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Towards a Machine Learning Smart

Toy Design for Early Childhood

Geometry Education: Usability and

Performance. Electronics 2023, 12,

1951. https://doi.org/10.3390/

electronics12081951

Academic Editors: Mohammad Jafari

and Rania Hodhod

Received: 23 March 2023

Revised: 11 April 2023

Accepted: 18 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Towards a Machine Learning Smart Toy Design for Early
Childhood Geometry Education: Usability and Performance
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Abstract: This study presents the design and evaluation of a plush smart toy prototype for teaching
geometry shapes to young children. The hardware design involves the integration of sensors,
microcontrollers, an LCD screen, and a machine learning algorithm to enable gesture recognition
by the toy. The machine learning algorithm detects whether the child’s gesture outline matches the
shape displayed on the LCD screen. A pilot study was conducted with 14 preschool children to assess
the usability and performance of the smart toy. The results indicate that the smart toy is easy to use,
engages children in learning, and has the potential to be an effective educational tool for preschool
children. The findings suggest that smart toys with machine learning algorithms can be used to
enhance young children’s learning experiences in a fun and engaging way. This study highlights
the importance of designing user-friendly toys that support children’s learning and underscores the
potential of machine learning algorithms in developing effective educational toys.

Keywords: IoT; smart toy; machine learning; early childhood education; geometry; usability;
human–computer interaction

1. Introduction

The Internet of Things (IoT) has emerged as a revolutionary technology that connects
various devices and systems to a network, allowing them to communicate and exchange
data, thus revolutionizing the way we interact with the world around us. The proliferation
of the IoT has ushered in a new era of smart and interconnected systems capable of
improving efficiency, automating processes, and improving quality of life. This technology
has found uses in a variety of industries, including healthcare, agriculture, transportation,
smart cities, and energy [1]. In recent years, the integration of IoT in education has been a
growing trend, offering innovative solutions for teaching and learning [2]. IoT technology
has the potential to create interactive and immersive learning experiences that can improve
student engagement, motivation, and learning outcomes due to the low-cost functionalities
of smart devices [3]. These devices can collect and analyze data to improve educational
quality and help educators make informed decisions [4]. As a consequence, they promote
creativity, critical thinking, communication, and collaboration, leading to the development
of higher-order thinking skills among learners [5]. Furthermore, the IoT can help bridge
the digital divide by providing students with equal access to education regardless of their
location or socioeconomic status [6].

Children, in particular, are benefiting from the incorporation of the IoT in education,
since their daily activities primarily focus on the manipulation of physical materials such
as toys [7]. Various IoT integration methods for child users have been investigated in
this regard. For example, a study presented in [8] sought to improve the vocabulary
learning of foreign language children by using multimodal cues in a task-based learning
system composed of an educational robot and a 3D book powered by the IoT. According
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to the findings of the user study, the researchers believed that the use of multimodal cues
can improve vocabulary learning for children learning a foreign language. The research
presented in [9] focuses on the design and development of an IoT device that teaches
children about smart agriculture and the programming of smart farm systems.

Modern-day children are commonly referred to as digital natives, as they have grown
up with current technology being ubiquitous and seamlessly integrated into their daily
lives [10]. They are known for their natural and intuitive ability to interact with tech-
nology and use digital devices effectively. This proficiency has revolutionized the way
they learn, resulting in new methods and modalities of knowledge acquisition [11]. One
major area that has been impacted by the rise of digital natives is science, technology,
engineering, and mathematics (STEM) education [12]. With the growing importance of
technology in almost every aspect of our lives, including IoT applications, the demand for
skilled professionals in the STEM field has increased significantly. In response, countries
around the world, such as in the European Union, are placing a renewed focus on STEM
education and revising their school curricula to make it more engaging and relevant for
young learners [13,14]. Therefore, to facilitate meaningful and deeper learning in these
areas, future IoT educational applications should be specifically designed to promote the
development of abstract mathematical concepts [11,15].

In this regard, both scientific research and commercial applications have focused on
toys with IoT features such as software and sensors, commonly referred to as smart toys [16].
These toys are characterized by their ability to facilitate two-way interactions between
children and toys, using both tangible objects and electronic components. Smart toys offer
a unique play experience that differs from traditional toys by providing an interactive
environment that promotes general child development [17]. Moreover, as such, they have
the potential to aid in the development of thinking and problem-solving skills, particularly
in relation to abstract mathematical concepts such as geometry [18]. Although geometry
is an essential subject in mathematics, many students struggle to visualize its concepts,
which can impede their ability to learn and apply geometric principles effectively in
the future [15].

Recent studies emphasize that there are currently limited empirical studies on STEM
education in young children [19]. According to a rather novel study, there is little research
on how children interact with IoT-based geometry learning systems and how these systems
can be effectively integrated into educational settings [20]. In general, additional research is
required to evaluate the effectiveness of smart toys in facilitating the learning process [17],
while the authors in [21] suggest that the incorporation of such technology has the potential
to revolutionize education.

This study introduces a novel approach to early childhood education by design-
ing and evaluating the first prototype of a smart learning toy for preschool geometry
education. Section 2 provides a review of the current state of the art in smart toys for
STEM education, highlighting their benefits, limitations, and gaps that the present study
aims to address. Section 3 outlines the materials and methods used for prototype design,
including hardware components and machine learning algorithms for gesture-initiated
feedback. The hardware components include sensors to detect movement and position,
a microcontroller for data processing, and a speaker for feedback delivery. Machine
learning algorithms were tested and utilized to recognize complex gestures that form a
particular geometric shape. Section 4 reports the findings of a pilot user study that in-
volved preschool-aged children interacting with the prototype toy in an experiment session.
The study aimed to assess the usability, level of engagement, and motor aspects of inter-
actions with the IoT smart toy designed to promote geometry learning among preschool
children. Sections 5 and 6 provide a comprehensive discussion and conclusions, respec-
tively, on the design, usability, and performance of the smart learning toy for preschool
geometry education. The study’s findings contribute valuable insights to the field of edu-
cation technology, demonstrating the potential of IoT-based learning systems to improve
early childhood education.



Electronics 2023, 12, 1951 3 of 34

2. State of the Art

The application of technology to toys and its impact on children’s interaction with
them has become an area of increasing focus for the scientific community due to the vital
role that toys play in the development of children [17]. Smart toys, which incorporate
digital features such as software or sensors, provide a more interactive environment than
traditional toys, fostering the development of cognitive, social, and behavioral skills in
children [16,22]. According to toy manufacturers and marketers, the possibilities of us-
ing smart and connected toys in education appear to offer rich, interactive, innovative,
and mobile learning experiences for preschool children [23]. As such, smart toys have
emerged as a promising tool for STEM education in preschool children [24]. For successful
STEM education, research has emphasized the importance of improving mathematical
skills, programming skills, and problem-solving skills. The design and implementation of
technology for learning cannot take place without taking into account the psychological
aspects of a child’s development that affect their ability to learn and interact with technol-
ogy, on the one hand, and the pedagogical practices that improve those abilities, on the
other [12,15,25]. STEM education for children is based on the principle of introducing
them to programming through a high-level language, which was pioneered by Seymour
Papert [26] with his development of Logo Turtles. This approach is based on Piaget’s theory
of cognitive constructivism [27]. In recent decades, educational technology research has
been influenced by Piaget’s theory of cognitive development and Montessori’s educational
approach, which emphasize the importance of hands-on learning and the manipulation
of objects in the development of logical–mathematical knowledge [27,28]. Studies have
shown that physical manipulation plays a critical role in the development of thinking
skills, enabling the transition between physical and virtual representations and simplifying
abstract concepts for young children [29]. Interactive features such as sound, animation,
and movement-initiated feedback can also provide rich contextual information to enhance
learning and motivate children to complete tasks successfully [11].

A study presented in [17] provides a review of smart toys from the last 30 years,
focusing on toys for children in early childhood and primary school by analyzing and
categorizing smart toys based on their technological and educational capabilities. One of
the major findings of the study emphasizes that, in recent years, smart toys have focused
on special sciences (programming) and some skills of the 21st century (STEM and com-
putational thinking). On the contrary, in the first 20 years, a greater emphasis was placed
on cross-disciplinary skills such as collaboration, emotional thinking, symbolic thinking,
storytelling, and problem solving. We have adopted the smart toy categorizations from this
research. Another novel research study presented in [30] aimed to review 30 computational
toys and kits designed for children aged 7 years and under, including physical, virtual,
and hybrid kits. Qualitative analysis examined the kits’ design, support for exploring com-
putational concepts and practices, participation in projects and activities, and exploration
of other domains of knowledge. The study presents design suggestions and opportunities
to expand the exploration of computational concepts, new modes of expression, and ex-
panded support for children from underrepresented groups in computing. The findings
reveal commonalities between existing kits and suggest ways for designers and researchers
to improve the possibilities for children to create, explore, and play with computing.

Smart toys are now being scientifically researched in the STEM context for preschool
education. For example, the KIBO Robot Demo is an educational robot designed to teach
young children (ages 4 to 8) programming and engineering concepts [31]. The children
can program the robot using wooden blocks with barcodes, learning basic programming
concepts such as sequencing, loops, and conditional statements. The system has been tested
in a variety of settings and has been shown to effectively engage children in programming
and engineering. Research presented in [32] focused on the development of a smart toy
called ABBOT, designed to motivate children to become outdoor explorers. ABBOT is
equipped with sensors that allow it to collect environmental data such as temperature,
humidity, and light levels. The device is also designed to encourage children to participate
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in outdoor activities and learn about their environment by providing feedback and rewards.
The research study presented in [33] described the anthropomorphic design, development,
and testing of a prototype called OBSY, which is an observation learning system aimed
at facilitating the learning of scientific concepts for primary school children in Thailand.
The system consists of a ubiquitous sensor-based device that resembles an octopus with a
mobile web application hosted on the device. Sensors attached to the OBSY device collect
environmental data, which is then interpreted using the web application accessed through
tablet computers. The system was developed through a user-centered design approach and
aims to promote learning science in an engaging and interactive way. The study presented
in [34] described the design and interactive behavior of a tangible augmented reality toy
kit that teaches preschool children about color mixing, mathematics, and geometric 2D–3D
shapes. The game allows children to interact with both physical and on-screen objects
using touch-screen and AR interactions. The researchers conclude that the game has the
potential to improve the learning experience for young children and to promote interest in
STEM fields. Through tangible programming, the study presented in [9] investigated the
use of IoT technology in the smart farming education of children. It involved creating a
tangible programming kit that simulates a smart farming system using sensors and Internet
of Things devices. User testing revealed that the kit was effective in promoting engagement
and learning in young children and has the potential to improve learning in the fields of
agriculture and technology.

Research in [24,35] investigated coding with two commercial smart toy robots, Dash
and Botley, as part of playful learning in the context of Finnish early education. The results
of our study show how Finnish preschoolers aged 5–6 years approached, conducted, and
played coding with the two toy robots. The study’s main conclusion was that preschoolers
used toy robots with coding affordances primarily in developing gamified play around
them by designing tracks for the toys, programming the toys to solve obstacle paths,
and competing in player-generated dexterity, speed, and physically mobile play contests.

A rather recent study presented in [36] examined the effects of didactic approaches
in guiding early childhood children in learning computational logic and programming
concepts. To develop the students’ cognitive skills, a teaching methodology was developed
that utilizes a commercial smart mBot Arduino robot. mBot is a beginner-friendly educa-
tional robot that makes programming and learning robots simple and enjoyable. mBot also
helps develop logical thinking and design skills. The study concluded that the developed
method enhances learning processes and computational thinking abilities.

In recent years, due to the development of smart toys that are enhanced with the
Internet of Things (IoT) and can connect to the Internet, there has been a growing body
of research on cyber security and privacy risks of smart toys. The studies presented
in [37,38] focused on reviewing major smart toy-related children’s privacy risks and the
major mitigations to such risks.

Despite requests from the scientific community to investigate how to best incorporate
new technology into the formal and informal learning contexts of young children, the de-
sign and development periods of new smart toys have not been adequately emphasized,
as highlighted by the research in [39]. Therefore, these authors applied a design and de-
velopment research method to create guidelines for designing and using smart toys for
preschool children. The research examined a smart toy developed in a pilot study, held fo-
cus group meetings with early childhood teachers, created two prototypes, and tested them
with preschool children, teachers, and scholars. The study divided the design guidelines
into three categories: content, visual design, and interaction.

Based on the literature, the use of smart toys in preschool education represents a
promising approach to fostering STEM skills in young children, and, in that regard, learning
geometry at an early age is crucial for the development of spatial reasoning skills. Studies
indicate that it is critical to introduce geometry in the preschool period, when the first
critical geometrical observations are made [40,41]. In that regard, recent studies on gestures
emphasize the body’s significance in spatial and geometric reasoning, highlighting the
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importance of kinetic movement in the genesis and development of abstract geometrical
cognition in early years [42–45].

Aligned with the aforementioned rationale, the present study was designed to ex-
plicate the design, development, and evaluation of a plush smart toy prototype aimed at
facilitating the teaching of geometric shapes to young children. Through the pilot study
user evaluation, we intend to investigate the nature of the children’s engagement with
the smart toy prototype, to test its feasibility, and to gather some initial data on the toy’s
effectiveness. Thus, we will be able to gain valuable insights into the experiences of children
as they use the toy and identify potential areas for design improvement.

3. Materials and Methods
3.1. Toy and Interaction Design

In order to design a smart toy for learning geometry, we chose to integrate IoT sens-
ing technology in conjunction with appropriate machine learning algorithms into a com-
mercially available plush giraffe toy. This allowed us to take advantage of the softness,
familiarity, and flexibility of the design of the plush toy while also providing a dynamic
and engaging learning experience for children. The flexibility of the design of the plush
toy allows for the seamless integration of IoT technology. Sensors and other electronic
components can easily be embedded within the toy while still maintaining the overall
aesthetic and feel of the toy. Plush toys are considered soft and safe for children to play
with, making them an ideal platform for designing interactive toys. Second, plush toys
are often familiar to children, providing a comforting and appealing object to interact
with [46,47]. This familiarity can help children form an emotional connection with their
smart toy, making the experience more personalized and enjoyable. Research has indicated
that animal (plush included) and robot toys are generally regarded as gender neutral,
which provided us with an intriguing opportunity to determine whether or not children
of different genders prefer one toy over another [48]. Plush toys have been applied and
investigated throughout the years of research, as in [39,49–51].

The main hardware components of the smart toy are presented in Figure 1. The specific
functions of the components are elaborated in the rest of this section.

Figure 1. Main smart toy hardware components.
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The proposed interactions with the toy occur in the following manner: Digital repre-
sentations of geometrical shapes are displayed on the LCD screen, followed by an audible
signal. The child is required to map the shape presented on the screen by drawing the
shape above the sensor module detection area using hand movements. This allows the
child to map an abstract geometric shape from its digital representation on screen into its
embodied representation. The machine learning algorithm incorporated in the smart toy
detects whether the gesture outline drawn by the child matches the shape presented on the
LCD screen. This provides immediate feedback to the child, allowing them to understand
if they have correctly identified and drawn the shape. This approach reduces the child’s
cognitive effort and promotes effortless interaction with the system [52]. The use of hand
gestures to interact with the device improves its usability, particularly for young children,
and can contribute to the development of fine motor skills. Fine motor skills are increasingly
recognized as an important aspect of early childhood development and have been linked
to better learning capabilities and overall cognitive development [53]. Current studies on
gestures emphasize the role of kinetic movement in the origin and development of abstract
geometrical cognition in childhood [42,44,45]. The audio and visual feedback provided by
the toy also enriches the learning experience, making it more engaging and enjoyable for
the child. Furthermore, this type of activity can also promote the development of spatial
skills, which are critical to success in STEM fields such as mathematics and science [54].

3.2. Hardware

The main functionality of our proposed system is simple in design (as originally planned)
and is based on a microcontroller with additional modules attached. We considered several
commercially available microcontroller boards for use as the core of the proposed system,
where the minimum requirement was the ability to log data onto a microSD card and perform
real-time acquisition from the utilized sensors. As most of the considered sensors outputted
simple analog signals and did not require any other on-the-fly communication with the
microcontroller, any microcontroller board with at least four multiplexed 10-bit A/D inputs
would be sufficient for the data acquisition task. In a scenario where four analog sensors
are used with 50 readings per second, 400 Bytes would be required for every second of
measurement. This led us to a simple calculation that 10 s of acquisition required at least 4 KB
of RAM. ATMEGA328P-based microcontroller boards are widely available (used mostly in the
Arduino family of microcontroller boards), but only 2 KB of RAM made it nearly impossible
to perform real-time acquisition for a prolonged period. As additional data preprocessing was
considered (and was finally implemented), together with the possibility of ML inference on
the microcontroller itself, a more capable 32-bit microcontroller board was required.

The Teensy 3.6 microcontroller board features an ARM Cortex-M4 MK66FX1M0VMD18
core with 1024 KB Flash and 256 K RAM and clocked at 180 MHz (overclockable at
240 MHz). This computer board is not the fastest microcontroller board available on
the market today (even within the Teensy family of microcontroller boards), but it was
capable of performing all the planned tasks during the development stage of the pro-
posed system. A compatible pinout with the fastest Teensy 4.1 Development Board
(ARM Cortex-M7 at 600 MHz, 7936 K Flash, and 1024 K RAM) made a seamless up-
grade possible, if more complex, and resource-hungry ML were to be implemented dur-
ing future development. Teensy microcontrollers are compatible with the SdFat library
(https://github.com/greiman/SdFat (accessed on 11 April 2023)) that allows extremely
fast file writing, reading, and handling. A SanDisk Class 10 MicroSD card was used for
logging the measured data, but any other class 10 microSD card would be sufficient for
the task.

As feedback to the user, we implemented both audio and visual components. A piezo-
electric speaker (buzzer) could provide limited and short monophonic melodies used for
indicating the start and end of the measurement or the error state within the system. Vi-
sual feedback was provided using a Newhaven 4.3 inch TFT display with an integrated
FTDI FT800 TFT Controller. The display featured a 480 × 272 px resolution, could dis-

https://github.com/greiman/SdFat
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play up to 262 K colors, and interfaced with the microcontroller using SPI, which can
be clocked up to a 30 MHz clock rate. The advanced library provided by Newhaven
(https://github.com/NewhavenDisplay/FTDI_FT800/ (accessed on 11 April 2023)) en-
abled easy integration into the system and the effortless creation of simple geometrical
objects to be displayed together with progress bar objects. The extremely fast SPI interfacing
did not interfere with the measurement process at all as the TFT content was refreshed
only once per second. Additionally, the pushbutton was connected via a long cable to the
interrupt-enabled GPIO pin and used as a trigger for the measurement start.

A small PCB breakout board with size 75 × 44 mm was designed using Kicad 6.0 (https:
//www.kicad.org/ (accessed on 11 April 2023)) and manufactured using an LPKF ProtoMat
S64 CNC machine (https://www.lpkf.com/en/industries-technologies/research-in-house-
pcb-prototyping/products/lpkf-protomat-s64 (accessed on 11 April 2023)), as shown in
Figure 2. The PCB secures the microcontroller board and TFT display in place, and provides
pins for the easier connection of the sensor module and remote switch.

Figure 2. Screenshot of the PCB design of an in-house developed breakout board for Teensy 3.6.
created by KiCad schematic editor

During the development and testing stage of the system, the microcontroller board
was directly connected to the PC using a 480 Mbit/s USB 2.0 interface. This configuration
allowed insight into all raw sensor data, more flexibility when testing different ML models,
and deeper information on the performance of each ML classification algorithm tested.
Model training and inference were performed on a dedicated laptop computer. To be more
precise, the machine features an Intel(R) Core(TM) i7-7700HQ@2.80 GHz processor, 16 GB
of RAM, and NVIDIA GeForce GTX 1050 Ti CUDA capable graphics card and ran a 64-bit
Windows 10 operating system. For more efficient computing with GPU, the NVIDIA CUDA
deep neural network library (cuDNN) was applied. All PC-based code was written for
Python 3.8 with Tensorflow 2.2.0 on top.

A schematic of all electronic components and interfaces between devices is presented
in Figure 3. As the USB 2.0 interface used to connect the examiner PC was relatively long
(≈2 m), the PC could be placed away from the tested device, thus not obstructing the
subject’s concentration or interfering with the measurements in any way. In the develop-
ment stage, the microcontroller board together with all the attached components could be
powered via a USB cable or by its own battery source (via a power bank connected directly
to the Vin and GND pins).

https://github.com/NewhavenDisplay/FTDI_FT800/
https://www.kicad.org/
https://www.kicad.org/
https://www.lpkf.com/en/industries-technologies/research-in-house-pcb-prototyping/products/lpkf-protomat-s64
https://www.lpkf.com/en/industries-technologies/research-in-house-pcb-prototyping/products/lpkf-protomat-s64
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Figure 3. Electronic components and interfaces between devices.

3.3. Sensing Technology

To locate a hand in space, several possibilities were considered, including visual recog-
nition, capacitive sensors, ultrasonic sensors, TOF sensors, and finally, selected infrared
sensors. Our aim, on the hardware side, was to create the simplest possible gesture recogni-
tion device that could be completely embedded into a plush toy body and could run data
acquisition, ML model inference, and visualization using a single embedded microcontroller.
The whole system is based around the microcontroller rather than a single-board computer
(such as the Raspberry PI) due to power requirements (longer battery autonomy) and faster
boot-up times. Using an RGB (or RGBD) camera as a sensor in real-time was a plausible op-
tion that would require a powerful embedded computer to process data in real-time [55,56].
As an alternative, proximity sensors were primarily selected due to their low price, min-
imal power requirements, and relatively simple 1D output. Ultrasonic distance sen-
sors HC-SR04 (https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
(accessed on 11 April 2023)) initially showed themselves to be a valid choice for the pro-
posed system, where their conical-shaped sensing area enabled the detection and distance
measurement in large volumes. Unfortunately, the use of several ultrasonic sensors in over-
lapping sensing areas showed unsatisfactory performance due to interference and achieved
a useful acquisition rate lower than 10 Hz. The third type of sensor initially considered was
an array of TOF VL53L0X (https://www.st.com/en/imaging-and-photonics-solutions/
vl53l0x.html (accessed on 11 April 2023)) distance sensors. TOF sensors are superior in
tasks involving precise distance measurement and a high refresh rate due to their principle
of operation and small sensing area (which is point-sized); the proposed system would
require a dense array of sensors to reliably detect and track hand movement. Like the
camera in the visual recognition approach, this sensor type was also discarded due to the
overall cost and complexity of the system.

An in-house developed capacitive proximity sensor [57] was selected for the initial
prototype version of the device. Featuring a ≈10 cm sensing range and low power con-
sumption, this presented an adequate candidate for gesture sensing. In order to allow
for gesture recognition in a two-dimensional plane, a set of two sensors was employed.
As presented in Figure 4, two capacitive sensors were mounted on the neck of a plush toy.
This arrangement created a kind of virtual canvas, spreading behind the neck and above
the back of the plush toy, for users to perform their gestures on. This broadened the number
of discernible gestures when compared to a single-sensor scenario.

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
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Figure 4. Researcher interacting with the first prototype of the device, featuring capacitive proxim-
ity sensors.

One of the most critical parts of the capacitive sensor is its sensing element. The mate-
rial of which it is made as well as its shape and size extremely determine the sensing range
of the device. This is caused by different amounts of ambient capacitance added to the
sensing oscillator. This capacitance is compensated for during the calibration procedure by
adjusting a digital potentiometer in the reference oscillator. The conductivity of the sensing
element greatly influences the charge distribution along its surface. As the exact behavior
of the sensor with different sensing elements is impossible to determine, we decided to use
an experimental approach by switching materials as well as sizes. In the end we opted for a
copper sheet because it allowed for the greatest sensing range. The final size of the sensing
element was also experimentally determined in terms of being large enough to provide an
adequate sensing range but not introducing an enormous amount of ambient capacitance,
which would interfere with the calibration procedure.

The calibration procedure is based on equalizing the frequencies of two oscillators
(sensing and reference) while there are no moving objects present within the sensing range
of the device. As a result, after a successful calibration, the output voltage from the sensor is
at its maximum value. Bringing an object within a sensing range reduces the output voltage
in proportion to the distance from the object. If the device operates in a static environment,
a single calibration run should be sufficient. By default, the calibration is activated during
each power-on or reset sequence. However, if the device needs to be recalibrated for gesture
recognition purposes, this can be performed at the user’s discretion. Geometrical shapes
are displayed on the LCD screen, followed by an audible signal. The user interacts with the
toy by making a gesture in the sensing field of the capacitive sensors, thus mapping the
presented shape. This interaction produces two time-series vectors (one for each sensor)
that are stored on the microSD card.

Another sensor that was considered was an infrared beam sensor, particularly a Sharp
GP2Y0A21YK0F Analog Distance Sensor (https://global.sharp/products/device/lineup/
data/pdf/datasheet/gp2y0a21yk_e.pdf (accessed on 11 April 2023)). This sensor can
obtain measurements up to 80 cm. There are a few similar models that are electrically
compatible but have different ranges, such as GP2Y0A21YK0F, which works up to a 30 cm
distance. All the aforementioned sensors are analog, which means that they yield a signal
roughly in the range of 0–5 V, which can be read using the microcontroller’s integrated AD
converter. The relationship of the measured distance and the output analog signal is not
linear, thus recalculations must be performed to obtain the exact distance. Additionally,
the IR-type distance sensors have relatively large minimal measurement distances (4 cm
for GP2Y0A21YK0F model and 10 cm for GP2Y0A21YK0F model), where readings follow
different non-linear relations and thus are unusable. The sensor was composed of an IR
LED emitter that projects a light beam and a receiver in the form of a simple 1D camera

https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
https://global.sharp/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
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that measures the reflected light that is returned from the object. Since the sensor measures
the light reflected by the object, it may be affected by the environmental lighting conditions.
Another aspect that must be considered to obtain a reliable measure is the internal update
period of approximately 40 ms, where the sensor outputs faulty readings during a short
period of recalculation. A solution was proposed of increasing the system refresh rate to
50 Hz and data preprocessing, as described in Section 3.5. The 30 cm and 80 cm IR sensors
were tested in real scenarios, and the readings were compared to select the optimal solution.
The 30 cm version had a shorter minimal distance, thus users’ hands can be closer to the
sensor module, but a shorter maximum distance also showed in practice that some gestures
performed in the larger area over the sensor module can be misinterpreted. On the contrary,
the 80 cm sensor version has a longer minimal distance; consequently, the distance to an
object closer to a sensor module is misinterpreted. A longer maximum distance allowed
the sensor to track gestures performed in larger volumes and was thus selected as optimal
(but not perfect) for our system.

3.4. Data Collection

The scientific literature has extensively investigated the use of machine learning mod-
els for complex hand gesture recognition, and various approaches have been proposed
for conducting preliminary testing. Hand gestures are an important part of nonverbal
communication with other humans and are an integral part of interaction with the environ-
ment [58]. They are characterized by trajectories of the hand key points in the space and
can be recorded by a variety of devices, which can be divided into two types: wearable
and non-wearable. Wearable devices use miniature body-borne computational and sensory
components, such as various inertial sensors placed on hand key points [59] or glove-like
devices that can even track complex finger movements [60]. These types of devices re-
quire wearing cumbersome equipment or cables that connect the device to a computer
and require preparation before use. Non-wearable devices are commonly vision-based
devices [61,62] or employ simple proximity/distance sensors to track the location of the
hand in space [63,64]. The main drawbacks of most vision-based systems are their inability
to track hand position beyond the camera’s field of view, their sensitivity to challenging
lighting conditions (in outdoor applications), and their computational complexity. Time-
of-flight (TOF) cameras are special types of cameras that measure the distance to a large
number of points in space and are commonly employed as input devices to game consoles,
where they can track hand movements and detect some specific gestures [65,66]. Both
devices are complex and require a computer instead of a microcontroller to read and process
measured data. The development of small and simple HCI systems based on proximity and
distance sensors using relatively inexpensive components has created new opportunities
for novel and cost-effective human–computer interface designs [67]. A similar approach
is considered in our research, where the developed sensor module relies on an array of
simple and inexpensive distance measurement sensors.

Building accurate and robust models for complex hand gesture recognition is chal-
lenging due to the diversity and complexity of hand gestures. Therefore, preliminary
testing of machine learning models with collected data is critical to ensuring their reliability
and effectiveness.

Data were collected from eight adult individuals to serve as data for building a
machine learning model. The research employed a non-probability sampling method
known as convenience sampling, which entails selecting study participants who are easily
accessible and willing to participate. In this case, those were academic staff involved in
the research project on a wider scope. All subjects signed an informed consent form in
accordance with the Declaration of Helsinki and approved by the Ethics Committee of
the Faculty of Electrical Engineering, Mechanical Engineering, and Naval Architecture.
Each individual performed gesture movements for around an hour. In general, around
200 gestures (depending on the sensing technology) were gathered per individual and were
later processed, depending on the sensing technology.
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3.5. Data Preprocessing

Raw sensor data were pre-processed before input to ANN to improve the accuracy and
efficiency of the machine learning models. Due to the nature of the sensors used, the raw
data are noisy and inconsistent, making it difficult to extract meaningful information. Data
preprocessing helps to address these issues and prepares the data for analysis through data
transformation, data cleaning, and data reduction. Data transformation converts data into
a more suitable format by performing linear or non-linear scaling and normalization of
numerical values. As a notable example, the IR distance sensor outputs non-linear analog
data that could be transformed into a linear distance [68].

By performing non-linear scaling before feeding data to an ML model, the first layers of
our machine learning model do not have to find relations between non-linear voltage input
and actual linear distance and can focus on resolving hand gestures from transformed linear
distance data. The data cleaning technique removes or corrects errors and inconsistencies
and predicts missing values. This requirement is again presented on the IR distance sensor,
which internally updates readings with a 25 Hz refresh rate while our system is set to a
fixed 50 Hz refresh rate. The faster refresh rate was required as the IR distance sensor
outputs faulty readings during short periods of internal distance recalculation, and there
is the possibility of reading the sensor output during that exact moment. By having
more readings than required, simple data filtering can be performed, and outliers are
simply removed and replaced with mean neighboring values (using a mean filter). The
data reduction technique effectively reduces the size of the dataset while still preserving
important information. As reported in the literature, human self-paced movements are
within the 3.3 Hz bandwidth (ref), thus the system’s 50 Hz sampling rate is excessive
for recognizing complex hand gestures. Additionally, the training and inference times of
any ML model are significantly reduced by reducing the input size. By our conservative
estimation and general experience, a 10 Hz refresh rate was selected as optimal as it
balanced the performance and complexity of the ML model. Data reduction was performed
by resampling 500 inputs per sensor (for a 10 s measurement time) to 100 inputs using
cubic spline interpolation. When data are resampled at a five-fold lower rate, noisy sensor
inputs are filtered, and readings are smoothed, as shown in Figure 5. By resampling the
data to a 1:5 rate, we effectively achieved low-pass filtering and simplification (reduction)
of the ML model. With this approach, we effectively reduced the 50 Hz sensor acquisition
rate to a 20 Hz acquisition rate, which is still suitable to recognize complex hand gestures.
If a lower acquisition rate were to be used, some faster movements may be tracked with
an inadequate number of samples, thus preventing accurate recognition. Additionally,
when the original input vector (4 × 500 samples) is used for ML training with a similar ML
model (only the input size was modified), the categorical accuracy of the test is significantly
reduced to 0.86 and the model size to around 6.3 MB (1.4 MB for resampled inputs), which
may be inadequate for ML implementation on microcontrollers.

An additional pre-processing step was also considered, where only data belonging
to the performed gesture are extracted and forwarded to an ML model. This is usually
conducted by observing the first and the last samples, where the object is detected by
sensors, and extracting all the samples in between. This approach was shown to be
unreliable in practice, as the subject may place the hand in the sensed area long before or
keep it there long after the required gesture is performed. An example of movement is
depicted in Figure 5, where some readings exist throughout the measurement time and do
not represent the gesture performed. Thus, an alternative approach was considered, where
the complete measurement is forwarded to an ML model with the task of recognizing
which gesture was executed at any moment during the allowed measurement time. This
was achieved by relying on 1D convolution, which is described in the next section.
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Figure 5. Comparison of RAW sensor reading and pre-processed data for one sensor during a 10 s
measurement time.

3.6. Machine Learning: Test and Training

Machine learning has a wide range of applications across various industries and
research fields. Some of the most common applications of machine learning today are
image and speech recognition, natural language processing, autonomous vehicles and
robotics, the Internet of Things, and predictive analytics [69–72]. As technology advances
and data become more abundant, the use of machine learning is expected to increase and
be implemented in almost every aspect of life. There are many microcontrollers available
today that have enough processing power and memory to run machine learning algorithms,
with benefits including reduced latency, lower power consumption, and improved privacy
and security [73,74].

An artificial neural network (ANN) is a type of machine learning model inspired by
the biological structure and functioning of the human brain. It consists of interconnected
processing nodes (neurons) that work together to solve a specific problem. Neural networks
are typically arranged in a series of interconnected layers, where each layer is made up
of a set of neurons that perform a specific mathematical function on the received input.
A typical fully connected ANN consists of several types of ANN layers, including input
layers, hidden layers, and output layers. Input layers receive input data, (several) hidden
layers perform computations where the output of one hidden layer is then passed as input
to the next layer, and finally, the output layer produces the final output. Biological neural
networks exhibit similar architecture and learning methods for a variety of tasks, where,
due to computer power constraints and training time limitations, ANN architectures must
be optimized for a specific task. This is usually performed by combining different types
of layers into a specific architecture, such as feedforward neural networks, convolutional
neural networks, and recurrent neural networks. Our ANN is tasked with classifying hand
gestures, and the network input is data acquired from the sensor module. All tested sensor
modules are quite similar and perform distance measurements to the subject hand with
different properties, as discussed in Section 3.3.

Preliminary ML Results

In order to select the most appropriate sensing technology, the collected data from all
sensors were first tested by applying a fully connected neural network constructed using
the Keras API with TensorFlow as the backend. The training data were pre-processed
and normalized. The architecture of the preliminary NN consisted of a sequence of layers
that were stacked on top of each other, starting with an input layer, followed by three
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hidden layers and an output layer. The first hidden layer contained 1024 neurons, with
the activation function used in this layer being a rectified linear unit (ReLU). The second
hidden layer had 512 neurons and also used the ReLU activation function. The third
hidden layer included a dropout layer, used to prevent over-fitting. The dropout rate
was set to 0.2, which means that 20% of the randomly selected neurons in this layer were
ignored during each training iteration. The fourth hidden layer had 64 neurons and used
the ReLU activation function. The final layer was the output layer, which had three,
four, or five neurons (depending on the number of different gestures we tested). It used
the softmax activation function. The softmax function is used to output a probability
distribution over the 3–5 possible output classes, where the highest probability corresponds
to the predicted class label. Due to the fact that this is a multi-class classification problem,
for this experiment, the categorical cross-entropy loss function was applied as the loss (cost)
function and adaptive moment optimization (Adam) as the optimizer.

The highest accuracy of classification was obtained for three gestures, namely, the circle,
square, and pentagon. For each of the sensing technologies, the accuracy of the preliminary
NN model is presented in Table 1.

Table 1. Classification accuracy of the preliminary neural network model for a particular sensing
technology.

Sensing Technology Neural Network Accuracy

Capacitive 72.05%
IR short range 78.33%
IR long range 95.06%

Based on these results, the IR long-range data were further employed for machine
learning utilization in this research.

3.7. The Final Architecture of Machine Learning

The final architecture of the NN model displayed in this investigation is constructed
of eight layers, as depicted in Figure 6. The first is the input to a 1D convolution layer with
32 filters and 16 kernel sizes. The convolution layer is followed by a flattening, which is
then followed by a dense layer with 32 neurons. The dense layer is followed by a dropout
layer with a dropout rate of 0.2 and another dense layer with 32 neurons, which is again
followed by another dropout layer with a dropout rate of 0.1. The last two layers are the
dense layer with 32 neurons and the final output layer. The applied activation functions
were ReLU (in dense layers) and softmax (in the output layer). Our proposed architecture
is a 1D convolutional neural network, where the convolution layer extracts characteristic
features from the signal input and where dense layers try to find relations between the
extracted features to classify signals. The dropout rate (probability of setting output from
the hidden layer to zero) must be included because of the small training dataset, which
prevents the overfitting of the network to a training dataset.

Figure 6. ANN architecture.
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Since the classification of the hand gestures is a multiclass classification problem,
the categorical cross-entropy loss function was applied as the loss function. Another key
aspect of the ANN model architecture that was thoroughly examined is the selection of
optimizers, learning rates, number of epochs, and batch size. Adam provided the most
accurate estimation results on the test dataset, with a 0.0005 learning rate. Optimal training
results were obtained with 100 epochs and a 128 batch size.

ML models were originally trained in all shapes, but the performance of the test
dataset showed unsatisfactory results with a categorical precision of 87.3%. By removing
one gesture from the training and test datasets, the categorical accuracy with the remaining
four gestures increased to 89.8%, which was also unsatisfactory. Finally, by keeping
only three gestures (namely, circle, square, and pentagon), we achieved better categorical
accuracy. After performing several repetitions of the classification, the accuracy ranged
from 93.8% to 98.3%, depending on the repetition. The results in the form of a confusion
matrix for all three models are presented in Figure 7, and do not show which shape or
gesture is to blame for the poor performance of the model with the five gestures in the
training dataset.

Figure 7. Confusion matrix for models that include three shapes (left), four shapes (middle), and five
shapes (right).

We analyzed raw training data from different subjects in search of a solution that
could eventually improve performance. An example of the analysis is presented in the
form of a plot in Figure 8 for all five gesture-shapes for a single sensor and the same subject.
As the system captures raw data in 10 s intervals, useful data (when the user is performing
a gesture) take only a few seconds and can be found anywhere inside the original signal.
As seen from the sample data presented in Figure 8, useful data take only 2 s intervals
per sensor, while the rest of the data are extremely noisy. Relative timings and shapes
of slopes between sensors capturing the same gesture are actual features that have to
be extracted and used for gesture recognition and classification. By visual inspection of
the raw data for several examples (the same person performing the same gesture), some
obvious similarities between signals cannot easily be found. Thus, this non-trivial task was
delegated to our proposed ML model, which can extract those features and decide which
gesture is performed. A more detailed analysis of measured raw data from all four sensors
on several subjects in the training set suggested that shapes 3 and 4 (namely, the triangle
and rhombus) are similar to shape 1 (circle). We presume that acquiring more training
data would improve the performance of a five-shape ML model by allowing it to find
more specific features for each shape and consequently build a better model. Due to the
aforementioned reasons, we removed shapes 3 and 4 from the training and test datasets.
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Figure 8. Raw sensor data for five hand gesture shapes recorded with a single sensor.

4. Exploratory Pilot Study

The purpose of this pilot user evaluation was to collect data on children’s experiences
and perceptions of using IoT technology for educational purposes and to identify potential
areas for improvement. The evaluation concentrated on some aspects of usability, levels
of engagement, and motor aspects of interactions with the proposed smart toy for early
childhood geometry education.

Exploratory pilot studies with children are a crucial step in identifying potential issues
in usability testing before conducting a larger usability study. The importance of pilot
testing and small sample sizes in child-related research has been highlighted in several
studies. To design new technologies for children, Druin [75] used cooperative inquiry with
children and found that pilot testing was crucial in refining the design of the technologies.
Similarly, in [76], Druin emphasized the importance of pilot testing when designing mobile
technology for children and highlighted the need to involve children in the design process.
A group size of five–ten participants is a sensible baseline range for usability studies related
to problem discovery, as discussed in [77]. Small sample sizes in exploratory pilot studies
can also be useful for identifying design flaws or other issues that might not be apparent
in larger-scale studies. The small sample size allows for more iterative design processes,
which can lead to better user engagement with technology [78]. Additionally, scientific
references support the use of small sample sizes in exploratory pilot studies with child
participants. For example, in their study of toddlers’ use of visual information from video
to guide behavior, Schmitt and Anderson [79] used a sample size of 16 children, which
allowed for detailed observations of individual children’s behaviors and provided rich data
for exploring how visual information influences children’s actions. Faulkner’s research,
presented in [80], found that a group size of 10 participants will likely reveal a minimum of
82% of the problems. Nielson in [81] also noted that elaborate usability tests are a waste of
resources and that the best results come from testing no more than five users and running
as many small tests as possible.

This study was exploratory in nature, and the objective was to test the feasibility and
gather preliminary data before conducting a larger and more rigorous study.

The evaluation involved a small group of children aged 4 to 7 years old, who were
given the opportunity to interact with the toy and provide feedback on their experiences.
The initial idea was to examine the movements of the child’s hands while interacting with
the prototype toy. The results of the testing provide design guidelines for future interaction
realization and movement-initiated feedback. The collected data and findings will be useful
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for our future research into the design of the toy as well as the performance of the machine
learning model.

In order to conduct the pilot study, the faculty Ethics Committee gave their positive
opinion on the experimental procedure, stating that the proposed scientific research would
be carried out in accordance with the ethical principle of scientific integrity. All parents
signed a consent form before their children participated in the experiment.

4.1. Experiment Design and Procedure

This user evaluation study aimed to assess the usability, levels of engagement, and
motor aspects of interactions with an IoT smart toy designed to promote geometry learn-
ing among preschool children. The study used a mixed-methods approach, combining
quantitative data from pre- and post-test tasks and usability testing with qualitative and
quantitative data from video recordings, questionnaires, and interviews with children.

Based on our analysis of the scientific literature, it was found that most of the studies
combined a few techniques: an interactive Cyberheroes e-book was evaluated with struc-
tured interviews and questionnaires and engaged eight children aged 7 to 9 years [34];
a tangible, interactive learning tool, CyberPLAYce, was assessed with observations, sur-
veys, questionnaires, and audio/video recordings and involved eleven 11- to 12-year-old
children [82]; Word Mania, a fun educational game app for children, was evaluated with
a Fun Toolkit v3 instrument and enrolled twelve children aged 4 to 9 years [83]; a study
looking at STEM in early childhood education involved 14 pre-kindergarten children and
used semi-structured interviews, focus groups, and a questionnaire [84]. Hourcade and
colleagues [85] recommend using age-appropriate language, providing clear and concise
instructions, and using visual aids to support comprehension. Child-friendly data collec-
tion methods, such as observation, video recordings, and non-intrusive sensors, can help to
minimize disruption and enhance engagement [86].

The study was carried out in a controlled laboratory setting, with one-on-one interac-
tion between the researcher, participants, and the proposed smart toy. The experimental
design, along with materials and methods, is further described.

The assessment process was based on a set of criteria that includes several quantitative
and qualitative measures, which are expressed in terms of:

• Time-related aspects of interaction (time taken by the user to draw a shape and overall
interaction duration;

• Hand gestures used to interact with the toy;
• Perceived ease of use (mapping of the particular shape);
• User mapping accuracy per particular shape;
• Engagement;
• Returnance (as one of the endurability dimensions);
• Fun and subjective satisfaction;
• Obtained knowledge.

Several measuring instruments were used to acquire the aforementioned quantitative
and qualitative measures:

• Pre-test and post-test tasks: employed to evaluate the level of information acquisition
as an indicator of the educational value.

• Attitude questionnaires (Smileyometer and the Again-Again table) [87]: used to
measure children’s fun and subjective satisfaction.

• Structured interview: used as an instrument to measure children’s fun and subjective
satisfaction, level of engagement, and their perceived ease of use (mapping of the
particular shape).

• Video recording: used as an instrument to measure motor aspects of interaction
(hand gestures), time-related aspects of interaction, and engagement.
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• Observation checklist: used as an instrument during the assessment process to record
notes, document identified problems, and fill in additional information related to task
completion accuracy.

Figure 9 represents the overall framework of the experiment.
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Figure 9. Overall framework of the experiment.

Laboratory equipment utilized for the experiment was as follows:

• Cardboard geometric shapes and boxes;
• Smart toy for geometry learning;
• Computer for data collection;
• Consent forms for parents/guardians.

Figure 10 gives the graphical representation of the laboratory setup and equipment
applied in the experiment.

Figure 10. Visualization of laboratory setup.
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Experiment Procedure

The experiment procedure was as follows:

• Recruitment: The study employed a convenience sampling strategy, which is a non-
probability sampling method. Convenience sampling entails selecting study partic-
ipants who are readily available and willing to participate. The preschool children
were recruited by the university staff, including non-scientific personnel and personal
research networks, aiming to ensure that the study sample was as diverse as possible.
The study was explained to parents/guardians, who were asked to consent to their
child’s participation. Overall, fourteen children (seven girls and seven boys) aged
from 4 to 7 years old participated in the pilot study. The inclusion criteria included
no previous exposure to the smart toy used in the study, as well as no history of
developmental or learning disabilities.

• Pre-test task: Before interacting with the smart toy, each child was given a pre-test
task to assess their current knowledge of basic geometric shapes. Children were given
30 simple cardboard geometric shapes (namely, 10 circles, 10 squares, and 10 pen-
tagons) of different colors and sizes and were asked to put them in the appropriate
box for each of the shapes. The evaluation was administered orally by the researcher.

• Interaction with the smart toy: Each child had 30 min to play with the toy. The re-
searcher observed the child and documented their level of participation, motor aspects
of interaction, interest, and overall behavior while interacting with the smart toy.

• Data collection: A video camera was used to record the participants during the
experiment. It recorded the duration of the interaction, the accuracy of the completed
task, and any errors made by the participants. It also captured the levels of engagement
and other aspects of interactions that children had with the toy. Furthermore, the data
were also collected by the smart toy in terms of sensor output data obtained from
gesture movements.

• Post-test task: After interacting with the smart toy, each child completed a post-test
task that was the same as the one in the pre-test task. They were again given 30 (new)
simple cardboard geometric shapes (namely, 10 circles, 10 squares, and 10 pentagons)
of different colors and sizes and were asked to put them in the appropriate box (new)
for each of the shapes. The evaluation was administered orally by the researcher.
The pre- and post-test tasks were further utilized to examine the effectiveness of the
smart toy for geometry learning.

• Follow-up interview and questionnaire: The researcher asked close-ended questions
about the child’s engagement with the smart toy, its ease of use, their learning experi-
ence, and their subjective satisfaction while interacting.

• Data Analysis: Analyses of the overall collected data included statistical analysis
while focusing on several aspects, such as fun and subjective user satisfactions, ease
of use, engagement, returnance, and motor aspects of interaction. The pre- and
post-test task results were compared to see if the interaction with the smart toy signifi-
cantly improved geometry knowledge. The results of the questionnaire, interviews,
and video recordings were also analyzed in order to gain insights into the child’s level
of engagement and overall satisfaction with the smart toy.

Experimental materials and methods for pilot testing included several techniques.
Firstly, for the pre-test and post-test tasks, simple cardboard geometric shapes were utilized.
Scientific studies, such as the ones presented in [88–92], have shown that cardboard cutouts
are a valid and reliable tool in user evaluation studies. Simple cardboard geometric shapes
can provide tangible representations of geometric concepts, making them appropriate for
young children’s learning. This method can also be used to establish a baseline to assess the
effectiveness of educational toys and games in promoting geometric learning. These shapes
offer a simple, low-cost, and effective method of assessing children’s geometry skills and
knowledge before and after using geometry learning technology. Secondly, a structured
interview, as presented in Table 2, was used to gain insight into the children’s fun and sub-
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jective satisfactions, as well as their perceived ease of use (mapping of the particular shape)
while playing with the smart toy. During usability evaluations, interviews are another way
to investigate the user experience, as was shown in many user evaluation studies with
children [84,86,93–96]. Post-task interviews allow for the collection of observational and
verbalization data quickly and without the need for tape analysis. Post-task interviews
have the potential to provide benefits at the expense of slightly longer evaluation sessions
with children [86].

Table 2. Structured Interview.

Questions Aspects of Exploration

1. Did you like the game? Fun, subjective satisfaction
2. Which shape was the easiest for you to draw? Ease of mapping
3. Which shape was the hardest for you to draw? Ease of mapping
4. Was the game boring? Fun, subjective satisfaction
5. Was the game difficult? Fun, subjective satisfaction
6. Would you like to play this game again? Fun, subjective satisfaction
7. What else would you like to teach the giraffe? Engagement

Furthermore, to evaluate the children’s experiences in terms of subjective satisfaction,
fun, and returnance, this study used two instruments from the Fun Toolkit: a survey
instrument designed to help researchers and developers gather opinions about technology
from children [87]. The Fun Toolkit has been used in numerous studies [20,93,97–99] to
assess the usability of interactive technology with children, such as educational games,
mobile applications, and interactive toys. It has been found to be a highly effective method
to gain insight into children’s technological experiences and identify opportunities for
improvement in the design of interactive products and services [83,100,101].

Namely, this research employed two instruments from the Fun Toolkit: the Smiley-
ometer and the Again-Again table. The Smileyometer is a simple tool used to measure
children’s subjective experiences with technology by asking them to rate their feelings
using a visual scale of smiley faces. The tool is based on a 5-point Likert scale (as presented
in Figure 11), with responses ranging from 1 (awful) to 5 (excellent) (brilliant) [100].

Figure 11. Smileyometer rating scale.

The Smileyometer has been widely adopted and used in research studies to assess
and measure satisfaction and fun in children’s experiences with technology [20,97,101,102]
because it is simple to use and does not require any writing on the part of children.

In this research, to assess how children felt during the interaction with the toy, they
were asked “Can you show me, using these pictures, how you felt while playing this game?”. Then
they were given Smileyometer rating scale cards to select the face that best suited their
subjective feeling.

Another instrument from the Fun Toolkit used for the child user evaluation in this
study was the Again-Again table. The table is used to assess the user experience by asking
children if they want to repeat an activity again [87]. It has also been used in research
studies [103–106], and has proven to be a reliable survey technique when applied to chil-
dren [86]. In this research, to measure returnance (as one of the endurability dimensions),
we derived the “Again-Again Table” (presented in Table 3) from the original presented
in [100]. The table was filled by the researcher asking the research question: “Would you
like to draw this shape again?”.
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Table 3. The Again-Again Table.

Would You like to Draw This Shape Again?

Yes Maybe No

Circle

Square

Pentagon

Finally, this study used video recording as a tool to enhance three important aspects
of interaction, namely: engagement, time-related aspects of interaction (time taken by
the user to draw a shape, and overall interaction duration), and hand gestures used to
interact with the toy, which were valuable for this research. Over the years, video recording
has been shown to be a useful tool to collect detailed information on children’s real-time
interactions with technology [107,108]. Studies have shown that it is critical to recognize
signs of enjoyment to determine whether the child had a positive or negative experience
during the course of the interaction [97] because children often have difficulty articulating
their experiences and preferences while using technology. In this context, video recording
can be a powerful tool for gathering data and making informed decisions about how to
improve technology for child users [109]. Researchers can identify patterns and trends in
child behavior and movement by analyzing the recordings, which allows them to identify
areas for improvement and optimize the user experience [108].

4.2. Results

Over the course of three consecutive days, 14 children participated in the pilot study.
Among them were seven girls and seven boys. Ten preschool children were 6 years old,
three were 4 and 5 years old and went to kindergarten, and one was 7 years old and is a
first grader.

4.2.1. Objective Aspects of Interaction

The pre-test was designed to assess the children’s knowledge of a variety of geometric
shapes appropriate for their ages in order to study the change after using the proposed
smart toy. The children can touch, feel, and manipulate cardboard cutouts, which provide
a tangible and physical representation of geometric shapes. This enables the children to
grasp and internalize geometric concepts and relationships. Most children do not have a
thorough understanding of all geometric shapes at a young age, so it was important to
examine if they can appropriately distinguish and name them. Table 4 shows how the
children performed in the pre-test stage.

Table 4. The number of correct and incorrect answers given by children in the pre-test stage when
identifying geometric shapes.

Circle Square Pentagon

Correct Answers 100% 99.3% 99.3%
Incorrect Answers 0% 0.7% 0.7%

As can be seen, the children were good at distinguishing circles from squares and
pentagons. However, due to the fact that cardboard geometric shapes were of different
colors and sizes, on two occasions, a square was mistaken for a pentagon and vice versa.

Following the pre-test, the children were taken to a separate area of the laboratory
where the smart toy giraffe was placed, as shown in Figure 10. The entire interaction
process was recorded on video, and the researcher let the child become acquainted with
the toy without intervention or specific instructions. The children were then asked if they
wanted to “teach the giraffe” the geometric shapes they had been playing with in the
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pre-test. Each child had 30 min to interact with the smart toy. The researcher instructed
them to draw (map) the shape from the LCD screen above the giraffe’s back with their
hands as if they were drawing on a canvas or a board. During interaction with the smart toy,
the researcher observed the child and recorded motor aspects of the interaction, their level
of participation, interest, and overall behavior. The researcher labeled each gesture made
by the child as correct or incorrect. This was later verified by analyzing the video recording.
For each shape, the researcher asked the child if they wanted to play a bit more. When the
child expressed a desire to stop playing, he or she was interviewed and encouraged to take
the post-test.

Firstly, four children did not establish the appropriate manner of interaction with the
smart toy. Two of them were aged four and five (kindergarten) and eager to touch and
cuddle the toy. They showed their emotions by smiling. The other two children were
six-year-olds and tried to interact with the toy, however, they did not manage to do so. One
of them did not show interest in the toy. This was especially evident in the fact that the
child did not touch the giraffe at all. The other tried to perform the gestures but gave up
and continued to play with the toy in his own way. This child was interested in the toy and
expressed emotions by smiling.

In total, ten children managed to interact with the toy in a suitable way. The primary
aspect of the interaction observed was the formation of the gesture. According to the
results, five children performed the interaction with a single finger (index finger). Four
children interacted with two fingers (thumb and index finger), while one child used the
entire fist. Children who used one finger had longer interactions because they performed
more gestures, while those who used two fingers or a fist had shorter interactions and
performed fewer gestures, as exhibited in Figure 12. No child interacted with the toy for
the planned period of 30 min. The majority of interactions lasted from around five to
ten minutes. The first-grader engaged with the toy the longest and managed to make a
significant number of gestures.
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Figure 12. Interaction duration related to the established manner of the performed gesture.

The time required to form a specific shape was the second aspect of the observed
interaction. Figure 13 shows the distribution of the time required to perform a particular
gesture. There is an evident and reasonable increase in complexity correlated with the time
required to perform a given gesture, with a circle requiring the least time and a pentagon
demanding the most, which was to be expected. In the case of the square shape, there is an
outlier caused by one child’s playfulness, even though the gesture was correctly performed.
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Figure 13. Gesture time per particular shape.

To identify any potential confounding variables in our limited data sample size, we
conducted a search for variables that were correlated with both the independent variable
and the dependent variable. Through our investigation, we discovered that age was
highly positively correlated with the number of user gestures, the number of correct
user gestures per particular shape, and the number of correct user gestures. Specifically,
Pearson’s correlation coefficient for age and the number of user gestures was 0.77, while
for the number of correct gestures for the circle, square, and pentagon shapes, it was
0.74, 0.7, and 0.83, respectively. Additionally, Pearson’s correlation coefficient for age
and the number of overall correct user gestures was 0.77, indicating that age may be a
confounding variable that needs to be controlled for analysis. We therefore calculated
partial correlation coefficients between the number of correct user gestures for particular
shapes and the number of performed gestures, while controlling for the effect of age. We
found strong positive correlations between the number of correct user gestures and the
number of performed gestures for the circle, square, and pentagon shapes, even after
controlling for the effect of age. Specifically, the partial correlation coefficients were 0.942
(p-value = 0.0001), 0.84 (p-value = 0.004), and 0.899 (p-value = 0.001) for the circle, square,
and pentagon shapes, respectively. The statistically significant relationship between the
number of correct user gestures and performed gestures even after controlling for age
suggests that age may not be a significant factor in predicting user performance for these
shapes. This result may have implications for the future design of gesture-based interfaces,
for instance, for older children.

The final part of the assessment of the motor aspects of interaction was the accuracy
of the child’s gesture mapping. This provides a subjective measure of the ease of mapping
while interacting with the toy, which is an important aspect of user experience design.
A gesture is considered correct if drawn on a virtual canvas above the sensors in the
following way:

• A circle is drawn in 360 degrees, without overwriting the previous trajectory;
• The starting vertex for a square and pentagon is the same as the ending one, with-

out repetition of previous edges.

This was evaluated in real time by the researcher during the experiment and validated
by examining the video footage. The results presented in Figure 14 show a somewhat
different and unexpected order of complexity among different shapes. That is, a circle has
a higher failure rate than a square. This is most likely the result of outlining multiple circles
on existing ones. As assumed, the failure rate for a pentagon is the highest.
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Figure 14. User mapping accuracy per particular shape.

4.2.2. Subjective Aspects of Interaction

These results were then compared with the child’s subjective experience related to the
ease of mapping. Based on the answers provided from the interview questions “2. Which
shape was the easiest for you to draw?” and “3. Which shape was the hardest for you to draw?”,
the following results were obtained and are presented in Figure 15.

Circle

50.1%

Square

35.7%All

7.1%
Don not know

7.1%

(a)

Pentagon

50.1%

Square

21.4%

None

14.3%
Don not know

7.1%
Circle

7.1%

(b)
Figure 15. The results of the answers to interview questions 2 and 3. (a) Easiest to draw and
(b) hardest to draw.

As can be seen, the children perceived the circle to be the easiest shape to map,
as opposed to the pentagon, which they perceived to be the most difficult. This result
correlates with the distribution of the time required to perform a specific gesture, with the
circle requiring the least time and the pentagon requiring the most. However, these results
are in contrast to the objective user mapping accuracy, as the square was the most accurately
mapped shape. As was previously mentioned, this is probably due to the fact that a great
number of children drew the circle by outlining multiple circles over existing ones.

Furthermore, the relationship between the perceived difficulty of different shapes and
the actual time required to draw them was examined. The Mann–Whitney U test was used
to compare the time taken to draw the hardest/most time-consuming shape (pentagon) with
the time taken to draw the easiest/least time-consuming shape (circle). The null hypothesis,
which stated that there would be no significant difference in time taken between the two
shapes, was rejected based on the results of the test. The statistic was calculated to be
0.000000 and the p-value was found to be 0.00041, indicating a significant difference in the
time taken between the two shapes. This suggests that the perceived difficulty of the shapes
corresponds to the actual time required to draw them. These findings have implications
for the design of educational materials and activities that involve drawing shapes, as they
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suggest that the time required to draw a shape can be used as an objective measure of
its difficulty.

Regarding the results from the children’s subjective impressions of fun and satisfaction,
valuable feedback from the children about their subjective experiences with the smart toy
was obtained. Table 5 provides information on children’s responses to question “Can you
show me, using these pictures, how you felt while playing this game?”.

Table 5. Fun and subjective satisfactions measured with the Smileyometer rating scale.

The Smileyometer Rating Scale Results

Awful Not Very Good Okay Really Good Fantastic

Number of children 0 (0%) 1 (7.1%) 2 (14.3%) 2 (14.3%) 9 (64.3%)

As can be seen, the majority of the children expressed a feeling of “Really good” or
“Fantastic” while interacting with the smart toy. These results indicate that the children
enjoyed the activity and experienced positive subjective satisfaction. This may also imply
that, in future interactions, children are more likely to fully engage in toy play. These
implications are supported by the results obtained from children’s responses to interview
questions “4. Was the game boring?” and “5. Was the game difficult?”, presented in Table 6.

Table 6. The results of the answers to interview questions 4 and 5.

Yes No

Was the game boring? 3 11
Was the game difficult? 1 13

As can be seen, the children perceived the play with the giraffe to be engaging and
easy. Such positive experiences indicate that the toy met expectations, which can be an
important factor in promoting children’s learning, since they are more likely to continue
using the toy. The latter might result overall in greater technology adoption and success.

These implications are in correlation with the results obtained by analyses of video
recordings of the children’s expressions and behavior during the toy interaction. The ma-
jority of the children (12) smiled and were happy while interacting with the toy, one child
danced and others bounced excitably. They were also keen on touching, petting, and ex-
ploring the toy, while at the same time communicating with the researcher. It was also
noticed that some children, four of them, were more concentrated on the task itself rather
than on the toy itself. Although they said they felt good interacting with the toy, they did
not engage in other types of play with the toy apart from the proposed interaction. They
were more interested in the toy’s educational features. When asked, “7. What else would you
like to teach the giraffe?” the majority of children just smiled and were unsure what to say
other than “I don’t know”. However, some children provided rather interesting answers,
such as“I would like to teach her letters”, “I would like the draw hearts”, and one child answered

“I would like to teach her about good behavior.”.
Finally, the results of the returnability aspect based on the responses from the

Again-Again Table 3 are presented in Figure 16.
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Figure 16. Results from the responses from the Again-Again table (Table 3).

The results indicate that the majority of the children would like to play with the toy
again. Furthermore, findings suggest that the children found the square shape to be the
most engaging and interesting to play with, as evidenced by their desire to play with
it again and their preference for drawing the square. This preference may be related to
the objective user mapping aspect, in which the square was the most accurately mapped
shape. It is also worth noting that, despite the children’s subjective assessment that the
circle was the easiest shape to draw, they preferred drawing the square. This suggests that
a child’s interest in the toy was not solely determined by its ease of use. Overall, these
findings suggest that future enhancements to the toy’s design should consider not only
the ease of use but also the toy’s engagement factor. The objective user mapping aspect
can also be considered to increase engagement. As was to be expected, half of the children
would not want to draw the pentagon again. It is possible that the children’s lack of
interest in drawing the pentagon again is related to their level of motor skill development,
as the pentagon has more sides and angles than the other shapes, potentially making it
more difficult to draw. They may also feel less confident or interested in attempting to
draw the pentagon again or it may be that they found the pentagon more challenging to
understand or remember compared to the other shapes. This implication is supported by
the researcher’s observations as well as the video analyses, as none of the children were
familiar with the shape or knew its name and usually referred to it as the “house shape”.

An immediate post-test followed the interaction with the toy. The results of the test are
presented in Table 7. Only the results of the children who interacted with the toy were taken
into account. As can be noticed, the accuracy of recognizing and classifying the pentagon
seems to decline. This was probably an immediate result of the fatigue of one child who
incorrectly classified the pentagon as a square several times, since this child interacted
with the toy the longest and performed a great number of gestures. Overall, due to the
small sample size, a definitive conclusion about the impact of the toy on the children’s
performance in the post-test cannot be drawn. Therefore, in the future, it is important to
ensure that sample sizes are adequate to make accurate claims about the impact of the toy
on children’s educational performance.

Table 7. The number of correct and incorrect answers given by children in the post-test stage for
identifying geometric shapes.

Circle Square Pentagon

Correct Answers 99% 99% 95%
Incorrect Answers 1% 1% 5%
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4.2.3. Machine Learning Performance

Finally, the performance of the neural network in experimental scenarios is presented.
The children performed an overall number of 111 different gestures, and Table 8 provides
insight into the gesture classification accuracy.

Table 8. Machine learning gesture classification accuracy results.

Circle Square Pentagon

Guessed Missed Guessed Missed Guessed Missed

Number of gestures 25 15 19 20 6 26

As can be observed, the classification accuracy is quite low, especially for the pentagon
shape. There are several possible reasons for such a bad performance. To begin with, our
experimental results have shown that children’s gestures differ from adult gestures in terms
of frequency and execution. As demonstrated, children performed gestures primarily with
their index fingers, while the data used to build the model came from adult users who
primarily used their entire fists. Furthermore, of those 111 gestures, half (46, to be exact)
came from a single user, the first grader, who made gestures with his index finger, while
the other 55 gestures were distributed among the other children, indicating an imbalance in
the test set. With that in regard, we later conducted a comparison of raw sensor data from
a child and an adult subject while performing gestures for the same geometrical shape,
as presented in Figure 17.

Figure 17. Comparison of raw sensor data of child and adult subject while performing gestures for a
same geometrical shape.

It can be observed that children’s gestures greatly differ from adult gestures, both
in terms of their frequency and the way they are executed. The adults generally per-
formed gestures with the entire fist, where, as we have seen, the children primarily used
their index finger. Therefore, the feature set used to train the machine learning model
was unable to accurately capture the variation in children’s gestures, leading to a poor
classification accuracy.
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As this was a pilot study, it provided valuable information on the performance of the
smart toy for geometry learning and identified areas for improvement. This information
will be used to guide future design iterations, helping to refine the smart toy and improve
the accuracy of the machine learning algorithm. In this regard, it will be necessary to collect
a large dataset of children’s gestures and train the machine learning model specifically on
this dataset. This can involve collecting data from a range of ages and developmental stages
to ensure that the model can capture the variation in children’s gestures. Additionally, it
may be necessary to develop new feature sets or modify existing ones to better capture
the unique features of children’s gestures. Finally, it may be necessary to test the model
on a separate validation dataset to ensure that it generalizes well to new examples of
children’s gestures.

5. Discussion

Based on the results of the exploratory pilot study, some of the benefits and strong
aspects of this research were the following.

The activity involving drawing shapes was enjoyable and engaging for the majority
of the children. The fact that the square was the most correctly mapped shape and that
children expressed interest in drawing it again suggests that the activity was effective in
promoting learning and skill development related to shape recognition and the mapping of
abstract concepts. It should also be noted that, although the children perceived the circle as
the easiest shape to draw, they still showed a greater preference for drawing the square. This
may indicate that the children found the challenge of drawing the square more rewarding
or satisfying than drawing the circle. The toy was also found to be easy to use, which is
important to ensure that children can use it independently. The positive results obtained
using the Smileyometer rating scale when and during the interview while measuring fun
and subjective satisfaction with technology indicate that the children experienced a high
level of enjoyment and satisfaction, which can have a significant impact on the success of
the smart toy giraffe as an interactive and educational tool. Overall, the results suggest that
the activities involving the smart toy were engaging and challenging and can prove to be
effective in promoting the early learning of geometry of children in preschool.

One of the main benefits was also the deeper insight into the modalities of interaction
that the children had with the toy, as well as the different ways in which the children make
the gestures in contrast to the adults.

The results of our study indicate that age is a potential confounding variable that
needs to be controlled when analyzing the relationship between user performance and the
number of performed gestures for specific shapes. However, even after controlling for age,
a statistically significant positive correlation was found between the number of correct user
gestures and performed gestures for the circle, square, and pentagon shapes. This suggests
that age may not be a significant predictor of user performance for these shapes, which
may have implications for the design of gesture-based interfaces, particularly for older
children. Moreover, it was found that the perceived difficulty of a shape corresponds to
the actual time required to draw it. This finding may be useful for designing educational
materials and activities that involve drawing shapes, as it provides an objective measure
of shape difficulty. The Mann–Whitney U test was used to compare the time taken to
draw the hardest/most time-consuming shape (pentagon) with the time taken to draw the
easiest/least time-consuming shape (circle), and a significant difference in the time taken
was found between the two shapes. These findings contribute to a better understanding of
the factors that influence user performance in gesture-based interfaces and highlight the
importance of considering potential confounding variables in data analysis.

However, there were some limitations to this study. Although the results of the
machine learning algorithm showed satisfactory results in the adult dataset, the same
model performed poorly with child subjects for several reasons. At this stage of the
design process, the recruitment of child participants for the data collection phase was
challenging due to ethical concerns and limited access to child populations. Additionally,
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collecting high-quality and representative data was more difficult due to the younger
children’s limited attention spans and potential fatigue when performing a larger series
of gesture movements. These issues should be addressed in future work to improve
the performance of the machine learning model on child data. Furthermore, the setup
consisting of four IR distance sensors arranged in an array creates a relatively shallow area
(that resembles a plane) where measurement can be executed. When children performed
gestures above the sensor area, their movements were often less coordinated and precise
than those of adults. This is the result of their phase of development of fine motor skills,
making it difficult for them to execute gestures using their entire fist or with the same level
of control as adults. As a result, children tend to rely on simpler and more straightforward
gestures that are easier to execute, such as pointing with their index finger. Furthermore,
children may be more prone to unintentional movements or gestures, which can affect the
accuracy of the machine learning algorithm used to detect the outline of the gesture. As
our model is trained primarily on adult users, using the same ML model on child users
showed a significant reduction in accuracy. By analyzing raw data in Figure 17, we can
draw some basic conclusions: adult users activate more sensors while performing this
particular gesture as compared to child users. This could be due to the adult user executing
a larger gesture, the height of the adult user, and the difference in hand surface that reflect
the IR emitted to a sensor. To bring child user accuracy to a level of an adult user, we must
obtain more training data that can help us extract specific features in a signal that are found
in child users. For future work, the following is considered.

In future work, alternative sensors with larger sensing areas can be considered, such
as the VL53L5CX Time of Flight sensor with an 8 × 8 multizone range and 63◦ diagonal
field of view (https://www.st.com/en/imaging-and-photonics-solutions/vl53l5cx.html
(accessed on 11 April 2023)). Similar results may be achieved by implementing one or more
microcontroller-based machine vision cameras such as OpenMV H7 (https://openmv.io/
products/openmv-cam-h7 (accessed on 11 April 2023)) in a multi-vision configuration.
As those cameras are basically machine-vison sensors, when properly programmed, they
output simple hand location information in predefined coordinate space and the overall
complexity of the system can be kept at a reasonable level, requiring minimal setup time
or preparation.

Finally, it will be necessary to collect a large dataset of children’s gestures and train the
model specifically on these data in order to enhance the machine learning model’s accuracy
when classifying children’s gestures. This may involve collecting data from children of
various ages and developmental stages to ensure that the model can capture the variation
in their gestures. It will also be necessary to test the model on a separate validation dataset
to ensure that it can accurately generalize to new examples of children’s gestures.

6. Conclusions

The literature suggests that utilizing smart toys in preschool education has the poten-
tial to foster STEM skills in young children. This study aimed to introduce a prototype
of a plush smart toy as an educational tool for teaching young children about geometric
shapes, given the potential of using smart toys in preschool education and the importance
of studying geometry at a young age for the development of spatial reasoning skills. The
plush smart toy design incorporates a range of hardware components, including sensors,
microcontrollers, an LCD screen, and a machine learning system, which facilitates ges-
ture recognition. By analyzing the outline of the child’s gesture, the machine learning
system can determine whether it corresponds to the shape displayed on the LCD screen.
Among the three sensing technologies tested, namely capacitive, IR short-range, and IR
long-range sensors, the IR long-range technology was found to be the most suitable for the
study, based on the machine learning results. Later, a small exploratory pilot study was
conducted to analyze the nature of the children’s involvement with the smart toy prototype
through user evaluation, test the toy’s practicality, and acquire some preliminary data on
the toy’s effectiveness and feasibility. The results of the exploratory study highlighted

https://www.st.com/en/imaging-and-photonics-solutions/vl53l5cx.html
https://openmv.io/products/openmv-cam-h7
https://openmv.io/products/openmv-cam-h7
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several benefits and strong aspects of the smart toy prototype. According to the findings of
the study, the smart toy prototype is user-friendly and straightforward to use. The result
also indicates that the smart toy engages children in the learning process effectively, making
it a potentially valuable educational tool for preschool children. Additionally, the study
provided valuable insights into the modalities of interaction between children and the
toy, the differences in gestures made by children compared to adults, and the influence of
age on user performance in gesture-based interfaces. These findings contribute to a better
understanding of the factors affecting user performance and emphasize the importance of
considering potential confounding variables in data analysis. Furthermore, our research
revealed that the perceived difficulty of a shape corresponds to the real time necessary to
draw it. This discovery could be useful in constructing instructional materials and activities
that include drawing shapes because it provides an objective measure of shape difficulty.

However, limitations were identified in the machine learning algorithm’s ability to
recognize children’s gestures and the sensor setup’s capacity to capture the full range
and precision of children’s gestures. The lower accuracy rate with children is due to
the different ways in which they make gestures compared to the adults who were used
in the data collection process, as well as the test set data imbalance. To address these
limitations, future work should consider alternative sensors with larger sensing areas,
for instance, a time of flight sensor or microcontroller-based machine vision cameras. These
technologies can help maintain a reasonable level of system complexity while improving the
accuracy and reliability of the gesture recognition toy for children. Finally, future research
should focus on collecting a larger dataset of children’s gestures and training the machine
learning model specifically on these data to enhance its accuracy and generalizability. This
may involve gathering data from children of various ages and developmental stages to
ensure that the model captures the variation in their gestures and testing the model on
a separate validation dataset to confirm its accurate generalization to new examples of
children’s gestures.
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