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Abstract: This paper proposes a generic anonymization approach for person-specific data, which
retains more information for data mining and analytical purposes while providing considerable
privacy. The proposed approach takes into account the usefulness and uncertainty of attributes while
anonymizing the data to significantly enhance data utility. We devised a method for determining the
usefulness weight for each attribute item in a dataset, rather than manually deciding (or assuming
based on domain knowledge) that a certain attribute might be more useful than another. We employed
an information theory concept for measuring the uncertainty regarding sensitive attribute’s value in
equivalence classes to prevent unnecessary generalization of data. A flexible generalization scheme
that simultaneously considers both attribute usefulness and uncertainty is suggested to anonymize
person-specific data. The proposed methodology involves six steps: primitive analysis of the dataset,
such as analyzing attribute availability in the data, arranging the attributes into relevant categories,
and sophisticated pre-processing, computing usefulness weights of attributes, ranking users based on
similarities, computing uncertainty in sensitive attributes (SAs), and flexible data generalization. Our
methodology offers the advantage of retaining higher truthfulness in data without losing guarantees
of privacy. Experimental analysis on two real-life benchmark datasets with varying scales, and
comparisons with prior state-of-the-art methods, demonstrate the potency of our anonymization
approach. Specifically, our approach yielded better performance on three metrics, namely accuracy,
information loss, and disclosure risk. The accuracy and information loss were improved by restraining
heavier anonymization of data, and disclosure risk was improved by preserving higher uncertainty in
the SA column. Lastly, our approach is generic and can be applied to any real-world person-specific
tabular datasets encompassing both demographics and SAs of individuals.

Keywords: attribute usefulness; utility; privacy; privacy-preserving data publishing; flexible data
generalization; anonymization; personal data; uncertainty; privacy models; equivalence classes

1. Introduction

A vast amount of data/information about people is collected daily by corporations,
governments, hospitals, banks, and social network (SN) service providers. Aside from
demographics (age, gender, date of birth, education, marital status, etc.), the collected
data often carry sensitive information, such as an individual’s income, interests, hobbies,
religious and political views, and health information. Publishing collected data can assist
organizations in many ways, such as conducting better customer/patient analyses, creating
more profitable marketing strategies, achieving strategic goals, recommending related
products, boosting sales, analyzing people’s behaviors, understanding the dynamics of
infectious disease spread, and improving overall business performance [1,2]. However,
sharing such data with data miners in their original forms may violate the individuals’
privacy [3–5]. Due to privacy issues, many organizations are unwilling to publish their
users/subscribers/affiliates’ data for knowledge discovery with information consumers.
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Generally, there are three major privacy threats that can arise from the published data
analysis: unique identification of an individual (a.k.a. identity disclosure), disclosure of
sensitive information (a.k.a., attribute disclosure), and disclosure of an individual’s presence
or absence (a.k.a. membership disclosure) [6]. To safeguard the users’ privacy, data holders
(e.g., hospitals) generally anonymize their user data by modifying the original values of
each user’s attribute before release. Privacy-preserving data publishing (PPDP) fosters data
sharing with experts/researchers while ensuring individuals’ privacy, on the one hand, and
minimizing distortion to maintain higher utility, on the other hand [7,8]. The key techniques
for safeguarding user privacy are pseudonymization, encryption, masking, anonymization,
and differential privacy (DP). However, most data owners prefer anonymization for PPDP
due to its algorithmic simplicity and low computing complexity. Anonymization has also
been mandated by laws in some advanced countries recently [9]. In some countries, the
notion of privacy is relatively weak, and it is often undervalued for national interest and
economic purposes. In such circumstances, anonymizing methods that maintain higher
data utility while preserving privacy are crucial. Furthermore, in some sectors, such as
healthcare, sharing high-quality data is necessary for effective research and analyzing
demographic connections with various diseases. However, there have been relatively few
studies on methods for enhancing data utility based on attribute values [10–12]. The main
motivations behind this research are as follows.

• To facilitate the analysis of released data without any constraints that DP and other
recent techniques cannot provide.

• To impede higher changes in data during the conversion from their raw forms to
anonymized data to enable observation of commonalities among differences, and
vice versa.

• To yield consistent performances for both utility and privacy in published data analyt-
ics, and remain applicable in diverse domains for similar tasks.

In recent years, unprecedented advances in machine learning (ML) and deep learning
(DL) tools, as well as information surges, have created many opportunities to extract
knowledge from large and complex datasets [13–16]. These tools excel at uncovering
insights about individuals from high-dimensional data using quasi-identifiers (QIs) that
are often hidden or over-anonymized by existing methods. Given the significant potential
of data sharing and the ever-increasing power of DL and ML tools, generating high-quality
anonymized data can have profound benefits [17–20]. Therefore, there is a growing need
to devise anonymizing methods that leverage the capabilities of these models to improve
predictive utility while maintaining privacy. Although a wide range of solutions that
integrate ML with traditional anonymizing methods to assess the quality of anonymized
data have been proposed, there remains a significant lack of viable methods that consider
the intrinsic and hidden properties of attributes from the original data to enhance both
utility and privacy. This paper proposes and implements a generic ML-based approach to
anonymization that effectively improves both utility and privacy.

The rest of the paper is organized as follows. Section 2 discusses the background
and related work on anonymity methods. The system model and associated attack model
are given in Section 3. Section 4 explains the proposed anonymization approach and its
key steps. Section 5 discusses the experiments and results obtained from the benchmark
datasets. Finally, the conclusions and future directions are presented in Section 6.

2. Background and Related Work

Data have immense potential to influence science and society. Therefore, retaining
sufficient utility in anonymized data to increase their reusability is crucial [21]. In this
section, we provide background information on the subject matter discussed in this study
and analyze state-of-the-art studies.
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2.1. Types of Attributes and Their Handling in the Anonymization Process

The raw dataset, D, contains four different types of attributes, each of which un-
dergoes distinct treatment in the anonymization process. Detailed information on these
attributes, including their definitions, examples present in D, and their handling during
the anonymization process, can be found in our recent work [22].

There are two well-known mechanisms for data publishing: non-interactive and
interactive [23]. We define both these mechanisms as follows.

• In the non-interactive mechanism, the data holder publishes the full D at once in
anonymized form (e.g., after introducing some modifications to it).

• In the interactive mechanism, the data holder does not share the whole D in the distorted
form. However, the data holder gives an interface (or text box) to data miners, with
the help of the interface, data miners can run different queries on the relevant data,
and gather (probably noisy) answers. DP [24] and its improved versions are mostly
used in this mechanism of PPDP. Although DP provides strong privacy guarantees,
the utility of the resulting dataset is often low, especially when a small ε is used [25,26].
Furthermore, the amount of noise injected by the DP model in less frequent parts of
data is very high, leading to poor utility in data-driven applications. The utility issues
and difficulty in selecting the optimal value for ε make DP unsuitable in scenarios
where data of higher utility are required [27]. In some cases, more than one-time
anonymization of the same D is required if there is some change in data (e.g., the
addition and removal of tuples). To this end, the DP model iteratively increases the
amount of noise in data, which means that after certain iterations, the data become
completely useless [27]. Furthermore, in some cases, the DP assists in releasing
aggregate information about the data, which makes knowledge discovery harder from
broader perspectives. In contrast, the approach proposed in this paper offers higher
utility and assists in releasing whole datasets while preserving both utility and privacy.
Furthermore, it maintains utility and privacy even when repetitive anonymization of
the same data is needed. The data produced with our approach can greatly contribute
to observing commonalities among differences, and vice versa.

This work employs a non-interactive mechanism. The main reason for using a non-
interactive mechanism is to provide complete information about the data composition,
which is not possible with an interactive mechanism. The non-interactive mechanism
enables researchers and data analysts to use published data for multiple analyses, such as
query execution, building machine learning classifiers, rule-based analysis, pattern recogni-
tion/mining, etc. Moreover, the non-interactive mechanism is convenient for data owners
as it reduces computation and communication costs [28]. In certain cases, publishing data
using a non-interactive mechanism is beneficial in understanding the dynamics of a new
research hypothesis/problem or a new crisis, such as the COVID-19 pandemic.

2.2. Analysis of the State-of-the-Art Anonymization Methods
2.2.1. Traditional Anonymization Methods

The k-anonymity privacy model [29] has been extensively used for the non-interactive
mechanism of PPDP due to its conceptual simplicity. It preserves privacy by placing k users
with identical QIs in an equivalence class (EC). Hence, the probability of identity disclosure
equals 1/k. Although k-anonymity [29] has become a benchmark method, it fails to control
SA disclosure when ECs lack heterogeneity in the SA values. To resolve this problem
of k-anonymity, an improved privacy model named `-diversity [30] was proposed. In `-
diversity, each EC must contain ` distinct SA values. An EC satisfies the `-diversity criteria
if there are at least ` distinct SA values present in that EC. The `-diversity model [30] can
protect against SA disclosure to some extent. Notably, however, it can leak SA information
by not considering SA value distributions. For example, an EC with 15 records can satisfy
2 diversity with two distinct SA values (e.g., 14 and 1). Hence, SA disclosure is still possible
with a 93% probability for an SA value shared by 14 people in an EC. Furthermore, it cannot
be applied to highly skewed data. To resolve these limitations in both models, another
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promising solution named t-closeness was proposed [31]. According to this model, an EC
possesses the t-closeness property if the distance between the distribution of the SA in
the EC and the D is no more than a certain threshold. A table is t-close if all ECs satisfy
the t-closeness property. Although it resolves the limitations of the two prior models, it
still cannot overcome privacy issues due to semantic similarity between SA values (e.g.,
if all diseases in an EC occur in the same body part). In addition, achieving a t-close
property adversely affects data quality. Thereafter, many improved versions of these three
pioneer models have been proposed. Sun et al. [32] extended the k-anonymity concept
with two new properties (e.g., (p, α) and p+-sensitive k-anonymity) for controlling SA
disclosure in PPDP. Similarly, Chen et al. [33] proposed the ρ-uncertainty model to control
over-suppression and generalization issues for privacy protection in set-valued data.

Wong et al. [34] proposed an enhanced model based on the k-anonymity concept,
named (α, k)-anonymity. It results in less data distortion and is scalable to the original size
of D. Sun et al. [35] amended the `-diversity model by proposing a family of enhanced
(L, α)-diversity models. The authors suggested that the total weight of SA values in any QI
group or EC should be at least α after modification for privacy preservation. Soria-Comas
et al. [36] utilized the micro-aggregation-based method to yield t-closeness k-anonymous
datasets for privacy preservation and utility enhancement. Recently, Ashkouti et al. [37]
proposed a Mondrian multidimensional anonymizing method that fulfills `-diversity
criteria; it was devised within the Apache Spark framework (e.g., in a distributed fashion).
The authors verified their method’s feasibility in utilizing information loss and accuracy
criteria. We refer interested readers to Zigomitros et al. [38] for more information about the
methods proposed for the non-interactive mechanism of the PPDP.

2.2.2. Anonymization Methods for Enhancing Data Utility

Due to the recent advancements in ML/DL approaches and data-driven applications, a
substantial number of anonymization methods to enhance classification accuracy have been
proposed. Building classification models of higher accuracy by utilizing anonymized data is
handy for many purposes [39]. Cagliero et al. [40] designed a classifier construction method
by integrating taxonomy information to enhance structured data accuracy. Combining
taxonomy information yields significant improvements in accuracy while keeping the
computing efforts manageable for most of the datasets and tested classifiers. In [41],
the authors developed a framework by generalizing the QIs that satisfy DP principles.
That framework is a non-interactive method for publishing anonymized data, and the
decision tree classifier showed better accuracy compared to other classification algorithms.
Srijayanthi et al. [42] recently developed a UPA algorithm that enhances the utility of
anonymized data using the clustering concept. The proposed algorithm performs feature
selection and dimensionality reduction to achieve the stated goals. Chen et al. [43] devised
a DP and clustering-based method to anonymize mixed data with a better balance of
utility and privacy. The authors proved that k-median clustering combined with the
DP can create anonymized data with reduced IL and time than existing SOTA methods.
Jha et al. [44] devised a k-anonymity-like model called, z-anonymity for anonymizing
stream data. The proposed model can be applied to similar problems, and it yielded lower
IL when computed using the entropy concept. Li et al. [45] developed a bucketization and
local generalization-based anonymization method to protect identity and SA disclosure in
PPDP. The utilities of the resulting data were analyzed using aggregate query answering
and NCP metrics. Chu et al. [46] developed a DP-based method, known as the SFLA–
Kohonen Network for PPDP scenarios. The proposed method has the ability to reduce
privacy risks without compromising g the usability of anonymous data.

Sun et al. [47] developed a DP-based method for preserving utility and privacy in
trajectory data sharing. The proposed solution uses synthetic data to create anonymized
data, and it has significantly enhanced the utility of anonymized data. Nóbrega et al. [48]
developed a transfer learning-based approach for the privacy-preserving record linkage
problem. The proposed approach determines a suitable threshold that can be used to



Electronics 2023, 12, 1978 5 of 32

prevent record linkage in published as well as public datasets. Amiri et al. [49] recently
developed a UHRA algorithm for enhancing privacy and utility in data-sharing scenarios.
The proposed algorithm safeguards privacy breaches against background knowledge
attacks while sustaining data utility and privacy. Chen et al. [50] devised a framework
to measure the level of privacy and usefulness offered by the anonymized datasets. Xia
et al. [51] developed a clustering and DP-based model for reducing IL in data-releasing
scenarios. The proposed approach groups identical records into the same EC to lower
IL. Han et al. [52] devised a new anonymity method considering data availability for
data mining purposes. Their proposed weighted full-domain anonymization (WFDA)
algorithm adaptively anonymizes data (i.e., generalizes QIs of high weights to lower levels,
and vice versa). Last et al. [53] presented an anonymization algorithm by coupling non-
homogeneous generalization with SA value distribution. The proposed method yields
higher predictive utility compared to prior methods. Furthermore, some classifier-based
anonymity methods have been discussed in the literature [54–56]. Eyupoglu et al. [57]
discussed a new anonymity algorithm by utilizing chaos and perturbation concepts. The
proposed chaos and perturbation algorithm (CPA) yields better results w.r.t. probabilistic
anonymity, Kullback—Leibler divergence, accuracy, and the F-measure. Ye and Chen [58]
proposed an algorithm to reduce information loss (IL) in the PPDP. Kousika et al. [59]
developed an ML-powered anonymization method in order to improve the utility of
anonymized data for training classifiers. The proposed approach integrates SVD and RDP
methods to perturb the data. Detailed comparisons (e.g., the main focus of each study and
possible attacks ) of the recent SOTA utility-aware anonymization methods are given in
Table 1. However, there are three major problems with the aforementioned techniques.

• The existing literature gives equal importance to each QI from a utility point of view or
determines useful QIs from a dataset solely based on assumptions/domain knowledge
without analyzing the underlying values [10,11], which results in a higher amount of
utility loss and privacy breaches.

• The existing studies enforce constraints (i.e., strict parameters, `, t, ρ, α, etc.) with
predetermined values on the values of SA in each EC. However, this can lead to
inconsistent generalization intervals due to excessive shuffling of records [30–33]. In
skewed data, enforcement of such constraints is not practically possible due to less
heterogeneity in some SA values.

• There is a lack of methods that can simultaneously leverage attribute usefulness and
uncertainty information to control unnecessary generalization, in order to enhance
both utility and privacy in anonymized datasets.

Table 1. Detailed comparisons of the recent SOTA utility-aware anonymization methods.

Study
Main Focus of Study Possible Attacks

P U H S SS BK SAI

Li et al. [39] × X X X X ◦ X
Cagliero et al. [40] × X X X × X X
Zaman et al. [41] X X - - - X ◦

Srijayanthi et al.[42] × X X X X X X
Chen et al. [43] × X × ◦ ◦ X ×
Jha et al. [44] X × X ◦ X × X
Li et al. [45] X × X × × ◦ ×

Chu et al. [46] × × X X × ◦ X
Sun et al. [47] × X - X X X ◦

Nóbrega et al. [48] X X × X X × X
Amiri et al. [49] X X × × X × X
Chen et al. [50] X × × X X X X
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Table 1. Cont.

Study
Main Focus of Study Possible Attacks

P U H S SS BK SAI

Xia et al. [51] X X × X X X ◦
Han et al. [52] × X X X X ◦ X
Last et al. [53] × X X ◦ X ◦ X
Fong et al. [54] × X X ◦ X × X

Lin et al.[55] × X X X X × X
Park et al. [56] X × ◦ ◦ ◦ × ◦

Eyupoglu et al. [57] X X X X X × ×
Ye et al. [58] X × X X X ◦ X

Kousika et al. [59] × X × X X X X
Our approach X X × × ◦ ◦ ×

Abbreviations: P (Privacy), U (Utility), H (Homogeneity attack), S (Skewness attack), SS (Semantic similarity
attack), BK (Background knowledge attack), SAI (SA inference attack). Key: X⇒ considered/possible, ×⇒
not-considered/not-possible, ◦ ⇒ partially possible, and -→ not applicable.

2.3. Major Contributions of This Work

In this paper, we solve the aforementioned problems of existing techniques by propos-
ing attribute usefulness and an uncertainty-aware flexible anonymization approach. The
major contributions of this paper are summarized as follows.

• We devised an RF-based method with a QI value shuffling strategy to identify the
useful attributes from original data in an automated way that have minimal impact on
individuals’ privacy, instead of manually deciding or assuming that certain attributes
might be more useful than others.

• We employed the information theory concept (i.e., entropy) for computing the uncer-
tainty of SA values in ECs to limit privacy breaches in low-uncertainty ECs and to
increase utility in high-uncertainty ECs.

• We propose a flexible data generalization method for anonymizing data that takes
into account the usefulness weights of the QIs as well as the uncertainty of the SAs,
which enhances two competing goals.

• The proposed approach can be used to produce anonymized versions of any dataset,
whether balanced (i.e., the SA value distribution is uniform) or imbalanced (i.e., the
SA value distribution is skewed).

• This is the first generic approach toward enhancing both utility and privacy by retain-
ing (in the anonymized data) highly useful QI values that are as close as possible to
the original values.

Extensive experiments were conducted on real-world and benchmark datasets, en-
compassing the QIs and SA of individuals under different conditions to verify the efficacy
of our approach. The experimental analysis indicates significant improvements in both
goals compared to prior SOTA methods and models. The proposed approach significantly
controls heavier changes in QI values while converting raw data into anonymized data.

3. System Model

In this paper, we consider a common scenario for data publishing with multiple actors
involved. Figure 1 provides an overview of data publishing for information consumers.
The primary actors in this scenario include the user (also known as the record owner),
which is an entity that is associated with one or more records, the data holder (also known
as the owner), which is an organization or person that holds the users’ data, the data
publisher (also known as the releaser), which is a person or organization that publishes
the data, the data analyst (also known as the data recipient), which is an entity that has
access to the published data to extract useful knowledge from it, and the adversary (also
known as the attacker), which is an entity whose goal is to compromise the user’s privacy
from the released data. Our goal is to devise a secure approach for data publishing that
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simultaneously achieves two competing goals, i.e., (i) the analysts can extract maximum
knowledge from the data published by the data owners, (ii) an adversary should not be able
to compromise any user’s privacy even if he/she has access to the abundance of auxiliary
data (or background knowledge).

Figure 1. Overview of the system model considered in this study.

We assume that the dataset denoted by D, has already been collected from relevant
users, and each row in D represents a real-world person with its public (QI) and sensitive
(SA) information, respectively. Any D encompassing QI and a single SA can be processed
with our model.

3.1. Attack Model

In this work, we assume that data owners/users, data holders, and data publishers
are honest. They perform desired actions only and assist in accomplishing the task of data
sharing. However, data analysts are honest but curious (e.g., they can behave similar to an
adversary), and try to compromise the privacy of individuals. Although we remove directly
identifiable information of all kinds, QIs can be learned/linked from various sources to
re-identify people uniquely. Hence, the proposed method is vulnerable to identity and
corresponding SA disclosures because adversaries may:

• Already know a part of the released QIs of an individual and attempt to figure out the
rest of the QIs. For example, an adversary may know the age and gender value of an
individual and try to identify the individual’s zip code.

• Already know the whole record (e.g., all QIs) of the individual and that the respective
individual is part of the released data with higher probability. Based on this informa-
tion, he/she tries to obtain sensitive information from the released data concerning
that individual. For example, the released data can encompass sensitive data (e.g.,
disease contracted, monthly income, etc.) about individuals. If the adversary can
somehow identify/link the user’s QIs correctly, he/she can also know the SA related
to that user.

In this regard, we aim to safeguard users’ privacy against these contemporary privacy
threats (i.e., inference of identity and associated SA) that can emerge during published
data analysis.

3.2. Design Goals

This paper aims to design a generic, utility-enhanced, privacy-preserved, and practical
anonymization approach. Specifically, our approach is designed to achieve the following
two major goals in PPDP.

Utility: Ensures that data analysts can perform unconstrained analysis on released
data, and can extract the enclosed knowledge up to the maximum extent to improve
decision-making. The proposed approach allows for both general (e.g., frequency analysis,
commonalities, differences, patterns, etc.) and special (e.g., analytical and data mining
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tasks) purpose analyses. Specifically, it lowers information loss and maximizes classifica-
tion accuracy.

Privacy: Guarantees that an adversary with an abundance of auxiliary information
cannot link/match an individual’s QIs and infer his/her SA with a higher probability. It
ensures that when an adversary attempts to link a user between released and auxiliary
data, there exists a linkage of any record to multiple SA values. Specifically, it lowers the
probabilistic disclosure of identity and corresponding SA value.

3.3. Problem Formulation

The main problem that we seek to solve in this paper is formally stated in Problem 1.

Problem 1. Given a relational dataset D, with user attributes including age, gender, name, race,
weight, country of origin, and income/disease, along with a privacy parameter k, how can we create
an anonymized dataset D

′
that satisfies the k-anonymity criterion and achieves the two competing

goals stated in Section 3.2. The objective model of D
′
is formulated as

D
′
= [Q, S] = ({QI1, QI2, QI3, · · · , QIn}, si)

Minimize f1(D
′
) = in f ormation loss(D

′
)

Maximize f2(D
′
) = accuracy(D

′
)

Minimize f3(D
′
) = probabilistic disclosure(D

′
)

Minimize f4(D
′
) = homogeneous attack(D

′
)

4. Attribute Usefulness and Uncertainty-Aware Anonymization Approach

To effectively address the key problems cited in Section 2.2.2, we propose a novel
anonymization approach that exploits useful knowledge (from raw data) to anonymize
them without compromising both utility and privacy. Table 2 presents the main notations
used in the proposed anonymization approach.

Table 2. Main notations and their descriptions.

Notation Description

D Original data (i.e., before anonymization)
D
′

Anonymized data (i.e., after anonymization)
N Number (#) of records/tuples in a D, where N = |D|
ui ith user in a D
Q Quasi-identifiers’ set
S Set (a.k.a domain) of SA values

ΩQIp Usefulness weight of pth QI
ζ Set of usefulness weights of the QIs

Sim(ui, uj) Similarity between two user i and j
k Privacy parameter
τ Total number of ECs to be made from D
X Matrix of highly similar users
R Set of EC made based on k
Ci ith equivalence class with at least k users

U(Ci) Uncertainty value of the SA in ith EC
TU Threshold value for analyzing U
U set of the uncertainty values of ECs

HQIi Generalization hierarchy of an ith QI

The main motivation for this novel anonymization approach is to treat QIs based on
their impact on data utility, which has been largely unexplored in previous studies. For
instance, in decision-making based on two QIs (gender and age), gender has a greater
impact on whether a person will participate in a computer science (CS) class or not because
females are often less likely to take CS-related courses. Similarly, in terms of privacy,
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zip code has a greater predictive capacity to locate an individual accurately than race or
birthplace. Hence, these real-world examples suggest that the weight of each QI varies in
terms of both utility and privacy. To effectively preserve utility for information seekers and
data miners, highly useful QI values should retain their original forms as much as possible.
To this end, our proposed approach mainly focuses on enhancing utility and privacy
by automatically exploiting the underlying values of each QI and controlling significant
changes in QI values. Figure 2 highlights the workflow of our proposed approach.

Figure 2. Conceptual overview of the proposed anonymization approach (S1−S6 denotes key steps).

To produce the anonymous version, D
′
, of any original user dataset, D, containing

N records (i.e., users) with n QIs and a single SA, S, we propose six principal concepts:
(i) primitive analysis of the original users’ dataset, D; (ii) computing usefulness weights for
the QIs using an ML approach (random forest); (iii) ranking similar records via their QI val-
ues by employing cosine similarity; (iv) making equivalence classes from a similarly ranked
users matrix based on the parameter of privacy (e.g., k), (v) computing the uncertainty of
each EC w.r.t. SA values; and (vi) attain flexible data generalization by simultaneously
considering both the usefulness weights and the uncertainty. All concepts are interlinked
and help in transforming D into D

′
. Concise details of each concept are presented below.
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4.1. Primitive Analysis of the Original Dataset

D contains sensitive and public information about each user, ui, depending on the
phenomena for which data are collected. In a hospital scenario, public information can be
the patient’s name, age, gender, place of residence, etc., but sensitive data can be his/her
disease information. In this paper, we assume that data about a specific purpose has already
been collected from the relevant users. We performed a primitive analysis of D before its
anonymization with the help of the three steps explained below.

4.1.1. Analysis of the Attributes Present in a Dataset

After obtaining D from the data owner, Oi, we analyze D’s structure. This includes
understanding the types of data (categorical, numerical, or hybrid), and which types of
attributes are present in D because, in some cases, non-sensitive attributes (NSAs) are
not collected from users. Furthermore, the range of values is checked, and dimensions
are analyzed, including the number of rows and columns. If they are missing, labels are
assigned to the rows and columns of D. An overview of the label assignment is depicted in
Equation (1).

DUsers,Attributes =


ui QI1 QI2 QI3 · · · QIn S
u1 vQI1 vQI2 vQI3 · · · vQIn vS1
u2 vQI1 vQI2 vQI3 · · · vQIn vS2
· · · · · · · · · · · · · · ·
uN vQI1 vQI2 vQI3 · · · vQIn vS2

 =

 ui QI1 = age QI2 = gender QI3 = eyecolour S = salary
1 29 Male Black · · · < 50K
2 40 Female Black · · · > 50K
· · · · · · · · · · · · · · ·

3000 34 Male Black · · · < 50K


(1)

In Equation (1), each row represents an individual, ui, where i = 1, 2, 3, · · · , N, and
each column represents the value of the particular attribute. Because the attributes can
be randomly placed in D, attribute arrangement is required to simplify the subsequent
operations and lower the computational complexity of the anonymization process.

4.1.2. Arrangement of Attributes into Appropriate Categories

After the label assignments, attributes are arranged into their respective categories.
For example, all QIs will be placed under the QI category, and so on. As shown in
Figure 2, attribute handling becomes relatively easy when attributes are arranged in their
respective categories. We apply pre-processing to the arranged attributes to obtain complete
information about each individual.

4.1.3. Pre-Processing of the D to Yield Informative Analysis

Data pre-processing has become an integral component in data-driven applications [60].
It is extremely useful and also necessary in an anonymization mechanism to increase data
utility afterward. It reduces computing power significantly by removing redundant data
and unnecessary features/attributes. In the pre-processing step, the proposed approach
removes the NSAs and the DIs as per the standard policy of the PPDP. Subsequently, D
contains only the set of QIs, Q, and the SA, S, as formally expressed in Equation (2).

D = {Q, S} = ({QI1, QI2, QI3, · · · , QIn}, si) (2)

Later, we find and remove outliers, such as unrealistic values for certain attributes
(e.g., an age value of 500 years instead of 50), by visually inspecting the logical range of each
attribute and performing min–max analysis. Outlier detection and removal significantly
contribute to accurate data analytics. In some cases, we perform format conversion and
enrichment to obtain desired statistics before actual data anonymization. For instance,
we represent categorical values of the quasi-identifiers (QIs) with numbers to compute
similarity/distance between users. Additionally, missing values are effectively handled
by considering the nature of the attributes. For example, we impute missing values in
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numerical attributes with the mean of the particular column, while we substitute missing
values in categorical columns with less representative values to increase diversity in data.
We also remove redundant records that are located next to each other and have identical
values in a row. A comprehensive overview of the assumptions and limitations of the
pre-processing process is demonstrated in Figure 3. Overall, pre-processing allows us to
achieve a truthful and error-free D for further operations.

Figure 3. Overview of assumptions and limitations of the pre-processing step.

4.2. Computing Usefulness Weights of QIs in a Dataset Using Machine Learning

Many studies suggest that each QI should be treated unequally from the privacy and
utility points of view to effectively address the privacy—utility trade-off (PUT) [57,61].
On the one hand, attribute-based similarities can be exploited to identify unique people
from published data [61]. On the other hand, attributes-based profiling of users can
assist in understanding research problems more easily, such as modeling epidemic-disease
dynamics [62]. Therefore, considering the importance of unequal treatment of each QI
present in D, we developed a method for quantifying the usefulness weights of the QIs
by leveraging the ML approach, called random forest (RF) [63]. RF [63] is a versatile ML
approach that belongs to the ensemble learning techniques. We selected RF to quantify
QI usefulness weights because it is highly accurate compared to other currently available
ML algorithms. It considers the interaction between the QIs and yields higher accuracy
values. Furthermore, it scales well with the large number of records and QIs in D. It gives
reliable results by building a chain of trees, rather than relying on a single tree’s results (i.e.,
a decision tree).

In addition, the unique features of RF, such as the ability to handle outliers, missing
values, and large records, have made it a very popular ML method. It gives accuracy/error-
rate results by accumulating each tree’s result via majority voting or summing of errors.
Hence, results are more reliable and accurate. It is worth noting that a gradient-boosting
algorithm can also be used for a similar task (e.g., identifying useful QIs from data). How-
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ever, the selection of optimal hyperparameters is very challenging and computationally
expensive. Furthermore, gradient boosting often experiences the problem of overfitting
when unoptimized hyperparameters are used. Rigorous parameter tuning and extensive
cross-validation increases are needed while experimenting with gradient boosting, leading
to higher computing costs [64]. In contrast, it has fewer parameters, which can be tuned flex-
ibly in considering the problem size. In addition, the utilization of information–theocratic
concepts such as the Gini index/Gini impurity in the tree construction process makes it
more suitable for data-driven applications. In this paper, we employ RF to identify and
rank the most useful QIs from D to effectively enhance the utility of D

′
. A descriptive block

diagram of the procedures employed to compute usefulness weights is given in Figure 4.

Figure 4. Block diagram of procedures for computing QI usefulness weights.

In some cases, identifying useful attributes from the original data in an automated
way may be challenging. For example, the usefulness of certain attributes may only become
apparent after processing the raw data. In such cases, data owners may need to rely on
domain experts or manually select attributes that are deemed more useful. However, this
approach is only feasible when the dataset is small or when data owners seek assistance
from experts. Moreover, randomly selecting a useful attribute based solely on its label
may lead to privacy issues, especially when the attribute has many distinct values. In this
paper, we propose an automated method that leverages the RF model to pinpoint useful
QIs from the data that no longer pose serious threats to individual privacy. Specifically, our
RF-based method rigorously analyzes each QI value in relation to SAs and ranks QIs based
on their utility. This process of identifying useful QIs is crucial because only some parts
of a QI can pose risks, while most parts exhibit general patterns that can be released as is
or can be minimally generalized for information consumers [20]. In this regard, our work
offers a new perspective to the database and privacy community on how to identify useful
attributes based on their values in an automated (rather than manual) way.
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Although our work is unique in terms of identifying useful attributes from D that
no longer pose threats to an individual’s privacy, the weighting mechanism can also be
controlled by the individual data owners. Notable developments in this line of work in-
clude the concept of personal privacy, facilitated by a privacy language from the SPECIAL
project [65], the layered privacy language (LPL) [66], and privacy preference policies such
as Contra [67]. These developments provide users with the ability to define the processes
for how their data can be processed, used, and eventually removed from the system. They
also ensure compliance with privacy laws such as the General Data Protection Regula-
tion (GDPR), which restricts the manipulation of personal data. Some of these technical
procedures, such as Contra, can be utilized in resource-constrained environments to meet
legal and technical privacy requirements. In most of these developments, users specify
their consent and other privacy preferences, and the system respects users’ choices while
processing their data. Most of these solutions were developed to ease the difficulties of
the industry with GDPR compliance and to ensure respectful treatment/handling of per-
sonal information. In contrast, this work assumes that users do not specify any privacy
preferences/consent while providing their data to data owners. However, the data own-
ers ensure the protection of personal information while outsourcing data by applying a
strong anonymization mechanism (removing directly identifiable information) to safeguard
individuals’ privacy while providing considerable utility for data miners/analysts. Our
work enables the secondary use of person-specific data while lowering the possibility of
privacy breaches.

To compute the usefulness weights of QIs, we employ six fundamental concepts
labeled A to F in Figure 4. The input for computing the usefulness weights is dataset D,
which contains both QIs and SAs. Next, two partitions of D (training and testing data) are
created for training and validation, respectively. It is worth noting that most real-world
datasets are noisy, skewed, and can have multiple vulnerabilities (e.g., outliers, small size,
incomplete tuples), leading to biased results when fed into ML models. In the experiments,
we used a fair sampling strategy to control bias in data. Specifically, the samples were
drawn with a relatively higher sampling fraction ratio (0.80) to have tuples from each
SA category value. Furthermore, at the pre-processing stage, data were cleaned using
multiple techniques to control biases in data. Moreover, the training and test data were
inspected from the perspective of balancedness, meaning that the distribution of each SA
value was balanced with respect to real data. QIs are regarded as predictor variables, and
the SA is the target class/variable. Subsequently, the RF parameter values (ntree, denoted
with t, where t = 1 upto ntree, and mtry) were chosen by considering the data sizes, and
chains of trees were built from the training data samples. The choice of optimal values of
the parameter is imperative to prevent imbalanced learning, leading to biased results. To
prevent imbalanced learning, the grid search method was used to determine the optimal
values of the parameter. Furthermore, rigorous experiments and sensitivity analyses were
performed by varying each parameter’s value to find the optimal values. By choosing the
feasible values of each parameter, the bias was restrained in the training process. Once all
trees were constructed, the accuracy value aint was analyzed and validated with the testing
data. If aint was very low, then RF’s parameters were tuned to bring aint into the required
range. During this process, the out-of-bag (OOB) error, represented as σint, was reduced.
These values (aint and σint) are recorded as reference values. Once, the reference values
were obtained, the QI values were shuffled, and the RF model was built again with the
shuffled data. By doing so, the correlation between the actual SA values and the QI values
was demolished, and when the model was rebuilt, the accuracy values decreased if a QI
strongly related to an SA. In contrast, if the accuracy changed slightly or increased, it meant
that particular QI was more useful with a large number of identical values. We recorded
the values for accuracy and OOB errors after the QI values were shuffled into a f and σf ,
respectively. We took the difference, χ, of errors both before and after permutation to carry
out further steps to compute QI usefulness weights, as expressed in Equation (3).

χ = σint − σf (3)
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where σint is the OOB error before permuting the QI values, and σf is after the permutation.
We compute the cumulative errors χt from all trees t of the RF method by using Equation (4).

χt =
ntree

∑
t=1

χt (4)

We compute the average, variance, and standard deviation of these errors using
Equations (5)–(7).

x =
χt

t
=

∑ntree
t=1 χt

t
, where t = |ntree| (5)

s2 =
1

t− 1

ntree

∑
t=1

(χt − x)2 (6)

s =

√√√√ 1
t− 1

ntree

∑
t=1

(χt − x)2 (7)

After the above calculations, we find the usefulness weight of the QI, QIp, using
Equation (8).

ΩQIp =
x
s

(8)

By using Equation (8), the weight values of all QIs are computed, and QIs are ranked
considering their usefulness weights. Next, we normalize the weights, so the sum of all
weights is equal to 100. By employing the method stated above, we can find and categorize
QIs as highly useful, of medium value, or less useful. These statistics are verified from
the actual D and are utilized in the anonymization process. The output of the method
described above is the set of ranked QI-usefulness weights, ζ, (in order: high, medium, and
low) as expressed in Equation (9).

ζ = {(ΩQI1 , ΩQI2 , · · · , ΩQIh), (ΩQI1 , ΩQI2 , · · · , ΩQIm), (ΩQI1 , ΩQI2 , · · · , ΩQIl )} (9)

Retaining highly useful QI values as close to the original as possible during data general-
ization significantly contributes to data reusability and meets data miners’ needs.

4.3. Ranking Similar Users to Lower Generalization Intervals

To maintain domain consistency in the QI values during data generalization, users in
each EC must be highly alike. By doing so, distortion in D

′
can be controlled dramatically.

In this work, we compute the similarity values between users by leveraging their QI
values with the help of cosine similarity [68]. It is a simple but very effective measure for
computing homophily among users in diverse domains [69]. The mathematical equation
employed to measure Sim among two users, u1 and u2, is given in Equation (10).

Sim(u1, u2) =
∑n

i=1 u1(i) × u2(i)√
∑n

i=1 u2
1(i)
×

√
∑n

i=1 u2
2(i)

(10)

In Equation (10), u1 and u2 are two distinct users, i denotes QIs, and n denotes the
total number of QIs in D. Furthermore, Sim(u1, u2) ∈ [0, 1]. If the value of Sim is 0 (e.g., ii
in Equation (11)), it implies that nothing is common between the two users (i.e., they are
highly dissimilar). In contrast, a value of 1 for ii in Equation (11) (i in Equation (11)) implies
the two users are the same (i.e., all QIs have identical values). Apart from these two cases,
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Sim values range between 0 and 1 (iii in Equation (11)). We express the expected value of
Sim between two users as follows.

Sim(u1, u2) =


1, if ∀QI ∈ Q, u1 == u2

0, if ∀QI ∈ Q, u1 6= u2

0 < Sim(u1, u2) < 1, otherwise

(11)

With the help of similarity values, we can obtain a matrix X of highly similar users.
Throughout the similarity computation process, user placement can change based on
their similarity with other users. In Equation (12), we present an example with 5 users to
illustrate this concept.

D =


u1
u2
u3
u4
u5

, X =


u4
u3
u2
u5
u1

 (12)

where D denotes the user arrangement prior to similarity computation, and X denotes
the user arrangement/ranking based on the Sim values. Afterward, further processing
is carried out using only data from X, and users are divided into their respective ECs for
further operations.

4.4. Making Equivalence Classes from User Matrix X Based on k

In the literature, there are two types of privacy mechanisms: syntactic and seman-
tic [70]. In the former, users are divided into classes, and anonymization is performed. In
the latter type, randomness is introduced into the query answers, and relevant instances
are returned with noisy values. Both models have distinct utility and privacy requirements.
The work presented here is a syntactic privacy model, and we advance the k-anonymity
model coupled with uncertainty to anonymize X. The proposed approach divides entire
records into multiple classes depending upon the k value and D size. For instance, if
|D| = 1600 and k = 50, then the total number of classes will be 32, whereas each equiv-
alence class encompasses at least k records (e.g., 50 in this case) in it. We find the total
number of ECs by using Equation (13).

τ =
|X|(No. o f records)

k(parameter o f the privacy)
(13)

The value for k is selected by the data custodian, and it has a significant effect on both
utility and privacy. A smaller value for k yields higher utility and lower privacy; a larger
value yields the reverse. The selection of the k value is subject to data size, privacy, and
utility requirements, the number of data participants, and the mechanism for PPDP. We
determine whether the number of ECs will be a whole number (case i) or a fraction (case ii)
using Equation (14).

Cu = |X| mod k (14)

where the Cu value can be zero or any other whole number. We use these results to separate
both cases above by using Equation (15).

Case(i||ii) =
{

i, if Cu == 0
ii, otherwise

(15)

The pseudo-code of the complete algorithm to make ECs based on k from similarity-wise
ranked user matrix X, where X = {[QI1, QI2, · · · , QIn], [S]}, is given in Algorithm 1.

In Algorithm 1, user matrix X and k are supplied as input, and the set R of the ECs
is returned as output. At the start, the number of records is compared with k, and if X
contains fewer records than k, the processing stops (line 2). If the number of records is
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more than k, the processing continues to divide users into τ classes. Initially, the set R is
an empty set. Later, we find the number of ECs using the records in X and the value of k,
and the two cases are separated from each other (line 6). Case I is relatively easy because
the number of classes is a whole number, and X’s partition is made with n ECs, where
each EC contains at least k users (lines 7–10). Case II is relatively complex because some
records are left over from the assignment process. In this case, we partition X into n ECs,
where each EC contains at least k users similar to Case I (lines 12–14). Later, we find the
remaining records and assign them to classes by performing a similarity-based proximity
analysis (lines 15–16). Afterward, we upgrade the ECs with the new records and add
them to set R (lines 17–18). Finally, set R with multiple ECs is returned as the output from
Algorithm 1. Each EC can contain at least k users, or k + i users, where i = 1, 2, 3, 4, 5, · · · , n.
These classes contain highly similar users with distinct (or the same) values for the SA
in each EC. From a privacy point of view, SA values should be fairly distributed in each
EC. Moreover, we compute the SA value uncertainty in each EC to find a suitable level for
data generalization.

Algorithm 1 Formation of ECs using X and k.

Require: (1) User Matrix X, where |X| = N, k.
Ensure: Classes set R while each EC contains at least k users.

1: if (N ≤ k) then
2: Return ’Processing stopped: less records than k’
3: else if (N > k) then
4: R← ∅
5: Compute, the value of τ and Cu using Equations (13)–(15)
6: if (Cu == 0) then . # of classes is a whole number
7: for i = 1 : k: N, where N = |X| do
8: C1 = {X[i], · · · , X[ik]}, C2 = {X[ik + 1], · · · , X[ik]}, . . . , Cn = {X[(i− 1)k], · · · , X[ik]}
9: End for

10: R← ∪{C1, C2, C3, . . . , Cn}
11: else if Cu 6= 0) then . # of classes is not a whole number
12: for i = 1 : k: N, where N = |X| do
13: Create ECs with the formula to the possible range: C1 = {X[i], · · · , X[ik]}, C2 = {X[ik +

1], · · · , X[ik]}, . . . , Cn = {X[(i− 1)k], · · · , X[ik]}
14: End for
15: Find residual records ( rle f t)
16: Assign the rle f t to ECs in a way that Sim increases
17: Upgrade classes with new records and denote with C

′
1

18: R = R ∪ {C′1, C2, C3, . . . , C
′
n}

19: return R

4.5. Computing Uncertainty in Sensitive Attribute Values in ECs

Computing the uncertainty, U, for each EC is extremely important to effectively ad-
dress the PUT. To find U, entropy is employed. Entropy is an information theory concept
with a wide range of applications in various fields (e.g., physics, thermodynamics, mechan-
ical engineering). In this paper, we use it for measuring the U regarding SA disclosures
from ECs. With the help of the U value, we can separate classes where uncertainty is low
or high, meaning excessive generalization of the QIs is either needed or not needed at all,
respectively. We measure the U value of the SA in C via Equation (16).

U(C) = −
S

∑
h=1

phlog2 ph (16)

where ph is the proportion of the SA values in a distinct category, which is computed
using (17).

ph =
fh
k

(17)
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where fh is the frequency of a particular SA value, and k denotes the total number of records
in C. With the help of both these equations, U values are computed. The pseudo-code for
computing U is given in Algorithm 2.

In Algorithm 2, ECs are provided as the input, and set U of uncertainty values is
obtained as the output. To compute the U value from any EC, we use five steps: (i) acquire
the class for which the U value needs to be computed, (ii) find all distinct SA values in
that EC, (iii) find the frequency of each distinct value, (iv) find the proportion of each
distinct value, and (v) calculate the U value using Equation (16). All of these steps are
sequentially described in lines 3–7. Finally, we gather and store the U values that will be
used in subsequent steps (lines 9–11).

Algorithm 2 Computing the U values of the SA in ECs.

Require: Set R of the equivalence classes.
Ensure: Set U of ECs’ uncertainty values.

1: U← ∅
2: for i = 1 to Cn do
3: Acquire EC of Ci where U(Ci) needs to be computed.
4: Find all distinct values of the SA in a respective Ci.
5: Compute frequency fh, where h = {S1, S2, S3, . . . , Sn} of each distinct value of the SA.
6: Compute the proportion p of each distinct value of the SA using Equation (17)
7: Determine the uncertainty U of the EC U(C1) using Equation (16)
8: End for
9: Gather computed U values, {U(C1), U(C2), . . . , U(Cn)} of each class.

10: Store computed U values in set U, where U = U ∪ {U(C1), U(C2), . . . , U(Cn)}
11: return U

In addition to the pseudo-code above, Figure 5 shows the U-computing process with
a real example of six records drawn from D.

Figure 5. Procedure for computing the uncertainty value U of each EC’s SA by leveraging entropy.
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In this example, we chose two ECs (with k = 3) to demonstrate U’s computation
process. Since a U value close to 1 is preferred, only C1 has such a U value. Meanwhile,
C2 has a U value of zero. Therefore, this EC needs ample attention from the SA disclosure
point of view. By quantifying the usefulness weights and U values, we can perform
only the required generalization, whereas most of the existing methods perform heavy
generalization of the data by ignoring these valuable statistics in D.

4.6. Flexible Data Generalization Considering the Usefulness Weight of QI and SA Uncertainty

The final step of the proposed approach is data generalization. In this step, the real QI
values are changed to new values that are less precise but consistent in terms of semantics.
Generalization is performed with the help of pre-built generalization hierarchies for each
QI. We present examples of both numerical and categorical QI generalization hierarchies in
Figure 6.

Figure 6. Pictorial overview of the QIs’ generalization hierarchies.

There can be n levels in each hierarchy, Hi. Level l0 denotes the original values of the
QIs, and ln denotes the highest generalization level (also known as suppression). We store
all QI hierarchies in set H, where H = HQI1 , HQI2 , HQI3 , · · · , HQIn , for further processing.
Selection of the appropriate generalization level is extremely complex because there exists
a strong privacy–utility trade-off, as shown in Figure 6. In lower levels of H, there is
maximum utility while privacy is zero, and vice versa. To solve this complex problem,
we flexibly perform data generalization by utilizing the intrinsic characteristics of both
QIs and the SA. We find the appropriate generalization level from each QI hierarchy that
effectively resolves the privacy–utility trade-off in the PPDP. The generalization levels of
each hierarchy can be classified into three categories: higher, lower, and intermediate. Since
higher levels of any H yield more utility loss, higher-level generalization is only preferred
when the SA value has no heterogeneity in an EC (e.g., U = 0). Otherwise, generalization
is mostly performed on lower or intermediate levels to yield higher accuracy.

By employing similarity-wise EC formation, the U concept, finding and ranking useful
QIs, and exploiting other useful intrinsic properties of D, our approach allows for flexible
QI generalization, while most existing methods perform generalization based on fixed
criteria, resulting in significant utility loss. Furthermore, prior methods sometimes fully
or partially hide one or more QIs, significantly limiting published data reusability. In
contrast, our proposed approach controls unneeded QI generalization by simultaneously
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considering attribute usefulness weight and uncertainty, thereby enhancing data usefulness
for practical purposes. In addition, it performs generalization instead of suppression
to yield better quality in the anonymized data. In Figure 7, we present the algorithm
flowchart that was used to generate D

′
from D. We segment the whole process into four

stages, (i) required data input, (ii) analyzing and comparing U values, (iii) performing the
required level generalization, and (iv) combining both categories’ results to yield D

′
. In

addition to the visual flowchart in Figure 7, we present the pseudo-code of the flexible data
generalization procedure in Algorithm 3.

Figure 7. Flowchart of QI usefulness and SA uncertainty-aware flexible data generalization.

In Algorithm 3, the input includes set R of the ECs, the generalization hierarchies set
H of the QIs, and QI usefulness weight set ζ. The output is the anonymized dataset D

′
. For

each EC, the U values are computed and compared with the corresponding threshold TU
(lines 1–4). The threshold value is chosen through extensive simulations and can be adjusted
based on the objectives of data publishing and the PPDP mechanism. Higher and lower
utility classes are separated based on the U values. Lines 5–11 perform lower/intermediate-
level generalization for ECs with a relatively higher U. In such classes, the majority of the
generalization is performed at lower levels of the hierarchies (i.e., the privacy disclosure
risk is less). Lines 14–20 perform higher-level generalization for ECs with relatively lower,
or zero, U. In such classes, the majority of the generalization is preferred at higher levels
of the hierarchies (e.g., the privacy disclosure risk is higher because the SA values lack
heterogeneity). Afterward, both categories’ results are gathered to produce D

′
(line 23).

Finally, D
′

is obtained as the output from the algorithm (line 24). D
′

can be shared with
data miners or researchers for secondary uses after performing privacy/utility tests. By
flexibly performing data generalization, the semantics of D

′
are retained as close to the

original as possible for precise analysis, except for some ECs.
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Algorithm 3 Flexible generalization to produce D
′
.

Require: R, H, ζ

Ensure: D
′

1: for each equivalence class Ci ∈ R do
2: Compute U(Ci) value of the Ci using Equations (16) and (17).
3: Compare the obtained U(Ci) of the equivalence class Ci with the corresponding TU .
4: if (U(Ci) > TU) then
5: Scenario (i): Ci is a high-utility equivalence class (i.e., deep anonymization is not required.)
6: for each QI in set Q of an equivalence class Ci
7: Acquire generalization hierarchy HQI1 of QI1.
8: Obtain usefulness weights ΩQI1 of QI1 from ζ.
9: Perform QI generalization in a flexible manner ( f

′
), preferable at lower or intermediate levels

(e.g., l0, l1, l2) of the HQI1 .
10: Repeat: ∀ QIs, QI2, QI3, . . . , QIn
11: return f

′

12: End for
13: else if (U(Ci) ≤ TU) then
14: Scenario (ii): Ci is a low-utility equivalence class (i.e., deep anonymization is required.)
15: for each QI in set Q of an equivalence class Ci
16: Acquire generalization hierarchy HQI1 of QI1.
17: Obtain usefulness weights ΩQI1 of QI1 from ζ.
18: Perform QI generalization in a flexible manner ( f

′′
), preferable at higher levels (e.g., ln−2, ln−1,

ln) of the HQI1 .
19: Repeat: ∀ QIs, QI2, QI3, . . . , QIn
20: return f

′′

21: End for
22: End for
23: D

′
= combine ( f

′′
1 + f

′′
2 +, . . . , f

′′
n and f

′
1 + f

′
2+, . . . , f

′
n).

24: return D
′

5. Experimental Evaluation

We performed rigorous experiments by utilizing two real-life datasets to benchmark
the proposed approach and verify its suitability for practical applications. We compared the
performance of our approach with three SOTA anonymization algorithms and models. We
present a description of datasets used in the experiments, the hardware/software used the
metrics for evaluating the approach’s effectiveness, and performance comparisons against
the prior solutions in Sections 5.1–5.4.

5.1. Descriptions of Datasets

In the experiments, we considered a relational D encompassing the individuals’ iden-
tities and SAs. We used the ’Adults’ [71] and ’Bkseq’ [72] datasets while evaluating and
comparing our proposed approach. The former dataset contains four QIs and one SA.
Moreover, we ignored non-QI attributes from it. The Bkseq dataset contains three QIs
and one SA. Their sizes on the disk are 5.4 MB and 2.85 MB, respectively. We present
an overview of the important details of the datasets used in the experimental evaluation
in Table 3. Both datasets are openly available [71,72] and have been broadly used for
evaluating anonymity solutions.

5.2. Descriptions of the Experimental Environments

All results were performed and compared on a notebook using Windows 10 with a
CPU of 2.6 GHz and 8 GB RAM. The results were obtained by utilizing two recognized
software packages: Matlab (ver. 9.10.0.1649659 (R2021a)) and RTool for R (ver. 3.6.1 X64
version). Descriptions of the parameters and other useful variables utilized for the QI
usefulness weight computations are in Table 4.



Electronics 2023, 12, 1978 21 of 32

Table 3. Description of datasets used for the simulations and comparisons.

Dataset N QIs (Distinct Values, # of Levels, Type) SA (Distinct Values)

Adults [71] 32,561

Age (74, 7, Numerical)
Race (5, 3, Categorical)

Gender (2, 2, Categorical)
Country (41, 4, Categorical)

Salary (2)

Bkseq [72] 16,160
Age (30, 5, Numerical)

Weight (30, 3, Numerical)
Gender (2, 2, Categorical)

Results of the medical exam (19)

Table 4. Parameters/variables utilized in usefulness weight computations.

Datasets Parameter Name
Parameter’s Values

Numerical Non-Numerical

Adults [71]

Training data size
Testing data size

No. of trees (ntree)
RF model type

Variable importance
Value of mtry

Predictors
Target class
Keep forest

21,706
10,855

497
-
-
4
-
-
-

-
-
-

Classification
true

-
All QIs
Salary
true

Bkseq [72]

Training data size
Testing data size

No. of trees (ntree)
RF model type

Variable importance
Value of mtry

Predictors
Target class
Keep forest

10,773
5,387
267

-
-
3
-
-
-

-
-
-

Classification
true

-
All QIs

Medical exam result
true

The parameter values were determined from rigorous experiments and analysis.
The training data constituted 2/3 of D, and testing data were 1/3 of D. In addition, the
target variable was categorical; this is why the RF model type is classification rather than
regression. Table 5 presents the ζ of QIs present in the D presented in Table 3. The symbol ‘-’
shows that the particular QI does not belong. These weights were calculated by RF through
repeated tests. We determined and used the optimal values of RF parameters (as listed in
Table 4) while computing the QI usefulness weights.

Table 5. Usefulness weight values of the QIs in both datasets.

Dataset
Quasi-Identifiers and Their Usefulness Weights

Age Gender Race Country Weight

Adults [71] 0.18 1.10 26.91 71.81 -

Bkseq [72] 47.51 38.91 - - 13.58

The highest usefulness weight being assigned to the QI country is justified by the fact
that in the Adult dataset, the majority of records have the U.S. value in the country column.
The occurrence of a country value other than the U.S. is rare and only happens when the k
value is very small. As a result, the country QI has a high usefulness weight and a lower
impact on individual privacy. QIs that are not concentrated on a specific value, such as
age, have relatively lower usefulness weights. We validated these weights by analyzing the
distribution of each QI’s original values in D. Similarly, in the Bkseq dataset, the age QI
has less variability, and therefore its weight value is higher compared to the other QIs. In
the Bkseq dataset, the usefulness weight value tendency is not very high for one QI due to
the higher distinct values of the SA (e.g., 19) compared to the Adult dataset (e.g., 2). We
performed validation to ensure the correctness of the weight values determined by RF by
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assessing the original values and their domains. From the validation results, we found that
values computed by RF are highly accurate and reliable for practical tasks.

5.3. Descriptions of Metrics and Evaluation Criteria

To evaluate and compare the efficacy of our approach, we utilized three metrics.
Two metrics were used to measure the utility of the D

′
, and one metric was used for

privacy evaluation. To evaluate anonymous data utility, we used information loss (IL)
and classification/regression model accuracy. IL belongs to the general-purpose metrics
category for utility estimation. To calculate IL, we employed distortion measure (DM),
which is stable, and the most widely used IL metric. Fung et al. [73] explained the DM
metric in their study. DM values can be computed by analyzing the hierarchy levels
upon which QI values are transformed. The value of the DM metric is computed with
Equation (18).

DM =
uN

∑
v=n1

n

∑
q=1

li
lt
× ζq (18)

where li denotes the level of the hierarchy on which the QI value is transformed, and lt
denotes the total number of levels in H, while ζq denotes the usefulness weight of the QI. If
a QI value is not generalized, then the value of DM will be zero.

Accuracy belongs to the category of special-purpose metrics and has been extensively
used to evaluate the D

′
quality for mining/analytical purposes. Generally, a higher value

of accuracy is desirable for informative analytics of published data. To achieve superior
accuracy, the domain consistency in the QI values is important when generalizing the data.
The value of accuracy can be determined using the ML methods (i.e., decision trees, RF,
support vector machines, etc.) via Equation (19).

Accuracy =
True negatives + True positives

Total number o f users in D′
(19)

To evaluate privacy protection, we used a privacy-sensitive pattern (PSP)-based prob-
abilistic disclosure (PD) metric. The PSP antecedent is the QI’s dominant value, and the
consequent is the SA value. In general, it captures the association between the SA and
the QIs as ri,((QI1v , QI2v , QI3v) → si). Analysts (or attackers) can make many of these
PSPs by analyzing the QI domain values or from ancillary information obtained from
exterior sources to compromise a user’s identity/SA. Very high PD values indicate that
many patterns can be derived with ease by data mining firms or attackers, and accordingly,
privacy protection is insufficient. We made multiple PSPs and quantified the PD to perform
a quantitative analysis of privacy protection. The PD of the ith PSP in the jth EC can be
computed using Equation (20).

P(Cj(ri)) =
σ

k
(20)

where σ denotes the correct records that match the antecedents and the consequences of a
PSP and k denotes the total number of users in the respective EC.

All three metrics (DM, accuracy, and PD) were used to measure the effectiveness of
the proposed approach. For fair comparisons, we prepared anonymized versions of both
datasets with varying scales of k. We used both large-scale values (Ls, where Ls = D

′
k and

k = [50, 75, 100, 125, 150, 175, 200, 250]), and small-scale values (Ss, where Ss = D
′
k and

k = [5, 10, 15, 20, 25, 30, 35, 40]) of k to demonstrate the potency of the proposed approach.

5.4. Performance against Existing Anonymization Algorithms and Models

To evaluate the proposed approach, we compared the performance with three prior
anonymizing methods: IACk [39], WFDA [52], and CPA [57]. All three anonymization
algorithms are competitive in addressing competing goals of utility and privacy. Further-
more, to demonstrate the efficacy of our anonymizing approach for practical applications,
we used three privacy models as a baseline in our simulation experiments and compared
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results with them. All three privacy models, i.e., k-anonymity [29], `-diversity [30], and
t-closeness [31], have higher adoption rates for person-specific data anonymization. These
models perform anonymization mainly by enforcing constraints on either QI or SA values.
By not utilizing the usefulness weights concept and uncertainty combined with flexible gen-
eralization, their flaws have been recognized in a large number of studies. In the following
subsections, we present quantitative results obtained through a series of experiments.

5.4.1. Comparisons of Anonymous Data Utility/Quality

In this subsection, we evaluate and compare the performance of our approach based on
two metrics: special purpose (i.e., accuracy) and general purpose (i.e., IL). Formalizations
for both metrics are given in Equations (19) and (18), respectively.

(i) Comparisons of Accuracy: The first analysis involved accuracy computation and a
comparison with prior solutions. We experimented on two datasets using Ss and Ls values
of k. From each version of the anonymized datasets, accuracy values were obtained and
compared with the existing solutions. All results were obtained using the R programming
language. We present the accuracy comparison with varying k scales in Figure 8. With
increases in k values, accuracy values also increased. Moreover, the proposed approach
performed consistently better compared to the previous methods for most k values. The
accuracy values of our anonymization approach were only marginally lower than D.
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Figure 8. Accuracy: proposed approach versus existing algorithms and original data.

The proposed approach, on average, enhanced accuracy by 9.81% with the Adult
dataset, and by 10.66% with the Bkseq dataset. These results emphasize the proposed
approach’s feasibility in terms of better data quality for data mining and analytical purposes.
To further validate the suitability of the proposed approach, simulation results were also
compared with three privacy models. The average accuracy results obtained from the
experiments and comparisons with existing anonymization models are shown in Table 6.
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Table 6. Average accuracy: the proposed approach versus existing models.

Dataset
Anonymization Mechanisms (e.g., the Proposed Approach and Existing Privacy Models)

k-Anonymity [29] `-Diversity [30] t-Closeness [31] Our Approach Original Data

Adults [71] 86.46 85.71 84.09 88.71 89.01

Bkseq [72] 88.16 87.91 86.26 91.64 91.75

The proposed approach, on average, yielded better results, compared to the existing
models, with both datasets. The proposed approach had an 8.61% improvement in accuracy
compared to the existing models. To further enhance the persuasiveness of our work, we
compared the results with the recent SOTA ML-based anonymization method. The results
obtained from the two benchmark datasets and their comparisons are given in Table 7.
From the results, it can be seen that our approach yielded higher accuracy compared
to the SVD3RD method. These results fortify the significance of our approach for data
mining tasks.

Table 7. Average accuracy: the proposed approach versus the existing SOTA method.

Dataset
Anonymization Mechanism and Original Data

SVD3RD [59] Our Approach Original Data

Adults [71] 77.10 88.71 89.01

Bkseq [72] 83.89 91.64 91.75

(ii) Comparisons of Information Loss: IL is an unavoidable and unfortunate aftereffect of
any anonymizing operation applied to D.

To yield lower IL values, anonymizing needs to be performed carefully by controlling
higher-level generalization (i.e., levels ln−2, ln−1, ln) to the greatest extent possible. In some
cases, D

′
retains no usefulness, and extensive post-processing is needed for any analysis. In

addition, over-anonymized data become useless to data miners. To resolve such issues of
unnecessary transformations, our approach performs minimal generalization on the data.
Higher-level generalization is avoided and performed only when there is a greater chance
of SA disclosure. By performing generalization in a flexible manner and restricting it to the
lowest possible level of H, IL can be significantly reduced. Figure 9 presents the IL values
obtained from experiments conducted with different k scales.

From the results, we can see that IL values consistently increase with increases in k.
Moreover, the IL values produced by our approach are less than the existing methods.
The proposed anonymization approach, on average, reduced IL by 11.36%, compared
to sophisticated, closely related algorithms. These results obtained are due to flexible
generalization, whereas the existing algorithms fixedly perform generalization (e.g., one
generalization level in all ECs). These simulation results emphasize the validity of the
proposed approach for general-purpose applications. To further assess the capabilities of
the proposed anonymization approach, we compared the results with three privacy models
with 10 representative k values (e.g., k = {5, 10, 20, 30, 40, 50, 100, 150, 200, 250}). The results
and a comparison with existing state-of-the-art privacy models are shown in Figure 10.

From the results, we can see that IL increased with an increase in k-values for both
datasets. Moreover, the proposed approach had lower IL values in most cases, except the
first two. In those cases (i.e., when k was small), most ECs had a lower U in the SA values.
Hence, higher-level anonymization was performed to curtail privacy breaches. However,
from an IL point of view, the proposed approach, on average, showed a 29.6% reduction
in IL compared to the prior privacy models. In most tests, a lower IL is due to flexible
generalization, and from using the similarity concept while making the ECs.
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Figure 9. Information loss: Proposed approach versus existing algorithms.
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Figure 10. Information loss: Proposed approach versus existing models.

5.4.2. Comparison of Individual Privacy Preservation

Comparisons of Probabilistic Disclosure: Although the main assertion of the proposed
approach is utility enhancement, privacy evaluation is still imperative because of the trade-
off between privacy and utility. We evaluated the essence of the proposed approach from
the perspective of privacy preservation and compared the results with existing models and
algorithms. We made seventeen different versions of each dataset and performed PSP-based
PD analysis. We created different anonymized versions of each dataset based on the k value.
The anonymized version of the same dataset created with k = 5 is different from k = 2. For
example, if k = 5, the number of users in each class is at least 5, and the total number of
classes can be determined by dividing |D| by 5. In contrast, if k = 2, the number of users
in each class is at least 2, and the total number of classes can be determined by dividing
|D| by 2. Each version of the anonymized dataset can be differentiated from others based
on the number of classes as well as the number of users in each class. Specifically, k can
help in differentiating the anonymized version of datasets from each other. Furthermore,
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we performed a worst-case analysis by choosing more dominant values of the distinct
QIs and determined the correct matches. The value of PD ranges between 0 and 1. A
value of 1 means there is 100% disclosure, based on the QI values; a value of zero indicates
no disclosure. We constructed multiple patterns and evaluated effectiveness in terms of
possible correct matches. The results are shown in Table 8.

Table 8. Average PD values: proposed approach versus existing solutions.

Dataset k
PD Comparisons with Existing Studies with Varying k Values

Existing Algorithms Existing Models Proposed Approach

2 0.87 0.67 0.54
5 0.60 0.68 0.42

10 0.63 0.69 0.51
15 0.75 0.74 0.64
20 0.69 0.75 0.66
25 0.80 0.78 0.72
30 0.78 0.79 0.67
35 0.80 0.84 0.73

Adults [71] 40 0.81 0.84 0.75
50 0.83 0.85 0.76
75 0.84 0.83 0.78
100 0.82 0.85 0.77
125 0.86 0.86 0.79
150 0.88 0.89 0.80
175 0.88 0.91 0.81
200 0.89 0.92 0.82
250 0.88 0.94 0.82

2 0.50 0.50 0.50
5 0.34 0.38 0.26

10 0.39 0.41 0.33
15 0.53 0.55 0.42
20 0.57 0.63 0.48
25 0.65 0.69 0.53
30 0.63 0.71 0.54
35 0.67 0.73 0.63

Bkseq [72] 40 0.69 0.74 0.64
50 0.71 0.76 0.65
75 0.73 0.79 0.67
100 0.75 0.81 0.69
125 0.76 0.82 0.71
150 0.77 0.81 0.71
175 0.79 0.84 0.73
200 0.81 0.85 0.75
250 0.81 0.86 0.77

The PD values of the proposed approach are lower in most cases compared to ex-
isting methods and models. The proposed approach performs poorly when k values are
very small. However, in real-world cases, the values of k are kept relatively large. With
the Adult dataset, the proposed approach lowered PD values by 12.51%, compared to
existing solutions. In contrast, in the Bkseq dataset, our approach reduced PD values by
9.01%. These results demonstrate the suitability of the proposed approach for effective
privacy preservation. Apart from the empirical results, the proposed approach assists in
anonymizing skewed datasets, which is practically impossible with most of the anonymiz-
ing solutions that rely on heterogeneous values in each group/EC. The proposed approach
is an offline approach, and it has significantly lower space and time complexities with
the pre-computed values of three statistics (e.g., Sim, U, and ζ). In addition, it can be
applied to both categorical and numerical datasets. The proposed approach is generic and
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can be highly applicable in the medical domain where information seekers usually expect
high-quality D

′
for research purposes.

Comparisons of re-identification risk in homogeneous attacks: In the syntactic methods (e.g.,
methods that create classes and apply either generalization or suppression to anonymize
data), there is a risk that all records in an EC can have the same SA in the case of imbalanced
datasets, leading to higher re-identification risks. For example, in the Adult dataset, there
are only two values of the SA, and the distribution is highly skewed. To further highlight
the trade-off between the privacy/risk and utility of the proposed approach, we employed
the re-identification risk against homogeneous attacks [50]. TheHA value can be computed
using Equation (21).

HA =
1
N ∑

j∈R
f j × I (21)

TheHA is the ratio of records with identical SA values in an EC to all records in the
D. We computed the HA from the different versions of the anonymized datasets, and
the results are given in Table 9. Specifically, we present the total number of classes with
identical SA, and the averageHA value for each dataset.

Table 9. AverageHA values: proposed approach versus existing solutions.

Dataset k (# of Classes)
HA’s Comparisons with Existing Studies with Varying k Values

Existing Algorithms Existing Models Proposed Approach

2 (16,280) 4549.56 6210.5 2779.5
5 (6512) 1819.90 2484.2 1111.8

10 (3256) 909.81 1242.10 555.81
15 (2171) 606.53 828.06 370.61
20 (1628) 454.32 621.05 277.95
25 (1302) 363.92 496.84 222.36
30 (1085) 303.26 414.03 185.31
35 (930) 259.94 354.82 158.82

Adults [71] 40 (814) 227.45 310.52 138.97
50 (651) 181.96 248.42 111.18
75 (434) 121.30 165.61 74.12

100 (326) 90.98 124.21 55.60
125 (260) 72.78 99.36 44.48
150 (217) 60.65 82.80 37.06
175 (186) 51.98 79.79 31.76
200 (163) 45.49 62.10 27.80
250 (130) 36.39 49.64 22.36

AverageHA value 0.32 0.42 0.19

2 (8080) 2050.21 2600.21 1450.32
5 (3232) 820.21 1040.29 580.92

10 (1616) 410.34 520.31 290.32
15 (1077) 273.33 346.67 193.21
20 (808) 205.10 260.89 145.34
25 (646) 164.32 208.32 116.45
30 (539) 136.66 173.33 96.67
35 (462) 117.14 148.57 82.85

Bkseq [72] 40 (404) 102.51 130.43 72.55
50 (323) 82.32 104.65 58.98
75 (215) 54.66 69.43 38.66

100 (162) 41.34 52.60 29.87
125 (129) 32.81 41.67 23.24
150 (108) 27.33 34.66 19.35
175 (92) 23.42 29.82 16.59
200 (81) 20.51 26.69 14.43
250 (65) 16.41 20.89 11.65

AverageHA value 0.14 0.16 0.09
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From the results, it can be seen that the number of classes with identical SAs decreases
when k increases. The Adult dataset has a higher imbalance compared to Bkseq and,
therefore, the number of classes with identical SAs is relatively higher than in the Bkseq
dataset. Due to the higher imbalance in the Adult dataset, the average HA value is also
higher. In contrast, the Bkseq dataset is balanced and contains many diverse values for SA;
therefore, the average HA values are small. From the models, k-anonymity has a lower
performance than other models. In the algorithms, IACk exhibits a deficient performance
by not considering diversity in the SA column. The proposed approach demonstrates
lower re-identification risk in homogeneous attacks compared to existing solutions. The
main reason for this is the consideration of U in each EC, whereas most existing solutions
often ignore uncertainty in the SA column, leading to higher re-identification risk. These
results reinforce the significance of our approach in terms of better safeguarding against
re-identification risk.

Analysis of the memory/storage trade-offs required to run the proposed algorithms: The pro-
posed approach has acceptable space complexity, even when entire datasets were loaded
into memory, and no out-of-memory error occurred during experimentation. All steps of
the proposed approach were executed in a pipeline fashion and, thus, memory/storage
trade-offs were effectively resolved. Additionally, having access to entire datasets, general-
ization hierarchies, and usefulness weights in advance minimized memory consumption.
However, in some steps (such as similarity and weight computation), memory consump-
tion was relatively higher than in other steps. To reduce resource utilization, the memory
consumption in weight computation was reduced by optimizing hyperparameters by
leveraging the grid search function. Furthermore, the NSAs were eliminated at the outset
to reduce resource utilization. In the similarity computation process, the upper triangu-
lar part of the similarity matrix, which is merely a replica of the lower triangular, was
also removed to reduce memory consumption. In all other steps, the space complexity
was manageable. However, the space complexity of the proposed approach can increase
when the size of the dataset increases vertically, horizontally, or both; therefore, ample
attention is required to resolve the memory/storage trade-offs. To run the proposed ap-
proach on resource-constrained devices and to prevent memory issues, all six steps can be
executed sequentially.

On the generalizability and applicability of the proposed approach in big data contexts: A
key question that arises about the results obtained through experiments is how valid and
generalizable are the results? To answer this question concerning the experimental results
produced by our approach, we evaluated the threats to validity in terms of internal, external,
statistical, and construct validity. Based on detailed analysis, it can be concluded that
threats to the validity and generalizability of our method are limited based on the following
rationales: (i) most parameter values are adaptive and flexible and, therefore, the obtained
results are general and universal; (ii) the D used in the experiments are large enough and
contain QIDs of both types (numerical and categorical), the experimental results are reliable,
and the conclusions are credible and valid; (iii) through a fair comparison and analysis of
our method with prior state-of-the-art methods and models, it significantly outperforms
them in enhancing utility and preserving privacy; (iv) the experimental setup is highly
similar to real-world environments, which can augment the use of our method in many
commercial applications. The proposed approach can be applied to any real-world dataset
of higher dimensions. However, the space and time complexity can rise when the proposed
approach is applied in Big Data contexts. We analyzed the memory and time performances
of our approach by creating small-sized and large-sized chunks of the available data. The
experimental analysis shows that both time and space complexity do not grow dramatically
and, therefore, our approach is scalable when applied in Big Data scenarios. However,
careful attention is needed when NSAs are not removed from data, and the number of
QIs is large (in numbers). The complications of our approach can be lowered further by
using pre-computed statistics of some steps (e.g., usefulness weights, similarity matrix, the
uncertainty of SA in classes, and pre-built generalization hierarchies) in Big Data contexts.
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6. Conclusions and Future Work

In this paper, we proposed a novel and generic approach for anonymizing person-
specific data. The main objectives of the proposed approach are to enhance the reusability
of the anonymized data for analytical purposes (e.g., understanding disease dynamics,
trend predictions, cause-and-effect relationship analysis, and demography-based knowl-
edge extraction) while providing considerable privacy. We proposed a mechanism for
computing the usefulness weights of each quasi-identifier by using the random forest to
limit heavy changes in useful QIs during data anonymization. We employed the concept
of information theory for calculating the uncertainty of SA values in classes to minimize
the privacy breaches caused by classes of low uncertainty. Furthermore, the proposed
flexible generalization method anonymizes person-specific data, considering the inherent
statistics (e.g., usefulness weights and uncertainty) of attributes from the original data. It re-
solves the utility issues that arise from fixed-manner anonymization (i.e., by not identifying
information-rich attributes) while sustaining considerable privacy in the anonymized data.
We conducted numerous experiments on two real-life and benchmark datasets to assess the
suitability of our proposed approach for real-world applications. The experimental results
confirm the superiority of our approach over existing SOTA methods and models. The
proposed anonymization approach, on average, enhanced the accuracy by 9.81% with the
Adult dataset, and by 10.66% with the Bkseq dataset compared to the SOTA anonymization
algorithms. The proposed approach had an 8.61% improvement in accuracy, compared to
the existing privacy models. Furthermore, the accuracy values from our approach are only
marginally lower (i.e., 0.30% (Adult dataset) and 0.11% (Bkseq dataset)) than the original
data. From the IL point of view, the proposed approach has shown 11.36% and 29.6%
improvements compared to existing algorithms and models, respectively. The proposed
approach has significantly reduced the disclosure risk compared to previous solutions.
With the Adult dataset, the proposed approach lowered the disclosure values by 12.51%,
compared to existing solutions. In contrast, in the Bkseq dataset, our approach reduced
the disclosure values by 9.01%. These results fortify the significance of the proposed ap-
proach from the perspective of effective privacy preservation without losing guarantees
of anonymous data utility. We intend to extend the proposed approach for optimizing
the privacy–utility trade-off by incorporating usefulness and uncertainty concepts in the
objective function of clustering techniques. We intend to apply the proposed approach on
large-size datasets, such as IHIS (https://www.ihis.com.sg/, accessed on 5 April 2023), to
verify the scalability in realistic scenarios. In addition, we plan to amalgamate DP with the
proposed approach to further improve the privacy and utility results.
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