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Abstract: In colonoscopy, computer vision and artificial intelligence technology have enabled the
automatic detection of the location of polyps and their visualization. These advancements have
facilitated considerable research in the field. However, deep learning models used in the segmentation
problem for capturing various patterns of polyps are becoming increasingly complex, which has
rendered their operation in real time difficult. To identify and overcome this problem, a study was
conducted on a model capable of precise polyp segmentation while increasing its processing speed.
First, an efficient, high-performance, and lightweight model suitable for the segmentation of polyps
was sought; the performance of existing segmentation models was compared and combined to obtain
a learning model that exhibited good accuracy and speed. Next, hyperparameters were found for the
MobileNetV3-encoder-based DeepLabV3+ model and, after tuning the hyperparameters, quantitative
and qualitative results were compared, and the final model was selected. The experimental results
showed that this model achieved high accuracy, with a Dice coefficient of 93.79%, while using a
limited number of parameters and computational resources. Specifically, the model used 6.18 million
parameters and 1.623 giga floating point operations for the CVC-ClinicDB dataset. This study
revealed that increasing the amount of computation and parameters of the model did not guarantee
unconditional performance. Furthermore, for the search and removal of polyps in cases in which
morphological information is critical, an efficient model with low model complexity and high accuracy
was proposed for real-time segmentation.

Keywords: polyp segmentation; deep learning; lightweight; medical image segmentation;
MobileNetV3; DeepLabV3+

1. Introduction

Colorectal cancer is a malignant tumor that occurs in the mucous membranes of the
colon or rectum. Malignant tumors not only grow indefinitely, but also involve transfer
to surrounding tissues, causing the destruction of the body’s tissues, which can result in
death if the normal function of the body is obstructed. Furthermore, if it is not removed
through chemotherapy or surgery, cancer is rarely alleviated naturally and is more likely to
continue to grow.

The symptoms of colorectal cancer include changes in bowel habits, rectal bleeding,
abdominal tumors, abdominal pain, unprecedented weight loss, and anemia. Because
these clinical symptoms may be caused by diseases other than colon cancer, additional
tests such as colon angiography, blood tests, and colonoscopy should be conducted [1,2].
Records have revealed that of more than 1.9 million patients suffering from colorectal cancer,
more than 930,000 deaths have been reported worldwide, and the risk of this disease is
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statistically proven [1]. The continuous increase in the mortality rate of colorectal cancer
can be attributed to the failure to detect cancer at an early stage.

An effective method for the early detection of colorectal cancer is colonoscopy, which
involves the visual diagnosis of diseases in the large intestine by inserting a charged-couple
device camera or fiber optic camera into the intestine through the rectum. Colonoscopy
enables visual checking of the rectum and large intestine and, because this process is nonin-
vasive, colon diseases can be evaluated with low risk. Furthermore, because polyps are
highly likely to develop into cancer, removing them before they do is critical. Colonoscopy
facilitates polyp removal, which is an effective method for preemptively preventing cancer
and reducing mortality [1,3].

Advancements in computer vision technology have enabled the automatic detection
of polyps in colonoscopy images. Furthermore, algorithms based on deep learning exhibit
a considerable improvement in performance compared with existing segmentation algo-
rithms and strength in finding polyps with complex patterns. However, recent studies
have focused only on accuracy, resulting in increased model complexity and hardware
dependence. Furthermore, these models are difficult to operate in real time.

In this study, to improve the convenience of operation, we proposed an efficient model
that can be driven in real time with high accuracy and low computational complexity. The
studied model exhibited a Dice coefficient of more than 93% and a computational amount of
1.623 giga floating point operations (GFLOPs) in the CVC-ClinicDB dataset, which proved
that it has a very fast execution speed and a sufficient level of performance for determining
the complex patterns of polyps compared with previous studies.

2. Related Works

Deep learning is a subset of machine learning based on artificial neural networks.
One of the primary advantages of deep learning is its ability to handle large amounts
of complex data, such as images, audio, and text. Furthermore, deep learning has been
demonstrated to outperform traditional machine learning algorithms. Therefore, deep
learning was proposed for the segmentation of polyps in colonoscopy.

2.1. Colonoscopy Polyp Segmentation Algorithms

Recently, there have been several proposed studies on region segmentation in the med-
ical imaging field. These studies aim to improve the accuracy of medical image analysis,
which is essential for computer-aided diagnosis and treatment planning. Region segmen-
tation involves identifying and segmenting specific regions of interest, such as organs
or tissues, in medical images. Chen et al. [4] proposes a new model for cerebrovascular
segmentation from time-of-flight magnetic resonance angiography (TOF-MRA), which is
a crucial step in computer-aided diagnosis. Deep learning models have shown powerful
feature extraction for cerebrovascular segmentation, but they require a large number of
labeled datasets, which are expensive and professional. To address this issue, this pa-
per proposes a generative consistency for semi-supervised (GCS) model that utilizes the
rich information contained in the feature map. The GCS model uses the generated data
from labeled, unlabeled, and perturbed unlabeled sources to constrain the segmentation
model. It also calculates the consistency of the perturbed data to improve feature min-
ing ability. This paper proposes a new model as the backbone of the GCS model that
transfers TOF-MRA into graph space and establishes correlation using a transformer. The
experiments prove the effectiveness of the proposed model on TOF-MRA representations
and the GCS model with state-of-the-art semi-supervised methods using the proposed
model as the backbone. Overall, the paper highlights the importance of the GCS model in
cerebrovascular segmentation.

Wu et al. [5] proposes a weakly supervised cerebrovascular segmentation network
with shape prior and model indicator to overcome the challenges of labeling cerebral
vessels, which require neurology domain knowledge and can be extremely laborious. The
proposed approach uses a statistic model as noisy labels and a transformer-based architec-



Electronics 2023, 12, 1962 3 of 19

ture that utilizes Hessian shape prior as soft supervision to improve the learning ability
of the network to tubular structures for accurate predictions on refined cerebrovascular
segmentation. The paper also introduces an effective label extension strategy to combat
overfitting towards noisy labels as model training, which only requires a few manual
strokes on one sample as an indicator to guide model selection in validation. The exper-
iments on a public TOF-MRA dataset from the MIDAS data platform demonstrate the
superior performance of the proposed method, achieving a Dice score of 0.831 ± 0.040 in
cerebrovascular segmentation.

Isensee et al. [6] proposed a new method for multi-class segmentation of MRI volumes
that outperforms state-of-the-art methods. The authors introduced the nnU-Net architec-
ture, which consists of a series of densely connected convolutional layers with shortcut
connections, and a training approach that adjusts the difficulty of the segmentation task
according to the ability of the network during training. This self-adapting method ensures
that the network focuses on the most difficult cases during training, which leads to better
performance on the test set. The authors evaluated nnU-Net on a large-scale multi-class
brain tumor segmentation challenge dataset and showed that it achieved state-of-the-art
performance. The authors also demonstrated the versatility of nnU-Net by applying it to
three additional datasets for brain and liver segmentation, achieving top performance on
each dataset. nnU-Net has the potential to significantly improve the accuracy and efficiency
of multi-class segmentation of MRI volumes, which can have important clinical applications.

Colonoscopy polyp segmentation algorithms have also been studied extensively in
recent years, with various models proposed for accurate and efficient polyp segmentation.
One such model is ResUNet++ [7], which is a modified version of U-Net [8]. ResUNet++
adds several blocks such as the squeeze-and-excite block (S&E block) [9], atrous spatial
pyramid pooling (ASPP), attention block [10], and residual block [11] to the existing U-Net
framework. The residual block prevents gradient vanishing and gradient explosion as the
neural network’s layer deepens, while the S&E block recalibrates feature maps through
convolution to consider the importance of the channel. However, obtaining detailed infor-
mation becomes difficult as the depth of the neural network increases because the feature
map size decreases. To address this problem, ASPP is used in ResUNet++ to maintain
detailed information and enable precise prediction in pixel units. To further improve the
model’s performance, Jha et al. [12] added conditional random field (CRF) [13] and test-
time augmentation (TTA) [14] to ResUNet++. CRF is a probabilistic model that facilitates
precise prediction of pixel labels, while TTA averages the probability of predicted values
of augmented images. The proposed model achieved a 4% performance improvement
over the existing ResUNet++ with a Dice coefficient of 85% or more for the KVASIR-SEG
dataset. Another model proposed by Srivastava et al. [15] is MSRF-Net, which is de-
signed to segment polyps of various sizes. MSRF-Net consists of an encoder, an MSRF-sub
network, a shape stream [16], and a decoder. The encoder comprises two consecutive
S&E blocks and each encoder output connects to the MSRF-sub network. The MSRF-sub
network comprises several dual-scale dense fusion blocks, which process each feature
map extracted from the encoder, exchange information between scales, preserve low-level
features, and maintain resolution while improving information flow. The feature map then
passes through the shape stream block, which improves spatial accuracy. The decoder
comprises a triple attention block and connects to the MSRF-sub network and the previous
decoder output via a residual connection. In the decoder, the S&E block calculates the scale
of each channel. MSRF-Net can shape and classify polyps of various sizes and exhibits
excellent segmentation performance. However, the technique shows poor performance in
low-contrast images.

Zhang et al. [17] proposed TransFuse, a model that improves the efficiency of global
contextual modeling while maintaining low-level details. TransFuse consists of two parallel
branches that process information differently: a transformer branch and a CNN branch. The
transformer branch restores information about local details, starting from the global context,
while the CNN branch progressively increases the receptive field and encodes features
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from local to global information. The feature maps of the same resolution generated from
the two branches are inputted into the BiFusion module. The BiFusion module selectively
fuses information and the resulting multi-scale fused feature maps are used to generate the
segmented image via residual connections. TransFuse captures global information without
building a deep network while maintaining low-level details by utilizing the strengths of
CNNs and transformers.

Wang et al. [18] proposed the SSFormer model to preserve both global and local fea-
tures. In the encoder, the pyramid transformer encoder structure of PVTv2 [19] was applied.
Overlapping patch embedding was used to preserve local features such as convolution.
The decoder demonstrates a structure called a progressive local decoder, which uses local
emphasis (LE) and stepwise feature aggregation (SFA). The LE module emphasizes local
features using the feature maps extracted from each transformer encoder through a convo-
lutional neural network (CNN), which exists in each layer of the pyramid. Thus, there are
as many LE modules (blocks) as the number of transformers. In the case of transformers,
the residual connection plays a crucial role owing to the low correlation between the images
of each depth. The SFA module is proposed to implement the residual connection. In this
module, the LE images of the previous layer, starting from the deepest LE image of the
encoder, are added or connected and a linear projection is performed, which proceeds to
the first LE image of the encoder. This approach reflects both the local information of the
shallow layer and the global information of the deep layer, and the model achieved the best
segmentation performance in multiple polyp and skin lesion datasets.

2.2. Lightweight Deep Learning Classification Models

Howard et al. [20] proposed MobileNetV3, a lightweight model with improved per-
formance compared with the previous MobileNetV2 [21] model. In this model, a building
block with S&E was added to the existing bottleneck structure as shown as Figure 1, and a
platform-aware neural architecture search (NAS) [22] and NetAdapt [23] were proposed to
determine an efficient network structure; furthermore, layers were redesigned. Platform-
aware NAS was used to optimize each block of the neural network, and NetAdapt played
a role in finding optimal filter parameters by automatically fine-tuning the network created
from NAS in a complementary manner to platform-aware NAS. This process helped to
design an efficient network by considering the processing speed, not simply performance.
By contrast, in MobileNetV3, the structure of the existing model was modified. First, the
filter with a spatial resolution of 7 × 7 in the final stage was replaced with a 1 × 1 filter to
obtain rich features, but with slightly more computation. This phenomenon resulted in
the removal of layers that occupied a high amount of computation, which improved the
structure of the final stage without deteriorating performance. Furthermore, the number of
3 × 3 filters of the existing model was reduced by half, and the activation function of the
second half of the model was changed from ReLU [24] to Swish [25], which is a nonlinear
function, rendering model quantization useful with a reduction in the number of calcula-
tions. This model exhibited a high level of performance and a latency of 13 to 50 ms in the
classification problem using a smartphone; it also achieved a high level of performance and
fast processing speed in the semantic segmentation problem for high-resolution images.

Tan et al. [26] determined the optimal combination of model depth, width, and resolu-
tion through a study on model scaling and proposed EfficientNet, which reduces model
parameters. As shown as Figure 2, this study confirmed that the increase in accuracy from
the increase in the depth, width, and resolution of the network rapidly decreased from a
certain point; on this basis, it proposed a technique that can optimally balance depth, width,
and resolution, called compound scaling. Therefore, EfficientNet, which applies compound
scaling around FLOPs in a search space such as MnasNet [22], develops models up to B7
while increasing the scale (φ) based on the initial model B0, which enables calculations
tailored to hardware specifications. The performance of the model is efficiently improved
by applying techniques such as mobile inverted bottleneck and S&E. As a result of this
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study, EfficientNet achieved high accuracy and low computational complexity compared
with existing convolution-based models with high FLOPs.
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3. Methods
3.1. Model Structure

In this study, a pre-trained neural network was used as an encoder for the segmentation
model. The encoder of DeepLabV3+ [27] consisted of DCNN and ASPP, in that order. In
this model, DCNN played a role in compressing the information of the input data and ASPP
played a role in extracting feature maps of various resolutions using the result of DCNN as
an input. The pre-trained neural network received colonoscopy images as an input and
played a role in extracting high-quality feature maps required by the segmentation model.
This measure replaced the feature map of the encoder that the existing segmentation model
had and was used as the output of the residual connection and encoder.

The decoder retained the structure of the existing segmentation model. Specifically,
the structure of DeepLabV3+ was used without modification, and the decoder receiving
the feature map and the result value from the encoder composed of a pre-trained neural
network was trained to create a mask that was as similar as possible to the split mask of
the training dataset. The model structure is displayed in Figure 3.
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Figure 3. Proposed model. Performance was improved through hyperparameter tuning on the
DeeplabV3+ model combined with a lightweight encoder.

An efficient model suitable for segmentation of polyps was sought, and the final model
was selected after performance comparison of models. Subsequently, the hyperparameters
of the model were adjusted.

3.2. Experimental Details
3.2.1. Datasets

Fan et al. [28] introduced a dataset combining five polyp segmentation datasets. Each
dataset has public confidence in the existing polyp segmentation task as CVC-ClinicDB [29],
CVC-ColonDB [30], EndoScene [31], ETIS [32], and Kvasir [33]. Furthermore, 90% of this
dataset was used as training data and the remaining 10% was used as a test dataset. In this
study, the model was trained through the five-polyp segmentation dataset and the test was
conducted only for CVC-ClinicDB among the existing test sets. The details of the datasets
are presented in Table 1.
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Table 1. Metadata about polyp segmentation datasets used in the experiment.

Dataset Resolution Number of Patients Number of Items

CVC-ClinicDB 384 × 288 23 612

CVC-ColonDB 500 × 574 15 300

EndoScene 500 × 574;
384 × 288 36 912

ETIS 1255 × 966 44 196

Kvasir from 720 × 576 up to
1920 × 1072 N/A 500 images in polyp

class

3.2.2. Loss Function

In this study, the loss functions used for training the segmentation model were binary
cross-entropy (BCE) loss [34], Dice loss [35], Focal loss [36], and a combined loss function
that combines these loss functions. The BCE loss is used to minimize the distribution
between the predicted value and the original, which is used to increase the accuracy of each
pixel by calculating the difference between the distributions for each pixel. By contrast,
Dice loss is a universal division performance indicator. In the binary segmentation problem,
Dice loss can be defined as a loss function that measures the similarity between masks
while balancing precision and recall for the prediction mask by calculating the F1-score for
the prediction and original masks. In addition to BCE and Dice loss, Focal loss is a modified
version of BCE loss that down-weights the contribution of well-classified examples and
focuses more on hard examples. It can improve the performance of the model in imbalanced
datasets by assigning higher weights to misclassified examples. All of these loss functions
have a scale between 0 and 1 and, the closer the two loss functions are to 0, the higher the
similarity with the actual value. The formula for each loss is as follows:

LossBCE = (y − 1)log(1 − ŷ)− ylog ŷ (1)

LossDice = 1 − (2yŷ + 1)/(y + ŷ + 1) (2)

LossFocal = −αy(1 − p̂)γlog(p̂)− (1 − y)p̂γlog(1 − p̂) (3)

In the case of BCE (1), y denotes the actual value of each pixel and ŷ denotes the
predicted value of each pixel. In the Dice loss function (2), y denotes the actual mask and ŷ
denotes the predicted mask. Finally, for Focal loss (3), y denotes the actual value of each
pixel and p̂ denotes an estimate of the probability of the positive class, which is calculated
based on the predicted value. The focusing parameter, γ, determines the extent to which
highly confident and accurate predictions contribute to the overall loss function. Finally,
the hyperparameter α plays a crucial role in balancing precision and recall by adjusting the
weighting of errors for the positive class. Specifically, the value of α determines the degree
to which errors for the positive class are penalized or rewarded, thus affecting the overall
performance of the model.

3.2.3. Experimental Details

In this study, the pytorch [37] framework was used for training and testing of the
model, and all training processes were performed on an i7-10700F with an RTX 2060
super 8GB graphics card. To prevent model overfitting, the dataset was divided into 80%
training data, 10% validation data, and 10% test data. Besides, the model image was
resized to 288 × 384, the size of the CVC-ClinicDB dataset for testing. Finally, to ensure
fairness in the model learning process, each model in our experiments was trained on
eight different training/validation partitions that were generated from distinct random
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seeds. The reported results are the average of the aggregated performance metrics across
all partitions.

Meanwhile, there are some differences in experimental details in the model exploration
process and the hyperparameter tuning process. AdamW [38] was used as the optimizer for
the model learning [36]. In this model, the learning rate is set to 1 × 10−3 and the weight
reduction rate was set to 1 × 10−2 to determine the optimal minima while minimizing
the divergence of the loss function. Next, in the case of models to be used as encoders
(MobileNetV3, EfficientNet, and RegNet), pre-training was performed on the ImageNet
dataset. Besides, the number of training iterations was set to 1000 and the patience for early
stopping of training was set to 50 to extract the maximum accuracy from the model. Finally,
the Gaussian noise, flip, and coarse dropout [39] augmentation techniques were applied
through the Albumentation [40] library.

On the other hand, in the hyperparameter tuning process, the number of training
iterations was set to 100 and patience was set to 15 to evaluate the influence of the hy-
perparameters quickly and fairly; training was conducted excluding the Gaussian noise
technique included in the selection process. Finally, optimizers were defined as hyperpa-
rameters and performance was compared to various optimizers after model adoption. The
details of the experimental environment are presented in Table 2.

Table 2. Experiment details for model training.

Training Environments Model Comparison Hyperparameter Tuning

Hardware i7-10700F, 32GB RAM, RTX 2060 super 8GB

Optimizers AdamW (Learning rate: 1 × 10−3, weight
decay: 1 × 10−2)

AdamW, AdamP [41], DiffGrad [42],
Ranger [43], SGDW, and Yogi [44]

Image resolution 288 × 384

Pre-trained dataset ImageNet

Epoch 1000 100

Patience 50 15

Data augmentation

Gaussian Noise (p = 0.3),
HorizontalFlip (p = 0.3),

VerticalFlip (p = 0.3),
CoarseDropout (max_holes = 8,

max_height = 10, max_width = 10,
fill_value = 0, p = 0.2)

HorizontalFlip (p = 0.3),
VerticalFlip (p = 0.3),

CoarseDropout (max_holes = 8,
max_height = 10, max_width = 10,

fill_value = 0, p = 0.2)

4. Results
4.1. Model Exploration for Polyp Segmentation Models

To create a polyp segmentation model with fast processing speed, this study proposed
a segmentation and an encoder model with a high level of performance while maximizing
computational efficiency. In the case of the segmentation model, U-Net and DeepLabV3+,
which exhibit a faster processing speed and superior performance in segmenting medical
images than other models, were used as test subjects.

In the encoder, the scope is limited to CNN-based models instead of transformer-based
models because transformer modules have a large amount of computation and the global
feature map generated by the model makes it difficult to consider detailed information in
the decoder stage, requiring a large amount of computation to compensate for this. In this
study, the standard of the lightweight model was set as the number of parameters of 10 M;
as a result, MobileNetV3, EfficientNet, and RegNet [45] were selected as target encoders.
Information on these models can be obtained in Table 3.
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Table 3. Information on models selected as encoders. Top1-acc has the same meaning as accuracy
and is based on the ImageNet dataset.

Models Detailed Model Parameters (M) Top1-acc

MobileNetV3 MobileNetV3-L 0.75 4.0 73.3%

EfficientNet EfficientNet-B3 10.0 81.6%

RegNet RegNetY-1.6GF 6.3 76.3%

4.2. Comparison of Polyp Models

Table 4 presents the results of the experiment in the environment in which the selected
model and encoder were proposed. The performance between the models was compared
to the complexity of the models through the Dice coefficient to consider the accuracy, the
number of parameters that can quantify the degree of light weight of the model, and the
GFLOPs index. Parameters are variables of deep learning models and, as the number
increases, more complex problems can be solved. In the case of FLOPs, the number of
floating-point operations required to execute the model indicates the sum of addition and
multiplication operations theoretically performed in the model.

Table 4. Results for comparison experiments between models. The term “Val Dice” refers to the
average Dice score obtained by validating the model on the validation dataset, following eight training
iterations. The bolded values indicate the highest level of performance for each respective metric.

Method Val Dice (%) Test Dice (%) Parameters (M) GFLOPs

U-Net (MobileNetV3) 93.42 92.45 18.64 4.795

U-Net (EfficientNet) 92.01 90.86 33.88 6.278

U-Net (RegNet) 91.56 89.51 55.27 8.808

DeepLabV3+
(MobileNetV3) 94.03 92.23 6.18 1.623

DeepLabV3+
(EfficientNet) 93.75 92.73 28.25 4.351

DeepLabV3+ (RegNet) 93.21 92.05 45.61 5.718

In terms of accuracy, U-Net and DeepLabV3+ exhibited satisfactory performance.
DeepLabV3+ achieved a Dice coefficient of 92% or more in all encoders, which revealed
robustness to changes in encoders. In the case of U-Net, the deviation according to the
encoder was not small, which revealed the disadvantage of low learning stability. In terms
of the number of parameters and the amount of computation, the MobileNetV3 model has
significant advantages over other lightweight models when used as an encoder. In terms of
accuracy, MobileNetV3 revealed comparable performance to models using EfficientNet,
which proved its competitiveness. Therefore, in this experiment, DeepLabV3+ was adopted
as the segmentation model and MobileNetV3 was adopted as the pre-learning encoder.

4.3. Hyperparameter Tuning

In the experimental model composed of MobileNetV3 and DeepLabV3+, the output
stride, decoder channel, and atrous rate are defined as key variables. Furthermore, the
loss function and optimizer in the learning process can affect the learning performance of
the model and are thus also included in the experiment. In this experiment, the influence
of the features was observed by comparing the performance while adjusting the value of
each hyperparameter, and the correlation between features was subsequently observed
through the combination of each feature. Finally, a model with improved performance
was proposed.
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4.3.1. Output Stride

The output stride is the size difference between the input image and the final feature
map of the encoder and is a hyperparameter that can determine the amount of information
compression. In this study, the performance was compared by reducing the basic factor
from 16 to 8 times, but, as shown in Table 5, also reducing the output stride degraded model
performance. This is because accurate segmentation is difficult because of the inability to
compress information for segmentation in cases in which regional information is crucial.
Therefore, the polyp boundary may not be precisely formed or the polyp may not be
properly recognized. Furthermore, as the size of the image to be processed by the model
doubled, the amount of computation increased by more than two times, indicating that
this variable is not suitable for a real-time polyp segmentation model.

Table 5. Performance comparison for the output stride. The bolded values indicate the highest level
of performance for each respective metric.

Output Stride Val Dice (%) Test Dice (%) GFLOPs

8 90.89 90.97 4.220

16 (Baseline) 91.72 91.86 1.623

4.3.2. Decoder Channel

The decoder channel is the number of convolution filters of the ASPP module and is
adjusted to determine the density of the information of the final feature map of the ASPP
module. However, in the case of this hyperparameter, accuracy can be increased, but the
amount of calculation increases as well; therefore, setting it appropriately is critical. In
this experiment, we determined the optimal number of kernels by comparing the basic
parameter of 256 and 196, 288, and 384 channels. In terms of the prediction mask, the model
trained with the basic channel and 288 decoder channels accurately captured the border
and pattern of polyps, but the quality of the segmentation images was relatively low owing
to the lack of information in 196 cases. Furthermore, in the case of 388 cases, the variance of
the feature map was too high; thus, uniform segmentation quality was not observed. The
results are presented in Table 6.

Table 6. Performance comparison for decoder channels. The bolded values indicate the highest level
of performance for each respective metric.

Decoder Channel Val Dice (%) Test Dice (%) GFLOPs

256 (Baseline) 91.72 91.86 1.623

196 92.09 91.96 1.260

288 92.24 92.27 1.845

384 92.22 91.60 2.628

4.3.3. Atrous Rate

The atrous rate denotes the interval of atrous convolution within the model. DeepLabV3+
has three atrous convolution blocks for spatial pyramid pooling; therefore, the parameter
must also be set to three integers. The point of attention in this experiment was the increase
in segmentation performance for small polyps, which could be attributed to the fact that
the existing model did not exhibit suitable performance for small polyps. This process was
evaluated through comparison between images instead of quantitative evaluation. The
basic ratio was 12/24/36 and the experimental parameters were 8/16/32 and 8/22/36;
when adjusting the interval scale, it was tested whether both large and small polyps
could be divided well. In the quantitative evaluation of model performance, parameters
of 8/22/36 demonstrated the best performance, and the amount of computation was
maintained when reducing the atrous rate. An image comparison of this experiment
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clearly revealed the difference. When the atrous rate was lowered to 8/16/32, precise
segmentation was possible for small polyps, but the limitation of not capturing the shape
of polyps in large polyps was revealed. In the case of an atrous rate of 8/22/32, small
polyps were captured better than in the existing model, and although a loss of contextual
information was observed in large polyps, a segmentation mask was created that preserved
the information well compared with that of 8/16/32 The results are presented in Table 7.

Table 7. Performance comparison for the atrous rate. The bolded values indicate the highest level of
performance for each respective metric.

Atrous Rate Val Dice (%) Test Dice (%) GFLOPs

12/24/36 (Baseline) 91.72 91.86 1.623

8/16/32 91.07 90.80 1.623

8/22/36 92.59 92.12 1.623

4.3.4. Loss Function

The loss function is a function that defines the error between the predicted and ground
truth during model training. In the case of the loss function, because the result of the
model can change depending on the design point of view, it is a significant variable that
can change the performance of the model depending on the definition of the formula. The
loss function in the segmentation problem is divided into a distribution-based function, a
region-based function, and a boundary-based function. Among these functions, the most
widely used ones are the distribution-based cross-entropy and focal functions and the
region-based Dice function.

In this experiment, we compared the performance of BCE loss, Dice loss, Dice + Focal
loss, and BCE + Dice loss, which recorded good performance in the study proposed by
Ma et al. [46]. When the two loss functions were combined, the experiment was conducted
without weighting. The results are presented in Table 8.

Table 8. Performance comparison for the loss function. The bolded values indicate the highest level
of performance for each respective metric.

Loss Function Val Dice (%) Test Dice (%) GFLOPs

BCE + Dice (baseline) 91.72 91.86 1.623

BCE 91.15 90.59 1.623

Dice 91.63 91.76 1.623

Dice + Focal 92.19 91.86 1.623

All models showed similar or identical accuracy, except for BCE, and the amount of
computation did not differ. However, in the prediction mask, the difference in the loss
function could be confirmed. In the case of BCE function, the predictive mask itself was
dense, but it did not accurately capture the overall shape of the polyps; this disadvantage
has been highlighted especially for large polyps. The Dice function found the polyp area
well, but demonstrated poor performance in terms of localization. In the case of the
loss function, by adding the Dice and Focal functions, the shape of the polyp was found
accurately and the border was well segmented; however, polyp detection often occurred
in areas other than polyps, which indicated the risk of false positives. By contrast, the
loss function using BCE and Dice could overcome all of these limitations. As shown in
prediction masks, this loss function has a complementary role between the BCE and Dice
functions; thus, both global context and local information can be properly utilized. Unlike
the Dice + focal function, it is also confirmed that there are almost no false positive pixels.
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4.3.5. Optimizers

The optimizer is used to find parameters that minimize the loss function in training and
is a critical hyperparameter in determining model performance. Stochastic gradient descent
(SGD) [47], Adam [48], and Nesterov accelerated gradient are widely used optimizers [49].
Various optimizers developed from these models exhibit a faster learning speed and higher
optimization performance than existing functions. In this study, based on the visualization
of learning strategies for multiple optimizers conducted by Novik et al. [50–52], five
optimizers with optimal learning strategies were selected. AdamW, AdamP, DiffGrad,
Ranger, SGDW, and Yogi were tested in our experiment, and the experimental results are
presented in Table 9.

Table 9. Performance comparison for optimizers. The bolded values indicate the highest level of
performance for each respective metric.

Optimizers Val Dice (%) Test Dice (%) GFLOPs

AdamW (baseline) 91.72 91.86 1.623

AdamP 92.07 91.31 1.623

DiffGrad 92.97 92.41 1.623

Ranger 94.95 93.18 1.623

SGDW 57.21 28.41 1.623

Yogi 90.67 90.84 1.623

Among all optimizers, Ranger exhibited the best performance, achieving an accuracy
higher than 93%. This optimizer, together with DiffGrad, reduced the loss in the training
phase at a very high speed, and its learning efficiency was also high. By contrast, in the case
of SGDW, proper learning was impossible because of the divergence of the loss function
during the training phase. For segmented images generated by each model, it was found
that all optimizers except SGDW preserved the global context, but AdamW, DiffGrad,
and Ranger achieved precise results in terms of localization. In particular, for the Ranger
optimizer, the quality of the mask significantly improved because almost no false positive
pixels were observed compared with other functions.

4.4. Final Model Selection

The optimal model for the real-time segmentation of polyps in colonoscopy images
was found and its hyperparameters were adjusted to minimize the increase in computa-
tional complexity while improving performance. In this experiment, a novel model with
optimal performance was proposed through ablation study. First, the BCE + Dice loss
function and Ranger optimizer, which revealed a significant performance improvement
in previous experiments, were applied to the model. Next, experiments were conducted
on the combination of decoder channel and atrous rate to compare the performance of the
three cases.

For this experiment, the number of iterations and patience were changed to 1000 and
50, respectively, in the same environment as the hyperparameter adjustment process. These
parameters were set to accurately capture polyps by optimizing the model to the data. The
experimental results, as shown in Table 10, are supported by the visual comparisons of
images between the models in Figure 4. Contrary to expectations, accuracy was highest
when only the atrous rate was adjusted. When the atrous rate and the decoder channel were
simultaneously adjusted, the performance degraded compared with individual adjustments.
This phenomenon can be interpreted as a conflicting problem between the reduction in the
atrous rate, which increases the localization quality of the small size of the model, and the
increase in the decoder channel, which can deteriorate the localization quality by increasing
the variance of model parameters.
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Figure 4. Comparison of segmentation masks between the final combined models. Each prediction
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dark green.



Electronics 2023, 12, 1962 14 of 19

Table 10. Results of ablation study for final model selection. The bolded values indicate the highest
level of performance for each respective metric.

Method Val Dice (%) Test Dice (%) GFLOPs

DeepLabV3+ + MobileNetV3 (Baseline) 94.03 92.23 1.623

Ranger + decoder channel 95.83 93.52 1.845

Ranger + atrous rate 96.35 93.79 1.623

Ranger + atrous rate + decoder channel 96.21 93.24 1.845

When considering the segmentation mask, as shown in Figure 5, all three models
exhibited higher localization performance and global performance than the basic model
for the resulting mask in most images. However, in the case of the decoder channel, the
quality was low in terms of localization instead of generating the boundary as similar as
possible to the label. When the atrous rate was adjusted, the boundary was more unstable
than that of other models and a hole occurred in the polyp mask. However, both the
shape and detail of the polyp were captured effectively. Finally, when both parameters
were adjusted, the disadvantages of the two models were compensated for in some cases;
however, in the case of some polyps, the quality was slightly degraded. This phenomenon
can be determined to be a poor approach in terms of stability compared with using the two
parameters individually.
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Figure 5. Comparison of segmentation masks between the models that changed the loss function.
Each prediction mask is compared to the label mask. TP is marked in cyan, TF in black, FP in pink,
and FN in dark green.

This experiment confirmed that the model adjusted for the atrous rate exhibited high
accuracy and almost no degradation in speed. Therefore, in this study, the model adjusted
for the atrous rate was selected as the final model.

5. Discussion

In this study, model search and selection, hyperparameter tuning, and final model
adoption were performed to create a model with a high level of performance and a fast
processing speed. The modified DeepLabV3+ model using MobileNetV3 as an encoder
revealed a Dice coefficient of 93.79% and an operation amount of 1.623 GFLOPs in the CVC-
ClinicDB dataset; the comparison between other models proved that the model exhibited
reasonable performance in both processing speed and accuracy. Also, As shown in Figure 6,
our proposed model converged faster and achieved lower loss compared to the previous
models. This model improved accuracy by nearly 2% compared to the TransFuse-S model
and reduced the computational amount by 180 times; this indicates that complicating the
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model is not the correct approach to improving accuracy. Table 11 presents a comparison of
the performance of the proposed model to that of the existing model.
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Figure 6. Comparison of segmentation masks between the final combined models. The graphs in this
figure represent the training loss (a) and validation loss (b) curves for the four models evaluated in
this study, including the three best-performing models selected during the model selection process
and the proposed model. Specifically, each graph displays the loss curves for the model that achieved
the highest Dice score on the test dataset among the respective group of models.

Table 11. Performance comparison of proposed and existing models on CVC-ClinicDB.

Method Test Dice (%) Parameters (M) GFLOPs

TransFuse-S 91.80 26.30 286.36

ResUNet++ + CRF 92.03 4.07 26.668

DoubleUNet 92.39 29.29 91.052

HarDNet-MSEG 93.20 66.47 1.017

MSRFNet 94.20 18.38 158.116

SSFormer 94.47 66.20 25.224

Proposed Model 93.79 6.18 1.623

Colonoscopy is a screening tool optimized for observing and removing polyps. How-
ever, distinguishing polyps using the naked eye is difficult in several cases; therefore, the
polyp area should be segmented using morphological information in addition to location
and size information. The lightweight segmentation model proposed in this study can solve
these tasks in real time in real medical settings and is expected to be a screening algorithm
with a comparative advantage over object detection methods based on high accuracy.

However, in this study, distinguishing cases where polyps do not exist is not possible,
as the dataset does not contain data with no polyps; this may cause a problem of false
positive detection of polyp regions even when no polyps exist. This model also exhibited
poor performance in accurately segmenting all polyp patterns, and its applicability in a
limited environment by learning and inferring a model for still images through a graphical
processing unit remains unclear.
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6. Conclusions

The model developed in this study balances high accuracy and fast processing speed,
focusing on a polyp segmentation model that can be used in real time. The results of the
study revealed that increasing the complexity and amount of computation of the model
to increase existing accuracy may not be effective. We tried to prove that a high level of
performance can be achieved even with a low amount of computation and model scale
by combining existing lightweight models and optimizing them. DeepLabV3+ was used
as a split model and MobileNetV3 as an encoder, achieving a high level of performance
of 92.23% Dice coefficient, 1.623 GFLOPs operation amount, and 6.18 M parameters in
the CVC-ClinicDB dataset. After adjusting the parameters, the amount of computation
and model parameters were maintained, the Dice coefficient was increased to 93.79%, and
a faster and more precise segmentation model was proposed than the existing model as
shown in Figure 7.
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In the future, to overcome the mentioned limitations, the following follow-up studies
are suggested. The specificity of the execution speed and false positives in the colonoscopy
video should be verified through the image data, including integrating images without
polyps into the training data. To verify whether the lightweight split model can be run in
harsh environments through CPU testing, studies should also be conducted to improve
generalization performance and optimize models that maintain real-time properties and
loss functions.
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