
Various studies have been conducted related to the aquaculture monitoring system, but the problem
is how effective it is in terms of accuracy of the resulting output, implementation, and costs. In
this research, data fusion (DF) and deep reinforcement learning (DRL) were implemented in an
aquaculture monitoring system with temperature, turbidity, and pH parameters to produce valid and
accurate output. The stage begins with testing sensor accuracy as part of sensor quality validation,
then integrating sensors with wireless sensor networks (WSNs) so they can be accessed in real time.
The implemented DF is divided into three layers: first, the signal layer consists of WSNs and their
components. Second, the feature layer consists of DRL combined with deep learning (DL). Third, the
decision layer determines the output of the condition of the fish pond in “normal” or “not normal”
conditions. The analysis and testing of this system look at several factors, i.e., (1) the accuracy of the
performance of the sensors used; (2) the performance of the models implemented; (3) the comparison
of DF-DRL-based systems with rule-based algorithm systems; and (4) the cost effectiveness compared
to labor costs. Of these four factors, the DF-DRL-based aquaculture monitoring system has a higher
percentage value and is a low-cost alternative for an accurate aquaculture monitoring system.

Keywords: aquaculture monitoring system; data fusion; deep reinforcement learning; deep learning;
Internet of Things (IoT)

1. Introduction

Indonesia is a fish-producing country which is ranked in the top five in the world.
Based on data from Statistics Indonesia (BPS), it is stated that production in the aquaculture
sector will reach 14 million tons in 2022 [1]. The potential for increased production from the
aquaculture sector will contribute to improving the economy in Indonesia, where in 2022
Indonesia will become an exporter of fish with an achievement of 1.2 million tons [2]. The
main issues in aquaculture, especially freshwater aquaculture, are temperature conditions,
pH levels, dissolved oxygen levels, and turbidity levels of pond water. This influences
optimal fish growth and increases the productivity of fish yields. Aquaculture technology
integrated with the Internet of Things (IoT) has been developed, such as a water monitoring
system [3], smart aquaculture system [4], AI IoT-based buoy system [5], temperature
water control [6], and others. The IoT system being built is a multi-sensor integration that
reads data from the environment and then processes it into a control application, such
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as a microcontroller that drives actuators [7]. From this system model, there are several
weaknesses, including the resulting data that is only a trigger to carry out commands on
the actuator, the information for users is less decisive, and the lack of utilization of the
usability of data to make it valuable.

Data fusion is a new paradigm for integrating multi-sensor devices to produce decisive
and reliable information. Data fusion is a data processing method to improve the accuracy
and quality of the resulting output and reduce data redundancy [8]. The data generated by
sensors in a multi-sensor system are coordinated by data fusion through a special algorithm
to provide quality output [9]. Alam et al. [10] stated that the stages in data fusion consist
of four stages, i.e., signal level, pixel level, feature level, and decision level. Furthermore,
there are two perspectives regarding data fusion related to IoT: the first is a single-hub data
fusion system where sensors interact with only one fusion system. Second is the multi-hub
data fusion sensor, where the multi-sensor system interacts first with the multi-hub sensor,
and then the data are transferred to the fusion system via the multi-hub sensor. Mouli [11]
systematically describes the stages of data fusion, which begin with reading data from the
sensor, signal processing, transferring data to the PC console, feature extraction, fusion
technique, and condition analysis/diagnosis. Methods in data fusion are categorized into
four categories: statistical method, mechanistic method, data-driven method (that has sub-
categories of Ensemble, Fuzzy Association, and AI), assessment method, and evaluation
of metrics in the analysis of the quality [12]. In aquaculture, IoT through wireless sensor
networks (WSNs) integrate data fusion to maximize accuracy in estimating the temperature
in aquaculture ponds and minimize data redundancy through ISOA-SELM modeling [13].
Meanwhile, Rupok et al. [14] developed a fishery early monitoring system with WSNs
combined with data fusion; the method applied is the Dempster–Shafer theory (DST),
which produces an accuracy of 91.1%.

Deep reinforcement learning (DRL) is the recommended method in data fusion so
that it has intelligent system capabilities that can learn continuously [15]. The ability of
agents in DRL to interact with the environment can support the achievement of long-
term goals without external motivation or complete knowledge of the environment [16].
DRL is the development of reinforcement learning (RL) combined with deep learning,
which uses a neural network that works as an approximator function and determines
the output, the policy, the action, and the value. Meanwhile, RL focuses on agents who
interact with the environment based on perceiving the state [17]. In the field of aquaculture,
Nicolas [18] employed deep reinforcement learning in fishery management regarding
decision-making by comparing several algorithms. From the results of a comparative
analysis of processing times for the nine algorithms, the TD3 algorithm has demonstrated
the highest performance results.

In the related work, there are several studies related to the fusion technique, including
Leal-Junior et al. [19] who implement a polymer optical fiber (POF) sensor to estimate
the water content of temperature-insensitive emulsions of oil–water. The surface plasmon
resonance (SPR) principle is combined with POF to produce optimal output. The SPR
POF output in the form of temperature is translated into a linear wavelength shift through
analysis of temperature cross-sensitivity as the basis for data fusion performances. The
mean error results with the fusion technique are 6.46 to 7.81%. Abadi et al. [20] employ data
fusion for downscaling and evaluation of the process of evapotranspiration in water balance
estimation. The data are in the form of remotely sensed data, and the fusion technique used
is random forest regression (RFR) and support vector machine (SVR). Model testing was
carried out by calculating the mean absolute error (MAE) value. The results of the MAE
RFR and SVR tests were obtained, respectively: 6.13% and 5.71%. Manoharan et al. [21]
employed a fuzzy interface algorithm in a data fusion technique for superfluous pipeline
channel detection. Ultrasonic sensors are used to detect superfluous water in five scenarios
with regard to the leakage point, time period of computation, period of upstream and
downstream velocity, sensor performance, and cost of implementation. The final results
show that the implemented data fusion model can be an alternative pattern recognition
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for superfluous pipeline channels in the future. Meanwhile, in this study, data fusion was
implemented to integrate the data generated from the multi-sensor system, then modeling
was carried out with DRL, which provides output for the user regarding the actual behavior
of the object being observed in the form of a fish pond. Based on the experimental results
and testing of the proposed system, which are discussed in more detail in Section 4, it
was found that the combination data fusion-deep reinforcement (DF-DRL) had an error
rate percentage of 5%, which, when compared with the three data fusion techniques,
DF-DRL has a lower error rate percentage. Figure 1 shows a graph of the comparative data
fusion technique:
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DRL implementation employs deep learning (DL) modeling in determining the action
performed by the agent, which has a major role in determining what action is performed
by the system. In general, there are two main classifications of agents: model-free agents
and model-based agents [22]. The model-free agent does not focus on how the model is in
the environment. The learning model is based on experience, the feedback from the envi-
ronment on the actions given, as well as the trial-error process. Meanwhile, model-based
agents focus on how the internal model of the environment receives states or determines
actions based on those states. Within the environment, various conditions or states have
been determined, as well as the actions and consequences that are carried out based on
these state conditions [23]. Previous research related to model-free agents, as has been done
by Liu et al. [24], implements model-free agents in DRL to control the load frequency. The
structure algorithm uses a deep Q network (DQN), and the final results show that the agent
can solve problems by controlling the load frequency and determining the appropriate
power and frequency requirements. In contrast, Sanayha and Vateekul [25] developed
a model-based agent on DRL for peer-to-peer energy trading cases. Agent performance
is based on an environment that has been modeled with multivariate-long short-term
memory (multivariate-LSTM) with time-series data. The evaluation was carried out by
forecasting the price of energy trading MAPE at 15.82%, while the predicted quantity of
MAPE was 10.39%.

In this study, we employed a model-based agent where environmental conditions
have been determined based on fish pond condition parameters regarding temperature,
pH level, and turbidity. The agent obtains the initial conditions from the environment, the
data that are integrated by the data fusion layer and then processed in the DRL framework,
which becomes an action for the next stage. A detailed explanation of DRLs and agents
will be discussed in detail in Section 2.4.

This paper consists of several sections: the first is the “abstract”, which explains in full
a series of studies, starting with the background, the aim of the research, the methods, and
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the results. Second, the “introduction” section explains the background, purpose, analysis,
and literature review related to the research. Third, the “system architecture design” section
explains the system architecture, as well as the software and hardware of components that
have been used in the research. Fourth, the “experimental method” section describes how
to integrate data fusion and DRL into an integrated system to monitor aquaculture systems.
The fifth “results and discussion” section describes the results based on the experiment and
testing, discussing the findings of the whole experiment. The last sections are “conclusion
and future work” and “references”.

2. System Architecture Design

This section describes the system architecture design, which contains an explanation
of the aquaculture monitoring system, wireless sensor networks, deep fusion in the aqua-
culture monitoring system, deep reinforcement learning that uses deep learning as an
agent, and integration of data fusion and deep reinforcement learning in the aquaculture
monitoring system.

2.1. Conventional Aquaculture Monitoring System

The aquaculture monitoring system in previous studies [26,27] was built with a sensor
device that detects the condition of the fish pond with various parameters: temperature
condition, pH level, and turbidity level. Data are read through sensors, namely the temper-
ature sensor (type RTD PT100), pH sensor (SEN 0161), and turbidity sensor (SEN 0189),
and then sent to the microcontroller connected to the Wi-Fi module. In a conventional
aquaculture monitoring system, there are three layers: the physical layer, the network layer,
and the application layer. The physical layer consists of sensors that are connected to a
microcontroller to process data that is read by sensors from the environment. The network
layer consists of Wi-Fi modules connected to internet services. The Wi-Fi module functions
as an intermediary between the controller and the user via internet services. Meanwhile, the
application layer is a user interface that represents the data generated by reading the device
in real time from the fish pond. The applications contained in the application layer are
Android-based mobile applications, which can be accessed by users anytime and anywhere.
In this monitoring system, the user can only find out the current condition of the fish pond
based on the parameters of temperature, pH, and turbidity. In contrast, the proposed
aquaculture monitoring system not only reads the real-time condition of fish ponds but
also determines whether the current condition of fish ponds is “normal” or “not normal”.
Figure 2 represents the architecture of a conventional aquaculture monitoring system.
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In the proposed aquaculture water monitoring system, a more complex data fusion
implementation is carried out, consisting of three main layers: the signal layer, feature layer,
and decision layer. The fusion technique uses a combination of DRL and DL to produce the
output of the current condition of the pond, whether it is “normal” or “not normal”. The
system not only reads the current conditions of the fish pond based on temperature, pH,
and turbidity, but also provides the convenience for the end user to find out whether the
condition of the fish pond is normal or not. Figure 3 is the proposed aquaculture monitoring
system, which is discussed in detail in Section 2.6:
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2.2. Wireless Sensor Networks in Aquaculture Monitoring System

WSNs read the basic conditions of fish ponds through temperature, pH, and turbidity
with integrated temperature sensor (RTD PT100), pH sensor (SEN 0161), and turbidity
sensor (SEN 0189) components that are received by the ATmega328-type microcontroller
provided by Arduino Uno R3, then connected to the internet and accessible by the user.
The selection of sensors used in this study considers three aspects, i.e., low cost, precision,
and convenience. The goal of this study is to construct a convenient, accurate, and low-cost
aquaculture monitoring system based on data fusion through deep reinforcement learning.
The microcontroller, as part of it, has an important role in processing data generated from
sensors to become the basis for determining decision parameters.

Figure 4 shows a more detailed architecture, which gives an idea of how WSNs are
implemented. The data that have been processed by the microcontroller are then connected
to the Wi-Fi module to be stored in the Firebase data cloud. The connection mechanism
used is message queuing telemetry transport (MQTT), which connects communications
between IoT machines or devices—in this case, sensors, microcontrollers, and Wi-Fi module
devices—with the cloud gateway in Firebase. Furthermore, the data are stored in Firebase
as real-time data on the current condition of the fish pond. MQTT works as a broker that
receives data from IoT devices as a client that publishes data on the temperature, pH, and
turbidity of fish ponds. MQTT is sending data to the Firebase data cloud as a subscriber
of MQTT [28]. The end user or mobile applications use the Hypertext Transfer Protocol
(HTTP) as a protocol that communicates data in real time on Firebase to be received by
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end users through Android-based mobile applications. The data communication process
between the mobile application and Firebase uses “request” and “response” communi-
cation, in which the mobile application “requests” data from the system, and the system
provides feedback through the “response” function by providing the latest data on fish
pond conditions. The end user of the system is an Android-based application with detailed
technical specifications, as referred to in Section 3.5.
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Technically, the configuration of WSNs in the aquaculture monitoring system can be
seen in Figure 5, where several nodes are integrated with each other. Inside the node are a
sensor, microcontroller, and Wi-Fi module. Nodes interconnect with each other to form a
network called WSNs, and data are transmitted to Firebase via the MQTT protocol as the
WSN’s network communication service. The Wi-Fi module acts as a data collector and also
transmits data to the base station in the form of Firebase’s real-time data cloud. During
data transmission between devices and Firebase, as well as mobile devices and Firebase,
there are protocols used as communication media, i.e., MQTT and HTTP. Firebase acts as a
storage unit that stores data read by sensors and distributes data to mobile devices.

The WSN’s network topology in this study is a mesh topology, where all nodes are
interconnected or have multiple nodes. The mesh topology has the advantage in that the
connected nodes complement each other’s data; for example, if the pH sensor does not
work, then the data will be provided by other pH sensors connected to the WSN network.
The n-th node in Figure 5 shows that as many nodes can be interconnected into this mesh
topology as we need [29]. The considerations in this study using a mesh topology are the
aspects of scalability, cost-effectiveness, reliability, and the effectiveness of energy.

2.3. Data Fusion in Aquaculture Monitoring System

In this study, data fusion is implemented to integrate various sensors from a multi-sensor
system. The system data fusion architecture is represented in Figure 6, which consists of
three levels: (1) signal level; (2) feature level; (3) decision level. At the signal level, the
resulting signal output based on sensor readings is integrated for use in the next layer,
where the sensor reads the condition of the fish pond with the parameter’s temperature,
pH, and turbidity. The raw data that are read by the sensors that are integrated with the
microcontroller are then processed and transferred via the WSN as a data control for further
processing, which is transmitted to the feature level. The feature level is the second process,
which is the process of extracting data generated at the signal level to produce features
used as parameters in making decisions or actions to be carried out by the system. A fusion
technique is involved in the inferencing process in this study which uses DRL as a fusion
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technique for data processing. Technically, the DRL mechanism used in the fusion technique
involves deep learning when the agent makes decisions. A series of neural networks is
employed to produce an accurate model for determining the resulting output; detailed
descriptions of DRL and DL are explained in Sections 2.4 and 2.5. The decision level is the
last in the data fusion architecture, where at this level the system issues output as a result of
processing data through the data fusion process. The output generated by the aquaculture
monitoring system is a notification of the condition of the fish pond in a “normal” or “not
normal” condition that refers to Section 3.3. The variety of sensors used in the multi-sensor
system in this study allows for a variety of complex conditions to occur, which need to be
handled not only by rule-based decisions or conventional aquaculture monitoring systems,
but as a whole, need to be examined from the stages of signal processing, signal information
extraction, signal processing, and the output of signal processing. Therefore, the data fusion
system is the choice used for this aquaculture monitoring system research.
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2.4. Deep Reinforcement Learning (DRL)

The basic concept of DRL is reinforcement learning (RL), which is part of machine
learning. RL is based on the Markov decision process (MDP), which is a decision-making
model in random situations represented by agents as decision-makers [30]. There are five
elements in the MDP framework: agent, environment, state (S), action (A), and reward (R).
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The agent has a function as a decision-maker for what action will be taken by the system
based on the conditions of the environment. The environment has a role in giving S to
the agent so that he can make decisions in the form of A. A decided by the agent becomes
input for the environment, which then becomes R for the consequences decided by the
agent. Each lap time is represented by t. This process takes place continuously; the process
is returned to a new state, S(t+1), for the next decision process, and the reward is returned
to the agent, R(t+1), for the next process. If it is related between St, At, and Rt+1, it is
formulated as a function f (St, At) = Rt+1, where St and At will produce a new reward,
which is represented as Rt+1 on the dotted line on the left side of Figure 7, and then returns
to the reward condition of the current Rt. This also applies to St, where it will become the
new condition St+1 until the dotted line, and then return to St.
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RL combined with deep learning (DL) becomes deep reinforcement learning [31].
The neural network is employed to help the agent in the decision-making process of
determining the action to be performed. Figure 8 shows the extended RL combined with
the DL, which becomes the DRL.
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In DRL, the neural network that is used in deep learning has a function called a
function approximator. DL has an important role in the DRL framework, especially in
making decisions for random and complex conditions [32] and providing optimal output
and rewards for the next iteration of the process. State in the context of DL in this study is
the condition of the fish pond which consists of temperature conditions, pH conditions, and
turbidity conditions. For example, the state temperature is 25 ◦C, the turbidity is 24 NTU,
and the pH is 7, which are denoted as S: [7,24,25]. Then, with these conditions, the action
is in the form of a declaration of the condition of the fish pool in a “normal” state, which
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is denoted as A: normal, which then triggers the system to give a reward (R) to become
the next condition Rt+1 and St+1. The action determined by the agent is combined with the
neural network process through the function y = f (w1x1 + w2x2 + . . . + wnxn + b) where w
is the weight resulting from the model, x is the input from the neuron, and b is the bias. An
activation function is implemented to produce optimal output which is represented by f.
The following formulation is used in Equation (1):

Agent (St, At) = Rt+1 + f (w1x1 + w2x2 + w3x3 + . . . + wnxn + b) (1)

As explained in the Introduction section, the agent that is built is a model-based agent,
which monitors the model of its environment when it is operated. The model becomes the
basis for agents to predict future actions and conditions. This model contains various states
and potential actions, as well as consequences or rewards that will be obtained by agents
in the DRL sequence. The selection of a model-based agent is based on environmental
conditions, that is, the parameters or states contained in the aquaculture monitoring system,
which consist of temperature, turbidity, and pH. Therefore, this allows the agent to make
the correct and accurate decisions based on environmental conditions and the state read
from the environment.

2.5. Deep Learning (DL)

DL is a tool to sharpen the action produced by the agent, with random probability
conditions [33]. In previous research, in the context of DRL, many used traditional super-
vised learning models such as SVM or random forest [34–36], thus the use of DL in this
study is still relevant in the context of the updated method being implemented. The DL
implementation in this study uses an artificial neural network (ANN), which is defined
by five layers, consisting of one layer as the input layer, three layers as hidden layers, and
one layer as the output layer. DL, together with the agent, accepts the state conditions, and
then DL performs an algorithmic process to determine the probability of these conditions,
where the input conditions are divided into three parts, namely temperature conditions, pH
conditions, and turbidity conditions. Figure 9 represents the neural network architecture in
deep learning:
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In Figure 9, in which the input layer section can be seen, there are three data inputs that
are the basic parameters of neurons (temperature, pH, and turbidity) to be computed in the
next layer. In the hidden layer, each layer consists of 32 neurons, 16 neurons, and 16 neurons.
Meanwhile, in the output layer, there is one layer in the form of binary classification 0 and 1,
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which represents “normal” or “not normal” fish pond water conditions. The input into each
neuron is called a vector x = (x1, x2, x3, ... xn), and the output of the neuron is represented
by y. In input processing, each neuron requires not only the input x but also the weight (w)
that contributes to producing a strong output and provides the direction of the connection
to the next neuron. To carry out x and w processing, an activation function (f ) is needed so
that it produces a non-linear output that will be transferred to the next neurons [37]. In the
formulation Equation (2), output neurons are represented by y, which consists of f, which
is an activation function that processes inputs w1x1, w2x2, w3x3, to wnxn and added by b,
which is a representation of the bias [38].

y = f (w1x1 + w2x2 + w3x3 + . . . + wnxn + b) (2)

In this study, the activation function formulation used is sigmoid because it has
compatibility with the resulting output in the form of binary classification in the form of 0
and 1 which represent “normal” and “not normal” output conditions. Sigmoid is denoted
by the formula in Equation (3), as follows:

f (x) = 1/(1 + e(−x)) (3)

x denotes input data in the function, while e denotes a constant value that has a value
of 2.71828 [39]. As previously described, the sigmoid is suitable for binary classification
cases, where the value range of the sigmoid activation function is from 0 to 1 [40]. This
is due to the way the sigmoid activation function works: various input values become a
probability value of 0 to 1. For example, if the output value is greater than 0.5, then the
probability will lead to a value of 1, where in this case the value 1 is defined as a “not
normal” condition, while if the output value is less than 0.5, then the probability will lead
to 0, which is defined as a “normal” condition. Graphical visualization of the sigmoid
activation function is represented in Figure 10:
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2.6. Combined Data Fusion and Deep Reinforcement Learning Framework

The goal of this study is to combine DF with DRL, in which there is DL to assist agents
in determining the actions to be taken. Inside the DF, there is a signal layer that provides
state conditions (S) to the feature layer as a DRL trigger to determine what action (A)
is performed by the agent. Data processing is done by DL through a neural network
consisting of an input layer, a hidden layer, and an output layer. The output layer instructs
a reward (R) for the next iteration process, and A is forwarded to the decision layer which
translates A as a “normal” or “not normal” condition of data processing. The next layer is
the application layer where data are represented in a user interface that can be used by end
users. Figure 11 shows a combined DF and DRL visualization:
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3. Experimental Method

In this study, the experimental method is an essential part because it forms the founda-
tion for the experimental and analytical processes to produce credible and valuable output.
There are several specific goals in the experimental method, which include: (1) validating
the sensors’ accuracy, which ensures that the sensors have good quality accuracy, taking
into account temperature, real-time data retrieval from fish ponds, and time-series data
retrieval; (2) the construction of the deep learning model that is implemented to ensure
the validity of the parameters in the class label, the dataset transformation process, and
the accuracy of the model used; (3) data fusion algorithm construction, which aims to
integrate all layers in the aquaculture monitoring system; (4) application layer environment,
which aims to ensure integration to the final process, where an Android-mobile-based user
interface is built that can be accessed by end users in real time.

In the experimental process as shown in Figure 12, there are several steps that are
carried out. The initial process is carried out by validating sensor accuracy to ensure that
the temperature, pH, and turbidity sensor components work properly in order to produce
accurate and valid data. The validation process is carried out by testing the sensor in
several conditions in the fish pond. The process of collecting test data is carried out with a
range of time from morning to evening with eight timeframes beginning from 06.00 am
to 08.00 pm. The results of the test are then compared with the measurement results from
the measuring instrument, then a gap is sought between the sensor measurement results
and the measuring instrument which shows the measurement error range. In this study,
the error tolerance given in testing is a maximum of 5% or a minimum of 95% accuracy. If
the conditions are not met, then the process will be repeated until it reaches a maximum
error of 5%. The system built is a WSN, where the data after being read by the sensor
is then transferred to the Firebase real-time cloud which will later be used as the basic
parameters for the system to process data. The process of data communication between
sensor devices and Firebase is carried out via the message queuing telemetry transport
(MQTT) protocol so that data can be transmitted to Firebase to become real-time data. The
transferred data in the form of temperature, pH, and turbidity parameters are processed by
the deep reinforcement learning (DRL) system through deep learning to produce an action
as the output of the agent. In the next stage, the system interprets the data into a binary
classification to output 1 or 0. In this stage, DRL implementation is carried out, where the
agent provides output based on deep learning modeling that has been embedded in the
system. Then, the system performs the decision layer by translating the binary classification
into “normal” or “not normal” conditions, where in this study output 0 is defined as a
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“normal” condition and output 1 is defined as a “not normal” condition. In the final stage,
the mobile application receives the actual decision process from the system based on DF-
DRL and the real-time conditions of the pond based on parameters of temperature, pH,
and turbidity.
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Further explanation in Figure 12 relating to the validation of the sensor accuracy, WSNs,
modeling of deep learning, and deep learning reinforcement algorithms are explained in
detail as follows:

3.1. Validating the Sensor Accuracy

In validating the accuracy of the sensor, it is done by collecting data on the condition
of the fish pond which is divided into eight sampling times in the morning, afternoon, and
evening with a range of every two hours starting at 06.00 to 20.00 (08.00 pm). At the time of
data collection, the environmental conditions were cloudy with occasional light rain, and
the air temperature ranged from 25 ◦C to 30 ◦C. Table 1 shows a detailed description of the
test data collection, which is divided into eight timeframes:

Table 1. Timeframe in data collection.

No Description Time

1 Part one (morning) 06.00
2 Part two (morning) 08.00
3 Part three (morning) 10.00
4 Part four (noon) 12.00
5 Part five (afternoon) 14.00
6 Part six (afternoon) 16.00
7 Part seven (evening) 18.00
8 Part eight (evening) 20.00
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The device configuration in Figure 13 shows the direct interaction of the temperature,
pH, and turbidity sensors on the device. The sensor is connected directly to the microcon-
troller, which is connected to the Wi-Fi module so that the reading data can be accessed in
real time.
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Testing is carried out by collecting data from the sensor, which is compared with a
measurement tool, resulting in a certain error value. At this validation stage, the calculation
method is performed using the mean absolute percentage error (MAPE), with the value
generated from the sensor being called the prediction value (Pi), while the value generated
by the measurement tools is called the actual value (Ai). The difference between Ai and Pi
produces an absolute error, which is divided by Ai, so that the MAPE value is formulated
in Equation (4), as follows:

MAPE = (1/n) × (Ai − Pi)/Ai (4)

3.2. The Implementation of WSNs

As described in the previous section, the WSNs in this study integrate sensors to be
able to communicate with Firebase cloud data. The process of transmitting sensor data
through WSNs is carried out with the pseudocode as shown in Table 2 to indicate cite
Table 2:

Table 2. Pseudocode data transmission to cloud using WSNs.

BEGIN

initialization WSNs connection
data = read sensor environment [“pH”, “temperature”, “turbidity”]
WSNs send (data) to the cloud
confirmation = cloud receives
IF confirmation = “success” THEN

print “data has successfully sent to cloud”
ELSE
print “data transmission error”
END IF
END

The implementation of WSNs for transmitting data from sensors to the cloud can be
seen in Table 3, where there is real-time data on the results of environment readings on the
pH, temperature, and turbidity parameters.
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Table 3. Real-time data Firebase using WSNs.

ID Temperature (◦C) Turbidity (NTU) pH

1 27 28 8
2 20 26 8
3 27 21 8
4 22 26 8
5 26 25 8

3.3. Construction of Deep Learning

In the development of deep learning, generic stages are used to implement where
data pre-processing, model architecture, training the model, and evaluation are carried out.
Figure 14 shows a description of each stage in deep learning in this study.
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Data pre-processing is carried out by preparing a dataset that will be used in deep
learning modeling that uses tabular data derived from various fish pond water conditions,
with variations in temperature, pH, turbidity, and “normal” and “not normal” conditions.
There are four features in the dataset, consisting of three parameter features, and one
classification feature consisting of “normal” and “not normal” labels. The three feature
parameters are states, which will later become knowledge for agents in deep reinforcement
learning to understand actual environmental conditions so that the agent can decide which
action to take under various conditions and at random. As a parameter reference, Table 4
shows the range of normal conditions of the fish pond environment:

Table 4. Fish Pond “Normal” Parameter.

No Parameter Range

1 Temperature 25–30 ◦C
2 pH 6–9
3 Turbidity 0–50 NTU

The classification label refers to the parameter conditions in Table 4. For conditions
outside of these parameters, the classification label becomes “not normal.” The number of
dataset records used in modeling is 1000, consisting of 500 dataset records with a “normal”
classification label and 500 dataset records with a “not normal” classification label. Table 5
shows the sample dataset used in the study regarding the “normal” class referred to in
Table 4. For example, in ID 1, where the temperature is 27, the turbidity is 15, and the pH is
8, these conditions correspond to the parameter range in Table 4 as “normal” conditions. In
contrast, in ID 3, it was found that the temperature was 20, and since it is not included in the
parameter range of Table 4, the condition is included in the “not normal” class. Likewise,
for ID 7, the value of the temperature is 10, turbidity is 30, and pH is 10. Referring to
Table 4, the temperature does not enter “normal” conditions, which are in the range of
25–30 ◦C, and the pH also does not enter “normal” conditions, which is in the pH range
of 6–9. Thus, ID 7 enters the “not normal” classification. In the “class” column in ID 3
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and ID 7, both have class conditions of “not normal”, but come from different parameter
conditions, where in ID 3, temperature (t1) does not meet “normal” conditions, while in
ID 7, temperature (t1) and pH (ph) do not meet “normal” conditions. To facilitate modeling,
a classification label is transformed into binary, where “normal” conditions are represented
by 0, while “not normal” conditions are represented by 1. The class after transformation is
shown in column 6 in gray in Table 5:

Table 5. Dataset of water condition.

Id Temperature (t1) Turbidity (t2) pH (ph) Class Class after Transformation

1 27 15 8 normal 0
2 26 14 7 normal 0
3 20 19 8 not normal (t1) 1
4 19 26 7 not normal (t1) 1
5 28 22 9 normal 0
6 40 27 12 not normal (t1, ph) 1
7 10 30 10 not normal (t1, ph) 1
8 25 21 9 normal 0
9 25 20 9 normal 0

. . . . . . . . . . . . . . . . . .
1000 34 52 11 not normal (t1, t2, ph) 1

The sample data are sufficient for the deep learning algorithm used in the study
because the data have gone through the process of data preparation and transformation so
that the algorithm has well-balanced data and has no significant noise, especially in this
case, which is a binary classification (the condition of the fish pond water is “normal” or
“not normal”) also using three clear input parameters i.e., turbidity, pH, and temperature.
As described in the previous section, the architecture model uses a deep neural network
consisting of five layers. The hidden layer consists of layers, with each neuron having
32 neurons, 16 neurons, and 16 neurons. Furthermore, for the modeling process, dataset
training is carried out by dividing the dataset into train data of 80% of the total dataset and
test data of 20%. The learning rate used in modeling is 0.01 because this value is generally
widely used in various frameworks such as PyTorch and TensorFlow; it also has a balanced
value in the sense that it is neither too small nor too big. Specifically, the parameters used
in the training model are listed in Table 6 below:

Table 6. Training model parameter.

Parameter Value

train data 80%
test data 20%

learning rate 0.01
epoch 100

Visually, data exploration from modeling can be seen in Figure 15, where data values
0 and 1 are shown in yellow and green, respectively. It can be seen from the figure that the
data are divided into two groups, but there are anomalous data that are indicated by red
and orange colors.

From the results of the model training, an evaluation of the model is carried out using
accuracy and the F1 score. There are several outputs generated by modeling: true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). Table 7 shows the
confusion matrix showing TP, TN, FP, and FN:
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Table 7. Confusion matrix.

Condition Status Count

True Positive (TP) 952
False Positive (FP) 26

True Negative (TN) 974
False Negative (FN) 48
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From the results of the confusion matrix in Table 7 can be calculated accuracy, precision,
and recall. While the results of the F1 score are based on calculations from precision and
recall, the formulation is shown in Equations (5)–(8):

Accuracy = (TP + TN) + (TP + FP + TN + FN) (5)

Precision = TP/(TP + FP) (6)

Recall = TP/(TP + FN) (7)

F1 Score = 2((Precision.Recall)/(Precision + Recall)) (8)

Therefore, based on the results of the confusion matrix, an accuracy percentage of
96.3% is obtained with a precision of 0.97, a recall of 0.95, and an F1 score of 0.96. The
results of deep learning modeling show a percentage greater than 95%; this indicates that
the model built has good accuracy for implementation in an aquaculture monitoring system
based on DF and DRL.

3.4. Data Fusion Algorithm

Data fusion in this study is a framework that operates the system from integration and
signal processing through WSNs contained in the signal layer, processing data obtained
from the environment with deep reinforcement learning in the feature layer, as well as
interpreting actions that produce output at the decision layer. Algorithmically, the series of
processes can be represented by pseudocode as shown in Table 8.
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Table 8. Data fusion pseudo code

BEGIN

Initialize variable: sensor_data; processed_data; model; app
sensor_data –> [turbidity, temperature, pH]
model –> deep reinforcement learning
application –> mobile application

WHILE true
WSNs send (sensor_data) to the cloud <– signal layer
confirmation = cloud receives
IF confirmation = “success” THEN

print “data has successfully sent to cloud”
ELSE

print “data transmission error”
END IF

preprocessed_data = preprocess(sensor_data) <– feature layer

train and predict using DRL model
prediction = model.predict(preprocessed_data)

interpret the action based on agent prediction <– decision layer
fused_data = fuse(prediction)

display result on mobile app <– application layer
application.display(fused_data)

END

3.5. Application Layer Environment

The application layer in this study aims to facilitate communication between the
user and the system through the user interface. The application layer is built on a mobile
platform so that users can interact with the system anytime and anywhere. The developed
system has minimum requirements for installation with the following parameters in Table 9:

Table 9. Application layer minimum requirement.

Parameter Specification

Operating System Android
Version Ice Cream Sandwich (4.0)

Random Access Memory 1 GB
Storage Space Free Space minimum 100 MB

Processor 1 GHz

The user interface was developed with the Android Studio Integrated Development
Environment (IDE) which was designed to consist of a main menu which can be seen in
Figure 16a and a monitoring menu in Figure 16b.
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Meanwhile, the implementation of the user interface display of the aquaculture moni-
toring system can be seen in Figure 17a,b, where there is a display of the main menu and
monitoring menu.
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4. Results and Discussions

This section discusses experimentation and analysis from several points of view, each
with specific goals: (1) an analysis of the accuracy of sensors is carried out to find out how
accurate the sensors implemented in the system are; (2) by carrying out a comparative
analysis between the implemented deep learning model and the traditional learning model,
it aims to see the effectiveness and accuracy of the model implemented in the system
when compared to other models; (3) by comparing a system based on data fusion-deep
reinforcement learning (DF-DRL) with a system based on a rule-based algorithm, the aim
is to find out how the level of accuracy of the proposed system compares to conventional
systems in the form of a rule-based algorithm system; (4) see how cost-effective the DF-DRL
system is when compared to a labor-based system. Figure 18 shows the specific goal of
the analysis:
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4.1. Analysis of the Accuracy of Sensors

The sensor measurement results consist of measurements of temperature, pH level,
and turbidity, which are carried out directly on the fish pond water. In temperature
measurements for eight timeframes, there are actual results that come from sensors and
measurement results obtained from measurement tools as shown in Table 10. The absolute
gap value generated by measurements using sensors and measurement tools has the
highest value of 1.0 at the 06.00 timeframe, where the sensor measurement results show



Electronics 2023, 12, 2032 19 of 26

24.2 ◦C and the measurement tool results show 25.2 ◦C. The gap value between the two
measurements is 1 ◦C and then it is used as a value to determine the percentage error,
by dividing the absolute gap value by the measurement tool result value, with value 1.0
divided by 25.2, resulting in a percentage error of 3.97%. The lowest percentage error is
produced on the 12.00 timeframe of 0.71%. Overall, the average error percentage on the
results of temperature measurements is 1.81%, which means that this percentage is the
value of MAPE.

Table 10. The result of temperature measurement.

Timeframe Actual Result in Celsius (Sensor) Measurement Tool
Result in Celsius Absolute Gap Value Error Percentage

06.00 24.2 25.2 1.0 3.97%
08.00 25.4 25.8 0.4 1.55%
10.00 25.3 25.9 0.6 2.32%
12.00 27.8 28.0 0.2 0.71%
14.00 27.4 27.6 0.2 0.72%
16.00 26.1 26.3 0.2 0.76%
18.00 25.4 24.9 0.5 2.01%
20.00 25.3 24.7 0.6 2.43%

Average Error 1.81%

Visually, the results of sensor measurements and measurement tools can be seen in
Figure 19, where in both measurements, there is an increase in temperature ahead of the
10.00 timeframe, then it rises significantly at 12.00 with temperatures around 28 ◦C. Then,
it drops slowly from the 14.00 to 20.00 timeframe.
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Figure 19. Visualization of temperature measurement.

The turbidity measurement results are shown in Table 11 with the nephelometric
turbidity unit (NTU) measurement unit. The highest absolute gap value is found in the
10.00 timeframe of 2.3 NTU, which means an error percentage of 10.18%. Meanwhile, the
lowest absolute gap value on the timeframe is 1.2 NTU, or an error percentage of 5.36%.
The MAPE generated from turbidity measurements is 8.52%.

Table 11. The result of turbidity measurement.

Timeframe Actual Result in NTU (Sensor) Measurement Tool
Result in NTU Absolute Gap Value Error Percentage

06.00 20.2 22.1 1.9 8.60%
08.00 20.1 22.3 2.2 9.87%
10.00 20.3 22.6 2.3 10.18%
12.00 21.2 23.2 2.0 8.62%
14.00 21.2 23.3 2.1 9.01%
16.00 21.2 22.4 1.2 5.36%
18.00 20.6 22.4 1.8 8.04%
20.00 20.5 22.4 1.9 8.48%

Average Error 8.52%
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Figure 20 shows the visualization of turbidity measurement from the timeframe 06.00
to 20.00. In the timeframe 12.00 to 14.00 there is an increase in the level of turbidity because
at that time it is the time for fish feeding, so the turbidity level increases.
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Table 12 shows the result of the pH level measurement, with the highest absolute gap
value of 0.2 in the timeframe of 14.00 and 18.00, while the highest percentage error was
2.86% at 18.00. This percentage error is generated from the absolute gap value, which is
0.2, divided by the measurement tool result, which is 7.0. Meanwhile, when compared
with testing on the timeframe of 14.00, the absolute gap value is 0.2 divided by the mea-
surement tool result of 7.2, which produces an error percentage of 2.78%. The resulting
error percentage for the timeframe of 14.00 is lower than that of the timeframe of 18.00.
Therefore, the highest percentage error at the pH level measurement is at the timeframe of
18.00, at 2.86%, where the actual result on the sensor resulted in a pH level reading of 6.8,
but the measurement tool showed a pH level of 7.0. Overall, MAPE is produced at a pH
level of 1.06%.

Table 12. The result of pH level measurement.

Timeframe Actual Result in pH Level (Sensor) Measurement Tool
Result in pH Level Absolute Gap Value Error Percentage

06.00 7.0 7.0 0.0 0.00%
08.00 7.0 7.0 0.0 0.00%
10.00 7.1 7.0 0.1 1.43%
12.00 7.1 7.2 0.1 1.39%
14.00 7.0 7.2 0.2 2.78%
16.00 7.0 7.0 0.0 0.00%
18.00 6.8 7.0 0.2 2.86%
20.00 7.0 7.0 0.0 0.00%

Average Error 1.06%

In Figure 21, the visualization of the pH level measurement between the sensor and
measurement tools shows that there is not really a significant gap.

The percentage accuracy results from the three sensor readings are then averaged to
determine the overall accuracy of the aquaculture monitoring system device. Overall, of
the three components measured based on the percentage error, it resulted in the average of
3.80%. Table 13 shows the total percentage error of the components observed.
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Table 13. Average error of all components.

Description Error Percentage

Temperature 1.81%
pH Level 1.06%
Turbidity 8.52%

Average Error of All Components 3.80%
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4.2. Comparison of Deep Learning and Traditional Learning Model

The implementation of deep learning in this research requires further studies related
to the effectiveness and accuracy of the resulting model. Therefore, a comparative anal-
ysis was carried out between deep learning modeling and traditional learning models
with supervised learning or classification types. Several previous studies used traditional
machine learning in modeling, including support vector machine [41], k-nearest neigh-
bor [42], and naïve Bayes classifier [43]. The three models are implemented in the case of a
model built with a modeling process in several stages, including (1) preparing the same
dataset used in deep learning modeling, the fish pond parameter dataset, consisting of
four features divided into three feature parameters (temperature, pH, and turbidity), class
features consisting of “normal” and “not normal” labels, and data of 1000 records consisting
of 500 “normal” labels and 500 “not normal” labels; (2) data transformation process by
converting “normal” labels with 0 and “not normal” with 1; (3) model implementation with
80% train data and 20% test data; (4) evaluation process through the accuracy parameters
of each model. After the modeling stages are carried out, the accuracy value of the model
is generated, as shown in Table 14 below:

Table 14. Model accuracy performance.

Model Accuracy Percentage

Study I (Support Vector Machine) [41] 95.75%
Study II (k-Nearest Neighbor) [42] 92.15%

Study III (Naïve Bayes Classifier) [43] 95.02%

Average Accuracy 94.31%

Of the three models compared, the highest accuracy value is study I using the SVM
model which has an accuracy percentage of 95.75%, while the lowest is study II which uses
KNN with an accuracy percentage of 92.15%. The average accuracy of the three models is
94.31%. When compared to the deep learning model implemented in modeling, it has a
higher accuracy rate of 96.30% or so based on a comparative analysis between deep learning
and traditional learning models; in the context of this research, the deep learning modeling
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has better accuracy than traditional learning models. Visually, the model comparison can
be seen in Figure 22 below:
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4.3. Comparison DF-DRL and Rule-Based Algorithm

To validate the implementation of DF-DRL in the aquaculture monitoring system,
a comparative analysis was carried out using a rule-based algorithm method. The first
step is to determine the normal conditions as shown in Table 4 as an indicator of the
“true” condition; apart from these conditions, it is stated in “false”. The second step is the
rule-based algorithm coding process that is embedded in the system. The third step is the
development of test scenarios with various conditions of temperature, pH, and turbidity
for 20 test conditions. The testing process is carried out under different conditions on
several water samples; for example, scenario 1 and scenario 2 are scenarios taken from the
same testing water sample, as are several other scenarios that are the results of testing from
different water samples. The purpose of the testing is to see how the system is able to adapt
to a random environment. Tests were carried out using an aquaculture monitoring system
based on DF-DRL and a rule-based algorithm. The test scenarios along with the test results
are represented by Table 15 below:

Table 15. Scenario and result testing.

Scenario ID
Condition Expected

Value
DF-DRL Rule-Based

AlgorithmTemperature Turbidity pH

1 26 21 8 normal normal normal
2 26 20 8 normal normal normal
3 25 21 7 normal normal normal
4 27 19 9 normal normal normal
5 27 21 8 normal normal normal
6 30 35 9 normal normal normal
7 30 42 8 normal not-normal normal
8 30 47 8 normal normal normal
9 28 45 9 normal normal normal
10 24 45 8 normal normal normal
11 21 25 7 normal normal normal
12 21 30 7 normal normal normal
13 27 26 8 normal normal normal
14 20 29 8 normal normal normal
15 20 26 7 normal normal normal
16 40 22 7 not normal not normal normal
17 24 40 10 not normal not normal normal
18 33 8 8 not normal not normal normal
19 10 53 9 not normal not normal not normal
20 17 30 5 not normal not normal not normal
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In Table 15, the actual value is shown by the “expected value” column, which is the
reference for the condition of the fish pond. In the DF-DRL column, out of the 20 scenario
conditions tested, there is one condition (which is indicated with red font) that does
not match the expected value, so that the total value that corresponds is 19 conditions.
Furthermore, the cause of this anomaly condition occurs because it is predicted due to two
factors: first, the temperature and turbidity level are almost close to the threshold, so the
model is confused about whether the condition is “normal” or “not normal”, and second,
the MAPE tolerance on the sensor is 3.8% so that the sensor reading when testing the
DF-DRL is close to the condition “not normal” and the system detects the condition as “not
normal”. Then, from the 19 true conditions, divide by the number of 20 scenarios to produce
95% accuracy. Meanwhile, in the rule-based algorithm column, there are 17 conditions that
have appropriate values and 3 conditions that do not match; this case can also be caused by
the condition values that are close to the threshold. Therefore, the rule-based algorithm
produces a percentage accuracy of 85%; a brief comparison of the two methods is shown in
Table 16:

Table 16. Comparative result of DF-DRL vs. rule-based algorithm.

Method Total Expected Value Correct Value Incorrect Value Accuracy Percentage

DF-DRL 20 19 1 95%
Rule-Based Algorithm 20 17 3 85%

4.4. Analysis of DF-DRL Implemented in Aquaculture Monitoring System

The implementation of DF-DRL in the aquaculture monitoring system has a significant
impact on fish cultivators and provides efficiency and ease in managing low-cost aqua-
culture. The analysis was carried out by comparing the aquaculture monitoring system
based on DF-DRL technology with the labor force. Calculations are made by looking at
conditions in Indonesia, where electricity costs are charged at IDR 1352 per kWh, or IDR
1.352 per Wh. The maximum power usage for the DF-DRL device is 20 watts with daily
use for 24 h. Meanwhile, the daily labor force fee is IDR 50,000 with duration of 3 to 5 h.
Table 17 shows a comparative analysis of the cost burden between DF-DRL technology and
the labor force in the aquaculture monitoring system.

Table 17. Analysis DF-DRL compared with labor force.

Method Component Daily Cost
(IDR)

Monthly Cost
(30 Days—IDR)

Maintenance
(IDR)

Total
(IDR)

In USD
(1 USD = 15,000)

DF-DRL 20 Watt|IDR 1.352 per Wh 648.960 19,468.8 50,000 69,468.8 4.63
Labor Cost Labor Cost = IDR 50,000 50,000 1,500,000 - 1,500,000 100

In Table 17, it can be seen that there is a significant comparison between DF-DRL
technology and labor costs in the aquaculture monitoring system. In the daily cost column,
the use of DF-DRL for 24 h is IDR 648.960; if accumulated within 1 month (30 days) it will
result in a cost of IDR 19,468.8. Meanwhile, the labor cost for a month is IDR 1,500,000.
Maintenance costs are an additional parameter for DF-DRL technology of IDR 50,000.
Consequently, the total cost incurred each month for DF-DRL technology is IDR 69,468.8
or USD 4.63 per month. Meanwhile, the total labor cost is IDR 1,500,000 or USD 100
per month. From this analysis, it can be concluded that the implementation of DF-DRL
technology in aquaculture monitoring systems provides low-cost benefits and added value
for fish cultivators.

5. Conclusions

DF-DRL technology in the aquaculture monitoring system provides efficiency in the
accuracy of the data generated by the system and the reliability of data that can be accessed
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in real time. The stage is carried out by testing the quality of sensor accuracy on WSNs,
where it is obtained with an average error in MAPE of 3.80% or an accuracy of 96.2%.
From the aspect of deep learning modeling, a comparative analysis has been carried out
with traditional machine learning consisting of a support vector machine (SVM), k-nearest
neighbor (kNN), and naïve Bayes classifier (NBC), with an average accuracy of 94.31%,
while the results of deep learning modeling accuracy implemented in this study are 96.30%.
Meanwhile, the effectiveness of DF-DRL performance with a rule-based algorithm with
testing of 20 scenarios resulted in 95% and 85% accuracy, respectively. DF-DRL technology
has 10% higher performance than rule-based algorithms.

While the DF-DRL analysis in terms of cost effectiveness is compared to labor cost
through the monthly cost parameter, it is found that DF-DRL technology is far superior
to labor cost, which is USD 4.63 for DF-DRL technology and USD 100 for labor cost in
monthly cost. DF-DRL technology is an alternative in a low-cost aquaculture monitoring
system with technology that produces significant data accuracy and validity. In future
development, the system can be integrated with various sensors, such as hungry fish
detectors, monitoring cameras integrated with image processing, actuators that provide
automatic feeding, and various other sensors and actuators that are adaptive to various
environmental conditions.
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