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Abstract: The working environment of construction machinery is harsh, and some operations are
highly repetitive. The realization of intelligent construction machinery helps to improve economic
efficiency and promote industrial development. Construction machinery is different from ordinary
passenger vehicles. Aiming at the fact that the existing environmental perception data set cannot
be directly applied to construction machinery, this paper establishes the corresponding data set in
combination with the specific working conditions of construction machinery and carries out training
based on the PointPillars network to realize the environmental perception function applicable to the
working conditions of construction machinery. Most construction machinery runs on unstructured
roads, and the existing passenger vehicle path planning algorithm is not applicable to construction
machinery. Based on this, this paper uses a hybrid A* algorithm to achieve path planning that meets
the kinematics of construction machinery and realizes real-time obstacle detection and avoidance.
At the same time, this paper combines environmental perception with a path planning algorithm to
provide a method of autonomous path finding and obstacle avoidance for construction machinery.
Based on the improved pure pursuit algorithm, the high-precision motion control and established
trajectory tracking of construction machinery are realized, which lays a certain foundation for the
follow-up research and development of related intelligent technologies of construction machinery.

Keywords: unmanned driving; construction machinery; PointPillars; hybrid A*; improve pure
pursuit; autonomous routing

1. Introduction

Construction machinery is widely used in the field of engineering and construction,
with the characteristics of a poor working environment and highly repeatable operation.
With the wave of global intelligence, construction machinery has also begun to develop
in the direction of intelligence. Intelligent construction machinery includes intelligent
products and construction, intelligent manufacturing, intelligent service and intelligent
management. The unmanned driving of construction machinery belongs to the category of
intelligent products and construction [1], which refers to the autonomous completion of
walking and operation of construction machinery without human intervention.

The driverless technology of passenger vehicles generally includes four modules: en-
vironment perception, vehicle localization, planning decision-making and motion control.
On this basis, construction machinery also has an automatic operation module. Due to the
particularity of the walking and operation of construction machinery, the existing driverless
technology of passenger vehicles cannot be directly transferred to construction machinery.
For the environmental perception module, most of the existing data sets are collected for
the driving environment of passenger vehicles, and cannot meet the requirements of the
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environmental perception module for the walking and operation of construction machin-
ery. Therefore, it is necessary to make corresponding data sets according to the working
conditions of construction machinery. At present, the environment perception in the field
of unmanned driving is mainly divided into two categories, one is image environment
perception based on camera, the other is point cloud environment perception based on
lidar. Among them, image environment perception has the advantages of rich texture
information and easy-to-extract feature information, which is more suitable for object
classification, but not conducive to the extraction of object depth in large scenes. In contrast,
point cloud environmental perception is more suitable for the extraction of object depth
in large scenes, and can effectively provide the position and attitude information of work
objects and obstacles for construction machinery, and provide data support for planning
decision-making, motion control and automatic operation of construction machinery.

At present, point cloud target detection can be roughly divided into four categories:
target detection based on fusion image and point cloud, target detection based on 3D space
voxelization, target detection based on direct point cloud processing and target detection
based on 3D space voxelization and direct point cloud processing. The network framework
used in this paper is PointPillars [2], which belongs to the target detection category based
on 3D space voxelization. Its advantage is that it can fully use the convolution layer
to extract point cloud features, and can meet the real-time requirements of point cloud
target detection.

The driving environment of construction machinery is mostly on unstructured roads,
so it is difficult to extract road features, and it is impossible to use vector maps commonly
used in driverless vehicles to constrain their driving path and rules. Aiming at the above
problems, this paper proposes a path planning algorithm for construction machinery based
on hybrid A* [3], which generates a cost map in real time through the observation point
cloud mapping, so as to complete the path planning and obstacle avoidance of the whole
construction machinery.

The point cloud environment perception algorithm in this paper can effectively detect
the position and attitude of the work object relative to the whole vehicle, and transfer
the position and attitude of the work object as the target point into the path planning
module. Through the hybrid A* algorithm, a work path that conforms to the kinematics
of the construction machinery is generated, and the construction machinery is controlled
to move to the vicinity of the work object through the corresponding motion control
algorithm. Because the kinematics model of construction machinery is different from that
of ordinary vehicles, the existing motion control algorithms of driverless vehicles cannot be
directly applied to the motion control of construction machinery. Based on this, this paper
proposes an improved pure pursuit algorithm for motion control of construction machinery
based on the traditional pure pursuit algorithm [4] and the kinematics characteristics of
construction machinery.

Based on the above algorithms, the whole vehicle simulation platform and the real
vehicle test platform of tracked construction machinery are built to verify the above algo-
rithms. The simulation and real vehicle test results show that the environment perception
algorithm can effectively detect the working objects, and the path planning algorithm
based on hybrid A* and the improved pure pursuit motion control algorithm proposed
in this paper can effectively complete the autonomous path finding, autonomous obstacle
avoidance and corresponding motion control of construction machinery, which lays a
certain foundation for the subsequent research of unmanned construction machinery.

The main contributions of this paper are as follows: (1) A point cloud data set that
conforms to the working conditions of construction machinery is produced, and it is trained
and verified by using the PointPillars network. (2) Based on the hybrid A* algorithm and
the kinematic characteristics of construction machinery, a method suitable for construction
machinery path planning is proposed, and real-time obstacle avoidance of construction
machinery is realized through a real-time grid map. (3) Improve the existing pure tracking
algorithm to make it suitable for crawler construction machinery motion control. (4) Build
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corresponding construction machinery simulation and real vehicle test platforms to verify
and analyze the above algorithms.

This paper is organized as follows: Section 2 introduces the production of construction
machinery working condition data set and the construction machinery environment per-
ception algorithm based on PointPillar. Section 3 introduces the path planning algorithm
for construction machinery based on hybrid A*. Section 4 introduces the motion control of
construction machinery based on the improved pure pursuit algorithm. Sections 5 and 6
introduce the construction of the unmanned construction machinery simulation platform
and the real vehicle test platform, and the analysis of related simulation and real vehicle
test results. Finally, Section 7 provides an outlook for the conclusions, shortcomings and
future work of this paper.

2. An Algorithm for Environmental Perception of Construction Machinery Based
on PointPillars

The basic principle of target detection based on 3D space voxelization is to voxelize the
3D laser point cloud, and then extract the features of the voxel lattice through a convolution
neural network. At present, the classic algorithms include VoxelNet [5], SECOND [6],
Pointpillars and MODet [7]. The main principle of the VoxelNet algorithm is to voxelize the
3D point cloud, then extract the features of the point cloud in each voxel, and finally, extract
the voxel features into local features using the voxel feature coding network and process the
local features using the 3D convolution neural network, so as to obtain the deep semantic
features and their corresponding geometric space representation. The disadvantage of
this algorithm is that the point cloud is sparse, and the voxels of the extracted features
are empty, which will greatly reduce the computational efficiency and affect the real-time
performance of the entire environment perception system. The SECOND algorithm adds a
sparse convolution layer on the basis of VoxelNet, which solves the problem of point cloud
sparsity to a certain extent, and improves the reasoning speed of the algorithm. However,
because the VoxelNet voxel-by-voxel feature method is still used, its deployment in the ac-
tual system still cannot meet the real-time requirements. As a common point cloud sensing
algorithm in the industry, PointPillars uses the reduced-dimension convolution method to
improve the reasoning speed. The feature is that only two-dimensional convolution can
achieve end-to-end 3D point cloud learning and target detection.

2.1. Production of Point Cloud Data Set for Working Conditions of Construction Machinery

In this paper, an open field on campus is selected as the data collection site, and the
objects such as mounds, roadblocks, carts, wheel excavators, loaders, trucks, pedestrians
and so on that are common in engineering construction are taken as the collection objects,
as shown in Figure 1. After the data set is collected, it is divided into 3500 laser point cloud
frames, and the objects in each point cloud frame are labeled, respectively.

This paper uses the point cloud annotation software SUSTechPoints [8] developed by
the South University of Science and Technology. The software interface is shown in Figure 2.
Its advantages are that it can edit the annotation box with nine degrees of freedom, and it
has good interactivity and has a relatively friendly annotation detail check mechanism.
At present, SUSTechPoints has been widely used in point cloud target detection and target
tracking data set production.

In this paper, SUSTechPoints is used to label the objects in the 3500 laser point cloud
frames collected and divided above. This data set was created according to the standards
of the Kitti data set. A total of 7153 mounds, 7314 water horses, 5234 carts, 2245 wheel
excavators, 2371 loaders, 1945 trucks and 6845 pedestrians are labeled. Among them,
the mound anchor has a width, length, and height of (1.88, 2.50, 1.00) m with a z center
of −1.15 m. The water horse anchor has a width, length, and height of (0.34, 1.42, 0.75)
m with a z center of −1.275 m. The cart anchor has a width, length, and height of (1.41,
0.77, 0.86) m with a z center of −1.22 m. The construction machinery anchor has a width,
length, and height of (6.13, 2.47, 2.99) m with a z center of −0.15 m. Finally, the pedestrian
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anchor has a width, length, and height of (0.72, 0.71, 1.83) m with a z center of −0.735 m.
Each object box labeled in this paper strictly conforms to the relevant point cloud labeling
standards, and is attached with the object ID number to facilitate the deployment and
application of the subsequent target tracking algorithm. The labeling effect is shown in
Figure 3.

Figure 1. Data set collection scenario diagram.

Figure 2. The main UI of SUSTechPoints. ¬ the perspective view of the 3D point cloud;  the photo
context, which is resizable and can be automatically switched among multiple camera images; ® the
top view of the selected object; ¯ the front view of the selected object; ° the side view of the selected
object; ± the focused photo context, which can be automatically chosen for the selected object; ² the
context menu, which provides tools of context operations; ³ the floating fast toolbox, which provides
most used tools.
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Figure 3. Rendering of point cloud annotation.

2.2. Principle of PointPillars Algorithm

In this paper, PointPillars is used to train and verify the data set of construction
machinery working conditions collected and labeled. The network schematic diagram is
shown in Figure 4, which is mainly divided into three main stages. The first stage uses
pillar coding to encode the original point cloud, and the main point is to rasterize on the
XY plane to determine that the laser points falling into the same grid belong to the same
pillar. Suppose there are P non-empty pillars in a frame point cloud, each pillar contains N
laser points, and each laser point is represented by a nine-dimensional vector D, as shown
in Equation (1), so far the frame point cloud can be represented by a tensor (D, P, N).

D = (x, y, z, r, xc, yc, zc, xp, yp) (1)

xp = x− xc (2)

yp = y− yc (3)

where (x, y, z) is the coordinate of the laser point data in the lidar coordinate system,
(xc, yc, zc) is the geometric center coordinates of all laser points in the pillar where the
laser point is located, and

(
xp, yp

)
is the distance between the laser point and the geomet-

ric center.

Figure 4. PointPillars network diagram.

Perform feature extraction operations on tensors (D, P, N) to obtain the feature tensors
(C, P, N) after reducing the dimension. Finally, the maximum pooling of the feature tensor
is carried out to obtain a planar feature map of the (C, P) dimension. P is divided into
two dimensions, H and W, that is, the height and width of the pseudo-image, so as to
complete the feature extraction operation of the original point cloud and successfully
convert the three-dimensional original point cloud into a two-dimensional pseudo-image.
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The second stage is to use the backbone network to extract the features of the pseudo-image.
The backbone network consists of two networks. One network is used to continuously
reduce the resolution of the feature map and increase its dimension, and the other network
is used to upsample the feature map generated by the previous network, generate the
feature map with the same resolution, and fully connect it to generate a fully connected
layer. The third stage is mainly to use the Single Shot Detector (SSD) [9] to detect 3D objects
in the fully connected layer, and the inspection head is modified accordingly to make it
suitable for the detection of labeled objects in the data set of this paper.

2.3. Pointpillars Loss Function

The loss function is the most important part of the convolution neural network. It is
the basis of the parameter iteration of the whole neural network. By solving the gradient
of the loss function relative to the parameters of the neural network, the network model
can be iterated and updated in the correct direction, thus effectively improving the object
detection accuracy of the network model. The loss function adopted by PointPillars is
similar to the SECOND algorithm, which represents the Box of each detected object with a
seven-dimensional vector E, as shown in Equation (4).

E = (x, y, z, w, h, l, θ) (4)

where (x, y, z) represents the center coordinate of each box, (w, h, l) represents the length,
width and height of each box, and θ represents the azimuth of each box.

Calculate the offset between the corresponding value of the seven-dimensional vector
E of each detected object’s Box and the real value, as shown in Equations (5)–(12):

∆x =
xgt − xa

da (5)

∆y =
ygt − ya

da (6)

∆z =
zgt − za

ha (7)

∆w = log
wgt

wa (8)

∆l = log
lgt

la (9)

∆h = log
hgt

ha (10)

∆θ = sin(θgt − θa) (11)

da =

√
(wa)2 + (la)2 (12)

where (xgt, ygt, zgt, wgt, hgt, lgt, θgt) is the true value of each object Box, (xa, ya, za, wa, ha, la, θa)
is the predicted value of each object Box, and (∆x, ∆y, ∆z, ∆w, ∆l, ∆h, ∆θ) is the offset between
the true value and the predicted value of each object Box.

Based on the offset of each object Box and the Smooth L1 loss function, the location
loss function of all detected object boxes in the input point cloud is constructed, as shown
in Equation (13):

Lloc = Σ
b∈(x,y,z,w,l,h,θ)

SmoothL1(∆b) (13)
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Similar to the SECOND algorithm, in order to avoid the wrong direction of object
detection, the Softmax loss function is introduced to learn the direction of the object, which
is recorded as Ldir.

The Focal Loss function [10] is used as the function for object category detection,
as shown in Equation (14):

Lcls = −αa(1− pa)γ log pa (14)

To sum up, the total loss function of PointPillars is:

L =
1

Npos
(βlocLloc + βclsLcls + βdirLdir) (15)

3. Path Planning of Construction Machinery Based on Hybrid A*

Most construction machinery drives on unstructured roads without clear road charac-
teristics, which makes the existing path planning algorithm of driverless vehicles not well
compatible with construction machinery. Therefore, it is necessary to select an appropriate
algorithm for path planning based on the driving characteristics and kinematics constraints
of construction machinery. The existing path planning algorithms are mainly divided into
three categories, namely, traditional path planning algorithms, sample-based path planning
algorithms and intelligent bionic path planning algorithms. Among them, the represen-
tative works of traditional path planning algorithms include Dijkstra algorithm [11], A*
algorithm [12], D* algorithm [13], and artificial potential field method [14], which have the
advantage of simple algorithm and easy deployment, but the disadvantage is that it is only
suitable for simple planning problems in small scenarios, and it is easy to fall into local
optimization in large and complex scene planning, resulting in an endless loop.

The classic sample-based path planning algorithms include the PRM algorithm [15],
RRT algorithm [16], and RRT variant algorithm [17–19]. Their advantages are high search
efficiency, suitable for path planning in high-dimensional space and complex constraints.
The disadvantages are that the planned path is not the optimal path, and the planned path
curvature is discontinuous, which cannot be directly used. Moreover, the sample-based
path planning algorithm does not support real-time path planning in dynamic scenes.

In recent years, with the continuous popularization of intelligent concepts and the
continuous development of deep learning, reinforcement learning and other related disci-
plines [20,21], intelligent bionic path planning algorithms are also more and more widely
used, which are mainly represented by the particle swarm optimization algorithm [22],
ant colony algorithm [23], genetic algorithm [24] and path planning algorithm based on
deep learning [25] and reinforcement learning [26]. Its advantages are that it conforms
to the ecological characteristics of nature, it has strong trial and error ability and can be
continuously optimized and updated through learning. Its disadvantages are that the
algorithm needs continuous learning and optimization through data set training, and its
generalization is poor at present.

In addition, there are many existing Unmanned Aerial Vehicle (UAV) obstacle avoid-
ance algorithms. Cruz et al. [27] proposed a potential field obstacle avoidance algorithm
based on fluid mechanics panel methods, which can complete the establishment of the
environmental map by relying only on the on-board sensor of UAV, and has good obstacle
avoidance performance. Aguilar et al. [28] proposed an obstacle avoidance method based
on visual detection, which integrates visual detection and proportional control algorithms
to achieve complete obstacle avoidance functions by using only monocular cameras. Her-
mand et al. [29] propose a constraint control scheme based on the ERG framework, which
can complete obstacle avoidance in bounded space with a small amount of computation.

Considering that the driving environment of construction machinery is complex and
changeable and the deployment of intelligent bionic path planning algorithm still needs the
accumulation of relevant data sets of construction machinery, this paper uses the traditional
path planning algorithm to plan and generate the driving path of construction machinery.
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By comparing the classical algorithms of traditional path planning, it can be concluded that
the Dijkstra algorithm and A* algorithm are algorithms that simplify the whole vehicle to a
particle for path planning, without considering the geometric and kinematic constraints of
the whole vehicle, so they cannot be directly applied to the path planning of construction
machinery. The D* algorithm has high search efficiency and can be used in dynamic
environments, but it is too large to be suitable for real-time planning of changeable scenes.
The artificial potential field method uses the idea of a virtual force field to design the
surrounding environment of the robot as an abstract artificial gravity field. The target point
generates “gravity” on the mobile robot, and the obstacles generate “repulsive force” on the
mobile robot. The advantage of the artificial potential field method is that the planned path
is smooth and safe, and has certain robustness, but it easily falls into local optimization,
and the gravity and repulsion are relative, which is not suitable for path planning in the
case of too far away from the target point or too close to the obstacle. UAVs are different
from construction machinery, and their obstacle avoidance methods cannot be directly
applied to construction machinery obstacle avoidance.

To sum up, the hybrid A* algorithm is used to plan the driving path of construction
machinery. Its advantages are that the kinematics constraints of construction machinery
are considered, and the planned trajectory curvature is continuous and smooth, which is
suitable for tracking and control of construction machinery. In addition, the hybrid A*
algorithm combined with the real-time grid map can update the travel route of construction
machinery according to the obstacle information in the grid map at all times, so as to realize
the automatic obstacle avoidance function of construction machinery.

3.1. Hybrid A* Heuristic Function

Hybrid A* uses two heuristic functions, one is the non-holonomic constraint heuris-
tic cost without obstacles, and the other is the holonomic heuristic cost with obstacles.
Among them, the characteristic of non-holonomic constraint heuristic cost without obsta-
cles is that the obstacle is not included in the calculation scope, only the vehicle kinematics
constraint is considered, and the minimum turning radius of the vehicle is taken as the
input quantity. The process is to determine the starting point (xi, yi, θi) and target point
(xg, yg, θg). The Reeds–Shepp curve is used to plan an optimal curve between the starting
point and the target point, and the distance of the optimal curve is calculated as the heuristic
cost h1(n). The heuristic is mainly to trim the branches of the A* search tree properly to
prevent the path direction to the target point from being inconsistent with the set direction.

In contrast, the holonomic heuristic cost with obstacles only considers the obstacle
information and ignores the impact of vehicle kinematics constraints. At each node, the
Dijkstra algorithm is used to obtain the nearest distance to the target point as the heuristic
cost h2(n). The purpose of this action is to use the Dijkstra algorithm to obtain the char-
acteristics of the shortest path from the expansion node to the target point in the maze
environment, to prevent the wrong direction of Hybrid A* expansion during the expansion
process, resulting in unnecessary computational waste.

To sum up, two heuristic costs h1(n) and h2(n) can be obtained by hybrid A*. In the
actual path search process, the larger generation value is taken as the heuristic cost of
hybrid A*, that is h(n) = max(h1(n), h2(n)).

3.2. Voronoi Map

In the path planning algorithm of the whole vehicle, the map is an indispensable part.
It provides the necessary prior information for path planning so that it can plan a global
path that conforms to the vehicle kinematics characteristics and maintains a certain safe
distance from the obstacles. Common maps mainly include grid maps, distance maps and
Voronoi maps. The grid map is generally composed of grids of the same size, and each grid
is assigned a value. According to each grid value, determine whether it is occupied, that is,
whether there are obstacles, as the basis for global path planning. The distance map is to
provide the nearest distance between the expansion node and the obstacle in the search
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process of the planning algorithm. The nearest distance is calculated by the Euclidean
distance. The Voronoi map is an extension of the distance map, which is composed of a
distance map and a generalized Tyson polygon.

The Voronoi map is also called the Tyson polygon or Dirichlet map [30]. As shown in
Figure 5, it is a continuous polygon composed of a set of vertical bisectors connected by
adjacent points. In the Voronoi map, each polygon has a generator, and the distance from
any point in each polygon to the generator of the polygon is shorter than the distance from
other generators. The distance from the point on the polygon boundary to the generator
that generates the boundary is equal.

In the hybrid A* algorithm, the potential energy value ρv(x, y) between the expansion
node and the obstacle is calculated using the Voronoi map, as shown in Equation (16),
and it is used as part of the generation value of the heuristic function so that a certain safe
distance is always maintained between the expansion node and the obstacle.

ρv(x, y) =

(
α

α + do(x, y)
)(

dv(x, y)
do(x, y) + dv(x, y)

)(
do − dmax

dmax
)

2
do ≤ dmax

o

0 other
(16)

where ρv(x, y) is the potential energy at node (x, y), the value is from 0 to 1, when do >
dmax

o , the potential energy of (x, y) is 0, and the maximum potential energy value is reached
when (x, y) is on or inside the obstacle. The minimum potential energy value is reached
when (x, y) is on the edge of the generalized Tyson polygon. do is the distance at which the
node reached the nearest obstacle. dv is the closest distance from the node to the edge of
the Voronoi map. α represents the rate of potential energy decrease, which is a constant,
α ∈ [0,+∞). As the value of α increases, the potential energy at (x, y) decreases more
slowly. dmax

o is the control range of potential energy and is constant.

Figure 5. Voronoi diagram.

3.3. Reeds–Shepp Curve

The Reeds–Shepp curve was proposed by Reeds and Shepp in 1990 [31], which solved
the problem that the Dubins curve could not generate a reverse path. The Reed–Shepp
curve is represented by 9 base words or 48 motion primitives, as shown in Figure 6.
The Reed–Shepp curve is mainly composed of straight lines, forward curves and backward
curves. Wherein, S represents the straight line part, C represents the curve of turning left
or right, Cu represents the curve part of two curves with equal length, Cπ/2 represents the
curve part with an angle of 90◦, | represents the gear conversion (from front driving to
back driving or from back driving to forward driving).
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Figure 6. Word combination of Reeds–Shepp curves.

In the process of hybrid A* algorithm using Reeds–Shepp curve to solve the opti-
mal path, given the initial point attitude (xi, yi, θi) and target point attitude (xg, yg, θg),
48 equations can be solved to obtain a shortest distance motion primitive. Finally, the cor-
responding waypoints of the global path can be calculated through the optimal motion
primitive solution. The solution process is shown in Figure 7.

Figure 7. Flow chart of global path solution.
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4. Motion Control of Construction Machinery Based on Improved Pure Pursuit

In the field of driverless vehicles, common motion control algorithms include the
pure pursuit algorithm, Stanley algorithm [32], linear quadratic regulator (LQR), model
predictive control (MPC), and intelligent control algorithm [33]. Among them, the pure
pursuit and Stanley algorithms are algorithms developed based on vehicle kinematics,
which are only applicable to the motion control of low-speed driverless vehicles. LQR and
MPC take vehicle dynamics into account, and minimize the vehicle motion control error and
control amount by solving the state equation to achieve optimal control, which is applicable
to the motion control of high-speed driverless vehicles. Intelligent control algorithms use
methods such as deep learning and reinforcement learning to control the motion of the
entire vehicle, and typical algorithms include end-to-end algorithms [25]. Intelligent control
algorithms are currently not particularly mature, as they require training and validation of
a large number of driving data sets through convolutional neural networks. Considering
that the commonly used construction machinery belongs to low-speed mobile machinery
and the construction of accurate dynamic equations of construction machinery is more
complex, and the pure pursuit algorithm is simpler than the Stanley algorithm in parameter
adjustment, and the tracking performance of the two is similar. Therefore, this paper adopts
the pure pursuit algorithm as the motion control algorithm for construction machinery.

4.1. Traditional Pure Pursuit Algorithm Based on Ackerman Steering

The traditional pure pursuit algorithm is designed based on the Ackerman steering
kinematics model. Its basic principle is that the vehicle kinematics model is simplified to
a bicycle model, and a reference path composed of several waypoints is given, and the
preview distance is set. Search for the waypoint closest to the preview distance from the
vehicle position in the reference path, and set it as the preview point. Build an arc between
the vehicle and the preview point as the real-time tracking path of the vehicle. By changing
the front wheel angle, the vehicle always moves along or tends to move along the real-time
tracking path. With the continuous movement of the vehicle, the preview point of the
vehicle changes constantly, and the vehicle tracking path continues to move forward until
it reaches the end of the reference path.

Figure 8 is the schematic diagram of the traditional pure pursuit algorithm, in which,
R is the arc radius of the vehicle tracking path, α is the included angle between the vehicle
body and the preview point, δ is the front wheel angle of the vehicle, e is the lateral error
between the vehicle and the preview point, L is the vehicle wheelbase, ld is the preview
distance, and (xr, yr) is the coordinate of the preview point.

It can be seen from Figure 8 that the front wheel angle δ of the vehicle can be obtained
by solving the geometric relationship. First, under the condition that the included angle α
between the vehicle body and the preview point and the preview distance ld are known,
the arc radius R of the tracking path and the curvature radius k of the tracking path can be
solved by the sine theorem. The derivation process is shown in Equations (17) and (18).

ld
sin(2α)

=
R

sin(π
2 − α)

(17)

k =
1
R

=
2 sin α

ld
(18)

After calculating the radius of curvature of the tracking path, the front wheel angle
of the vehicle can be further calculated by using the geometric relationship. The specific
derivation process is shown in Equations (19)–(21).

tan(δ) =
L
R

(19)

sin α =
e
ld

(20)
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δ = arctan(
L
R
) = arctan(kL) = arctan(

2L sin(α)
ld

) = arctan(
2Le
l2
d
) (21)

After the front wheel angle δ is solved, the rear wheel center of the whole vehicle can
always follow or approach the tracking path by controlling the front wheel angle of the
whole vehicle, and then complete the tracking control of the whole vehicle to the given
reference path. So far, the theoretical derivation of the traditional pure pursuit algorithm
has been completed.

Figure 8. Principle diagram of traditional pure pursuit algorithm.

4.2. Improved Pure Pursuit Algorithm Based on Kinematic Model of Tracked
Construction Machinery

The kinematics model of construction machinery is different from that of ordinary
vehicles. The unmanned driving simulation and real vehicle test platform of construction
machinery built in this paper are based on tracked construction machinery as the motion
control carrier. Therefore, the relevant analysis will be carried out around the kinematic
model of tracked construction machinery. For the improvement of other types of con-
struction machinery motion control algorithms, we can refer to the research ideas of this
paper and make appropriate adjustments based on the kinematic characteristics of various
construction machinery, that is, the improved pure pursuit algorithm proposed in this
paper can be applied to the motion control of various construction machinery.

Since the tracked construction machinery adopts the differential steering motion
model, and the turning and forward are highly coupled, that is, the straight and steering of
the whole vehicle are completed by controlling the driving speed of the left and right tracks,
the traditional pure pursuit algorithm cannot be directly applied to the motion control of
the tracked construction machinery, and it needs to be improved accordingly.

Figure 9 is the schematic diagram of the improved pure pursuit algorithm proposed
in this paper for the kinematics model characteristics of tracked construction machinery.
Wherein, R is the arc radius of the tracking path of tracked construction machinery, α is
the included angle between the vehicle body and the preview point, e is the lateral error
between the vehicle and the preview point, ld is the preview distance, b is the half value
of the left and right track spacing of tracked construction machinery, and (xp, yp) is the
coordinate of the preview point.
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Figure 9. Principle diagram of improved pure pursuit algorithm.

Similar to the traditional pure pursuit algorithm, the improved pure pursuit algorithm
proposed in this paper is also given a reference path composed of multiple waypoints, sets
the preview distance, finds the waypoint closest to the preview distance from the vehicle
position in the reference path and uses it as the preview point. It builds an arc with radius
R between the preview point and the whole vehicle as the real-time tracking path of the
whole vehicle, and updates the preview point and real-time tracking path as the whole
vehicle moves forward until the whole vehicle reaches the destination.

Unlike the traditional pure pursuit algorithm, the traditional pure pursuit algorithm
makes the whole vehicle approach or tend to follow the tracking path by controlling the
front wheel angle. The improved pure pursuit algorithm in this paper is to control the
speed of the left and right tracks to make the tracked construction machinery always follow
the given track.

The improved pure pursuit algorithm proposed in this paper is theoretically derived.
Since the derivation of the arc radius R and curvature radius k of the tracking path are
the same as that of the traditional pure pursuit algorithm, this paper will not repeat the
derivation, and the specific derivation is shown in Equations (17) and (18). After calculating
the arc radius R and curvature radius k of the tracking path, calculate the angular velocity w
of the whole vehicle around the center of the tracking path according to the given tracking
speed vc of the whole vehicle, and then calculate the tracking speed and of the left and
right tracks, respectively, through the angular velocity w. The specific derivation process
is shown in Equations (22)–(24). When the tracking speed of the left and right tracks is
the same, the whole vehicle will go straight; when the left track speed vL is less than the
right track speed vR, the vehicle turns left; when the left track speed vL is greater than the
right track speed vR, the vehicle turns right. Through the precise control of the tracking
speed of the left and right tracks, the motion control of the tracked construction machinery
is realized so that its tracking track and reference path can be well fitted.

w =
vc

R
= kvc =

2evc

l2
d

(22)

vL = w(R− b) =
2evc(R− b)

l2
d

(23)

vR = w(R + b) =
2evc(R + b)

l2
d

(24)
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5. Construction and Test of Simulation Platform Based on Gazebo

In order to verify the feasibility of applying hybrid A* to automatic routing of construc-
tion machinery, a construction machinery simulation platform is built based on Gazebo. Its
advantage is that Gazebo integrates a large number of sensors needed for the research and
development of driverless-related technologies, which greatly reduces project research and
development costs. In addition, Gazebo is equipped with a relatively complete physical
engine, which supports the simulation and verification of various driverless algorithms
and eliminates the potential risk of the algorithm being directly deployed to the real vehicle
for verification. Moreover, Gazebo supports the independent construction of various simu-
lation environments, which can be effectively applied to the verification and simulation
of relevant algorithms of unmanned construction machinery under extreme conditions.
Finally, Gazebo supports multi-model collaborative simulation, which lays a foundation
for the subsequent research of unmanned construction machinery cluster and cooperative
operation related algorithms.

As shown in Figure 10, excavators commonly used in engineering operations are
modeled and their simulation environment is built. In addition, the Velodyne lidar and
IMU are deployed on the excavator model to enable it to collect environmental information
and vehicle movement information.

Figure 10. Construction machinery simulation platform based on Gazebo.

Based on the Gazebo construction machinery simulation platform, combined with
the PointPillars, Hybrid A* and improved pure pursuit algorithm proposed in this paper,
the simulation tests are carried out on the functional modules of automatic path finding
and autonomous obstacle avoidance of construction machinery.

5.1. Simulation of Automatic Routing Function of Construction Machinery

With the lidar point cloud data simulated by Gazebo as the input, the weight file
obtained by using the PointPillars algorithm to train the working condition data set of
construction machinery in this paper is verified, and the effect is shown in Figure 11.
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Figure 11. Simulation and verification of PointPillars algorithm.

It can be seen from Figure 11 that the PointPillars algorithm has effectively detected
cars, mounds and trucks, without missing or wrong detection. It is proved that it is
feasible to detect the position and attitude of the target object relative to the vehicle as a
perception algorithm.

Take the position and attitude of the whole vehicle currently located on the point
cloud map as the starting point of path planning, and take the position and attitude of the
work object detected by the PointsPillars algorithm as the target point of path planning,
and use hybrid A* to independently plan a feasible path, with the effect shown in Figure 12.
Among them, the point cloud map is used to match the observation point cloud of the lidar
carried by the vehicle to obtain the vehicle localization information in real time. The grid
map serves as the prior information of hybrid A* for path planning, and provides a basis
for hybrid A* to plan a safe and reliable global path.

Figure 12. Effect picture of automatic routing.

After the hybrid A* has planned the global path required for the construction ma-
chinery to travel near the work object, the improved pure pursuit algorithm proposed in
this paper is used to control the motion of the built-tracked construction machinery, so
that it can track along the global path. The tracking speed set in this paper is 3 km/h,
i.e., 0.833 m/s, which corresponds to the maximum speed that can be reached by the rabbit
block of the actual tracked construction machinery. Figure 13 shows the tracking speed of
the left and right tracks when the tracked construction machinery is under motion control.
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Figure 13. Tracking speed of left and right tracks for automatic routing.

The control accuracy of the improved pure pursuit algorithm proposed in this paper
is analyzed, and the results are shown in Figures 14 and 15.

Figure 14. Comparison diagram of automatic routing trajectory.
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Figure 15. Automatic routing track tracking error.

It can be seen from the analysis in Figures 14 and 15 that the improved pure pursuit
algorithm proposed in this paper has a good effect on the motion control of the whole
vehicle, and the tracking track is basically consistent with the reference path. The maximum
tracking error in the X-axis direction is 0.0472 m, and the average error is 0.0164 m; The max-
imum tracking error in the Y-axis direction is 0.0426 m, and the average error is 0.0198 m,
which meets the accuracy requirements of construction machinery motion control.

5.2. Simulation of Autonomous Obstacle Avoidance Function of Construction Machinery

Place two roadblocks between the tracked construction machinery model and the work
object to test the autonomous obstacle avoidance function of the construction machinery,
as shown in Figure 16.

Figure 16. Autonomous obstacle avoidance simulation environment.
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Similar to Section 4.1, the PointPillars algorithm is used to detect roadblocks and work
objects to obtain the position and attitude of roadblocks and work objects relative to the
vehicle. The actual detection effect is shown in Figure 17.

Figure 17. PointPillars algorithm detection rendering.

After obtaining the position and attitude information of roadblocks and work ob-
jects through the perception algorithm, combined with the information of obstacles and
accessible areas provided by the grid map, the hybrid A* algorithm is used to plan a
global path that meets the kinematics of tracked construction machinery and can achieve
obstacle avoidance, as shown in Figure 18, which is used for the track tracking control of
subsequent vehicles.

Figure 18. Rendering of autonomous obstacle avoidance path generation.

Similarly, after the hybrid A* algorithm has planned the global obstacle avoidance
path, the improved pure pursuit algorithm proposed in this paper is used to control its
motion. The tracking speed is still set at 3 km/h, i.e., 0.83 m/s. The walking and obstacle
avoidance of the tracked construction machinery model are controlled by controlling the
walking speed of the left and right tracks. Figure 19 shows the tracking speed of the left
and right tracks that control the movement of the tracked construction machinery during
autonomous obstacle avoidance.
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Figure 19. Tracking speed of left and right tracks for autonomous obstacle avoidance.

Similarly, the control accuracy of the improved pure pursuit algorithm proposed in
this paper is analyzed, and the results are shown in Figures 20 and 21.

Figure 20. Comparison diagram of autonomous obstacle avoidance trajectory.
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Figure 21. Track tracking error of autonomous obstacle avoidance.

It can be seen from the analysis in Figures 20 and 21 that the improved pure pursuit
algorithm proposed in this paper can still ensure good vehicle motion control accuracy
when autonomous obstacle avoidance, and the vehicle travel path is basically consistent
with the reference path. The maximum tracking error in the X-axis direction is 0.0581 m,
and the average tracking error is 0.0219 m; the maximum tracking error of the Y-axis direc-
tion is 0.0418 m, and the average tracking error is 0.0187 m, which meets the requirements
of construction machinery for motion control accuracy.

6. Construction of Real Vehicle Test Platform and Relevant Tests

In order to further verify the algorithms proposed in this paper, a real vehicle test
platform for tracked construction machinery is built, as shown in Figures 22 and 23.

Figure 22. Tracked construction machinery real vehicle test platform.
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Figure 23. Real vehicle test debugging and supervision platform.

Tracked construction machinery real vehicle test platform is mainly equipped with
modules such as lidar, RTK, CAN bus, emergency stop device, computing platform and
wireless image transmission. Among them, the lidar is mainly responsible for collecting
the environmental point cloud information required by the perception and localization
algorithm, RTK is responsible for recording the vehicle’s travel path and correcting the
vehicle’s position and attitude calculated by the point cloud localization algorithm, and the
CAN bus is responsible for sending the control signal output by the computing platform
into the vehicle controller, so as to realize the vehicle’s motion control. The emergency
stop equipment is the safety guarantee device for the whole vehicle driverless test. When
there is a problem in the algorithm operation, the safety officer can dial the emergency
stop equipment to realize the whole vehicle emergency stop to ensure the safety of the
safety officer and relevant test equipment. The computing platform is the brain of the entire
unmanned vehicle test platform, responsible for the input and output of management
information, and supporting the operation of algorithms such as perception, localization,
planning, decision-making and motion control. Wireless image transmission is responsible
for transmitting the image information of the computing platform to the real vehicle test
debugging and supervision platform, so as to realize the debugging of each driverless
algorithm and real-time monitoring of the vehicle status, and fully guarantee the safety of
the test personnel.

In the real vehicle test, the position and attitude of the object detected by the Point-
Pillars algorithm relative to the whole vehicle are still used as the target point of path
planning, the current position and attitude of the whole vehicle are used as the starting
point of path planning, and two roadblocks are set between the starting point and the target
point, respectively, to verify the automatic operation path finding and autonomous obstacle
avoidance functions of the whole vehicle driverless system. The actual test scenario is
shown in Figures 24 and 25.
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Figure 24. Autonomous path finding and obstacle avoidance test scenario of real vehicle.

Figure 25. PointPillars algorithm real vehicle detection rendering.

After obtaining the position and orientation information of the starting point, the tar-
get point and the obstacle, combined with the prior information of the obstacle and the
accessible area provided by the grid map, the hybrid A* algorithm is used to plan a global
path that can reach the vicinity of the work object and can avoid the obstacle, as shown in
Figure 26.
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Figure 26. Rendering of global path generation of real vehicle.

After the hybrid A* algorithm has planned the global path, the improved pure pursuit
algorithm proposed in this paper is used to control the motion of tracked construction
machinery so that it can complete the tracking task of the reference global path. In the real
vehicle path tracking test, the set tracking speed is 2 km/h, i.e., 0.56 m/s. Figure 27 shows
the left and right track speed signals sent by the vehicle-mounted computing platform to
the vehicle controller during the track tracking process of tracked construction machinery.
After receiving the left and right track speed signals, the controller will convert them into
the corresponding duty cycle, thus realizing the vehicle motion control.

Figure 27. Tracking speed of left and right tracks for real vehicle autonomous path finding and
obstacle avoidance.

The motion control accuracy of the whole vehicle is analyzed, and the results are
shown in Figures 28 and 29. The analysis shows that the improved pure pursuit algorithm
proposed in this paper has excellent performance in real vehicle motion control, and the
tracking trajectory is basically consistent with the reference global path planned by hybrid
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A*. The maximum tracking error in the X-axis direction is 0.154 m, and the average tracking
error is 0.069 m; the maximum tracking error in the Y-axis direction is 0.123 m, and the
average tracking error is 0.037 m, which meets the requirements of actual construction
machinery for motion control accuracy. Moreover, the improved pure pursuit algorithm
proposed in this paper can not only be applied to tracked construction machinery but also
be adjusted in combination with the kinematics model of other construction machinery to
complete the motion control of various construction machinery.

Figure 28. Comparison diagram of autonomous path finding and obstacle avoidance trajectory of
real vehicle.

Figure 29. Autonomous path finding and obstacle avoidance trajectory tracking error of real vehicle.
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7. Conclusions

In order to realize the autonomous path finding of construction machinery, this paper
uses the PointPillars algorithm to sense the object and its position, and uses the hybrid
A* algorithm to generate a global path to the object independently. Finally, based on the
improved pure pursuit algorithm proposed in this paper, it completes the motion control
and tracks tracking of the whole vehicle.

In view of the problem that there are few data sets conforming to the working condi-
tions of construction machinery at present, this paper uses the SuSTechPoints annotation
software to produce the construction machinery point cloud data set, and uses the PointPil-
lars algorithm to train the data set, and verifies it on the simulation and real vehicle test
platform. Aiming at the problem that the traditional path planning algorithm cannot plan
a smooth path that meets the kinematics of construction machinery, this paper uses the
hybrid A* algorithm to take the kinematics characteristics of construction machinery into
account in the path planning, effectively solving the problem of uneven path planning by
the common path planning algorithm.

Aiming at the problem that the existing pure pursuit algorithm is not applicable to
the motion control of tracked construction machinery, this paper improves the traditional
pure pursuit algorithm based on the kinematics model of tracked construction machinery,
and carries out corresponding verification through simulation and real vehicle tests. The test
results show that the improved pure pursuit algorithm proposed in this paper can perform
better motion control of tracked construction machinery, and the accuracy of motion control
can reach about 10 cm, It can well meet the requirements of construction machinery for
motion control accuracy. At the same time, the improved pure pursuit algorithm proposed
in this paper can also make appropriate adjustments to the kinematics characteristics of
other construction machinery, so that it can be applied to the motion control of various
construction machinery.

During the experiment, some problems with existing algorithms were also found.
First, when using the PointPillars algorithm for target detection, there were problems such
as the incorrect orientation of individual target detection boxes, and the size of the detection
box did not match the actual object size. Subsequent work will focus on the post-processing
part of target detection, while further optimizing the existing detection network to improve
its detection efficiency and accuracy. Second, the current hybrid A* algorithm still has
some limitations. It can only be used for global path planning in small and medium-sized
scenarios, and cannot be used for path planning in large mine scenarios. The existing
hybrid A* algorithm will be further improved in the future to improve its search efficiency.
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