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Abstract: Next-point-of-interest (POI) recommendation is a crucial part of location-based social
applications. Existing works have attempted to learn behavior representation through a sequence
model combined with spatial-temporal-interval context. However, these approaches ignore the
impact of implicit behavior patterns contained in the visit trajectory on user decision making. In
this paper, we propose a novel graph self-supervised behavior pattern learning model (GSBPL)
for the next-POI recommendation. GSBPL applies two graph data augmentation operations to
generate augmented trajectory graphs to model implicit behavior patterns. At the same time, a graph
preference representation encoder (GPRE) based on geographical and social context is proposed
to learn the high-order representations of trajectory graphs, and then capture implicit behavior
patterns through contrastive learning. In addition, we propose a self-attention based on multi-feature
embedding to learn users’ short-term dynamic preferences, and finally combine trajectory graph
representation to predict the next location. The experimental results on three real-world datasets
demonstrate that GSBPL outperforms the supervised learning baseline in terms of performance under
the same conditions.

Keywords: graph self-supervised learning; contrastive learning; implicit behavior pattern;
self-attention; next POI recommendation

1. Introduction

In recent years, location-based social networking (LBSN) services such as Uber,
Foursquare, and Gowalla have experienced significant growth with the prevalence of
smartphones. Users can easily share their check-in locations, such as restaurants and shop-
ping centers, on LBSN applications. As the amount of check-in data increases exponentially,
point-of-interest (POI) recommendation systems have become critical in recommending
places of interest to users based on their historical check-in records. The next-POI rec-
ommendation system is a subfield of POI recommendation that can learn personalized
preferences based on users’ historical check-in records and recommend places that they are
likely to visit next [1,2]. Therefore, the model needs to have the ability to model complex
behavior patterns.

Currently, next-location prediction methods have been extensively explored. Early re-
search primarily focused on personalized extensions of Markov chain (MC) models [3–5].
However, MC-based models have strong independence between different events and can-
not model preferences. With the development of deep learning, models based on recursive
neural networks (RNNs), including long short-term memory (LSTM) and gated recurrent
unit (GRU), are widely used in processing sequence problems due to their memory mecha-
nism [6–9]. These models usually slice the check-in sequence based on a fixed time and
learn the long-term and short-term preferences of the global or local check-in sequence.
For instance, the STMLA [10] is a Mogrifier LSTM that couples the traditional LSTM with
multiple context information in order to capture user preferences. Despite these methods
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having achieved success, they are limited in capturing the multiple associations between
different check-in data, since RNN models cannot handle non-Euclidean data.

Another method is based on the self-attention mechanism, which computes the corre-
lation between non-consecutive check-ins and expands the self-attention mechanism, such
as incorporating spatial-temporal context information [11]. However, these methods have
larger computational costs and struggle to capture the high-order sequentiality of check-in
data. Models based on a graph neural network (GNN) have the ability to capture the
high-order associations between different instances [12]. Recently, some POI recommenda-
tion methods have used graph representation learning techniques to learn the interactions
between POIs and update the node representations in low-dimensional space, followed
by generating user preferences [13–15]. For example, FC-CF [16] establishes a stratified
graph of users and POIs, facilitating the learning of collaborative filtering signals between
users and POIs. Despite these breakthroughs, the existing methods have not explored users’
complex behavior patterns behind the check-in data and lack a unified method that can
capture both continuous and discontinuous visits or other behavioral patterns.

Our work is motivated by the real-world check-in behavior of users. By observation,
we identified three common behavioral patterns: (1) In Figure 1, pattern A shows that the
user tends to visit certain places in a fixed order. For example, he may visit workplace p1
with high regularity on workdays and then go to restaurant p2 after work. This is the most
common sequential visit pattern. (2) From the routes containing pattern B, p1 → p4 → p5
and p4 → p6 → p5 → p12, we can see that although user may occasionally visit attraction
p6 due to temporary decisions, the user’s habitual behavior preferences of visiting mall p4
and bookstore p5 in order remains unchanged. In other words, the user tends to visit p4 and
p5 continuously or in a skipping manner, which we call the skip visit pattern. (3) Pattern
C in Figure 1 shows that the visit order between some locations is not fixed, and user can
visit p8 before going to p9, or vice versa. This is the indefinite-order visit pattern. We
define these three check-in behaviors as implicit behavioral patterns. It is worth noting that
check-in data are one-dimensional data sorted by timestamps. In general, the model cannot
learn users’ complex behavioral patterns, so we need to generate some useful information
from existing data to assist recommendation models. In recent years, with the ability to
generate auxiliary supervisory signals through data augmentation operations to assist
downstream tasks in training, graph contrastive learning (GCL) has gradually come to
researchers’ attention [17–19].

Inspired by the latest research progress in GCL in the recommendation field, in this
paper, we propose a novel graph self-supervised behavior pattern learning model (GS-
BPL) for next-POI recommendation. GSBPL achieves unified learning of implicit behavior
patterns using self-supervised graph contrastive learning methods. Specifically, GSBPL
consists of two key parts: (1) Graph data augmentation, which uses data augmentation
operations on check-in trajectory graphs to generate augmented subgraphs, and (2) graph
contrastive learning, which maximizes the consistency between positive subgraphs. We
propose two data augmentation operations: edge masking and bridging, and edge inversion,
respectively, used for modeling skip and indefinite-order visit patterns, and the original
check-in graph is used to model sequential visit pattern. Then, we propose the graph pref-
erence representation encoder (GPRE) to generate graph-level embeddings for sequential
graphs and use graph contrastive learning on augmented subgraph embeddings to capture
user personalized implicit behavior patterns. Additionally, we designed a multi-feature self-
attention mechanism to learn a user’s short-term dynamic preference representation and
combine it with the original trajectory graph embedding for recommendation, improving
the recommendation performance. It is noteworthy that GSBPL only utilizes user-initiated
check-in behavior data for recommendation, without using any personal attributes or
real-time location data of users, which is advantageous for protecting users’ privacy.



Electronics 2023, 12, 1939 3 of 19

In conclusion, the main contributions of this paper are summarized as follows:

• We propose the concept of implicit behavior patterns and the graph self-supervised
learning model (GSBPL), which achieves unified modeling of users’ multiple check-in
behaviors. To our best recollection, GSBPL is the first next-POI recommendation
model that applies graph contrastive learning for behavior pattern modeling.

• We propose a graph preference representation encoder (GPRE), which differs from
methods that update node features using graph representation learning. GPRE up-
dates higher-order node representation based on positional and social popularity
context information and learns the graph-level embedding for sequential graphs.

• We propose a multi-feature self-attention mechanism that embeds temporal, spatial,
and popularity features of POIs and captures user short-term dynamic decision-
making information to generate short-term preference representation.

• We conducted extensive experiments on three real LBSN datasets, and the experimen-
tal results show that GSBPL has superior recommendation performance.

Figure 1. An example showing the implicit behavior patterns of users in complex spatial-temporal
transition trajectories. The map illustrating the user’s historical movement trajectory. The vis-
ited locations are named from p1 to p12. The nodes in blue, red, and yellow represent shopping
malls/restaurants/supermarkets, workplaces, and leisure venues/attractions, respectively. Below
shows the user’s visit trajectory for a single week, in which the gray, yellow, and blue areas are the
user’s implicit behavior patterns A, B, and C, respectively.

The remainder of this paper is organized as follows. In Section 2, we summarize
previously conducted research related to our study. In Section 3, we give the preliminary
preparation of the model. In Section 4, we describe our proposed GSBPL. In Section 5,
we compare GSBPL with existing recommendation models and analyze the experimental
results. Last, in Section 6, we summarize the work done in this paper.
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2. Related Work

In this section, we introduce the current research work on next-POI recommendation,
GNN-based recommendation, and graph contrastive learning in order.

2.1. Next-POI Recommendation

The major goal of the next-POI recommendation is to predict the user’s next visit
based on a given user’s check-in list. Early work used the Markov chain (MC) for personal-
ized recommendation [3,5], but Markov models have limitations in capturing high-order
sequential dependencies. Deep learning was applied to the next location recommendation
system afterwards, due to its excellent performance in modeling complex relationships
between heterogeneous data and extracting latent features. The most widely used method
is based on RNN. ST-RNN [20] defines a spatial-temporal matrix to extend the mobility
of RNN in capturing local spatial-temporal intervals of a specific length. DeepMove [6]
designed a multi-modal RNN that embeds user, time, and region information into the
feature space to model long-term dependencies in check-in sequence. LSTPM [21] learns
both long- and short-term interests. It uses LSTM to learn the daily sequence representation
and uses time-weighted operations to measure the similarity between each subsequence
and the latest visit. STGN [22] added time gates and distance gates to improve LSTM and
improve the recommendation effect. However, these models ignore the learning of implicit
behavior patterns behind user check-in action.

2.2. GNN-Based Recommendation

The graph neural network has powerful representation learning abilities. In the
recommendation system, the interaction bipartite graph and social network of users and
items are natural graph structures. Many excellent GNN recommendation methods [23–27]
capture high-order connectivity at the graph level through message passing to perform
representation learning based on the principle of neighbor similarity. GGLR [13] uses
LightGCN [24] as a basic framework to learn incoming and outgoing geographic influences
from user-POI and POI-POI graphs to evaluate user preference. SGRec [14] constructed
daily sequences into sequence diagrams for session-level collaborative filtering while
using location-aware attention to learn short-term preference. ASGNN [28] uses a gated
graph neural network [29] to model a user’s check-in behavior and embeds a vector-input
hierarchical attention network to learn a user’s long- and short-term interests. Despite
being effective, these models ignore the close relationship between the entire motion graph
structure and the user’s preference.

2.3. Graph Contrastive Learning

Contrastive learning is an unsupervised learning method that can extract auxiliary
supervised signal training models from the data themselves in the case of sparse data fea-
tures and missing labels [30]. Contrastive learning is usually used in graph representation
learning methods in graph classification tasks [31,32]. The two core modules of GCL are:
(1) data augmentation—generating two graph augmentation views by randomly augment-
ing the graph through pruning and other strategies; (2) contrastive loss—the consistency
of the two positive-pair views is maximized in the feature space by the loss function.
GCC [33] uses contrastive learning to learn transferable graph structure representations
for downstream tasks in the pre-training phase. The GCA framework [17] is an adaptive
data augmentation scheme based on graph topology and node attributes. Recently, Wu
proposed a self-supervised graph learning framework SGL [34], which proposes a multi-
node self-distinguishing data expansion paradigm for GCL. Furthermore, [35–38] have
successfully applied GCL to recommendation fields such as sequence recommendation and
cross-domain recommendation.
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3. Preliminaries

In this section, we briefly introduce the rich features and give the definition of key
terms and a statement of the problem. Let U = {u1, u2, . . . , u|U|} and P = {p1, p2, . . . , p|P|}
denote the set of users and POIs, respectively, where each POI p ∈ P corresponds to an
exact longitude and latitude coordinate, namely, (lon, lat). Embedding vectors eu ∈ Rd and
ep ∈ Rd describe user u and POI p, respectively, where d is the embedding dimension.

Historical Check-in Trajectory. Sequence of check-ins by user visiting locations in chrono-
logical order. For the target user u ∈ U, the tuple ci = (u, pi, ti) is the check-in of the user u
at a certain time in the historical trajectory, where ti is a timestamp in hours to represent
the check-in time, and pi ∈ P is the POI visited by the user u at the time step ti. We define
the historical check-in trajectory of user u as S(u) = {c1, c2, . . . , cN}, where N = |S(u)| is
the check-in numbers of user u. Previous studies have shown that Google Maps search
history data can be used to infer a user’s interests and preferences, and their movements
over time [39]. By analyzing patterns in the types of locations that a user searches for and
visits, researchers can gain insights into their POIs. Since each POI has a unique latitude
and longitude coordinate, the user’s historical trajectory graph can be visually observed
after mapping all the historical check-in trajectories to maps [40].

Correlation Matrix. According to the transfer information between each check-in in the
user’s historical trajectory, this paper explicitly models from three aspects: time slot,
spatial distance, and social popularity. Specifically, we simply represent the time slot
between the i-th and the j-th check-in as rt

i,j = |ti − tj| and calculate the spatial distance
rs

i,j = haversine(loci, locj) between the i-th and the j-th check-in using the Haversine for-
mula. It is worth noting that there are also popularity features with social attributes between
POIs which dynamically determine the user’s next visit object. We map the transfer fre-
quency f reqi,j between the i-th and the j-th check-in to the social popularity. A good rule of
thumb is that the influence degree of location is a long tail distribution, and some locations
have dense connectivity (i.e., very popular). Thus, we apply a natural logarithm to reduce
this influence, and finally get the popularity rp

i,j = ln( f reqi,j). Based on the above rules,
we generate the temporal, spatial, and popularity correlation matrices as Rt = (rt

i,j)N×N
,

Rs = (rs
i,j)N×N

, and Rp = (rp
i,j)N×N

, respectively, where i, j = 1, 2, . . . , N.

Next-POI recommendation. Given all the historical check-in trajectories S(u) of the target
user u and the candidate POI set P, our goal is to output the TOP-K POIs that the user
wants to visit at time tN+1.

4. Proposed Framework

In this section, we will illustrate our proposed model in detail. The GSBPL model
architecture is shown in Figure 2, which contains three important components: (1) the graph
self-supervised pattern learning module; (2) the dynamic preference-learning module;
(3) the prediction layer.
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Figure 2. Our proposed GSBPL framework.

4.1. Graph Self-Supervised Pattern Learning Module
4.1.1. Trajectory Graph Construction

The sequential visits of the user between POIs can assist us in learning implicit
behavior patterns and reasoning between instances. The graph neural network (GNN) has
the powerful abilities of knowledge representation and relational reasoning, which can
map the check-in trajectory to graph data in complex non-Euclidean space. We define a
weighted directed graph G = (V , E) to describe the user’s historical trajectory, where V
is the graph node representing the POI set P and E is the directed edge representing the
order in which the user visits the POI (e.g., the directed edge (i, j) ∈ E represents the path
from pi to pj).

The adjacency matrix A ∈ R|P|×|P| is used to model the graph G, and the element
ai,j represents the transfer relationship from pi to pj. Empirically, users are affected by
the spatial distance and popularity between locations when making mobile visits. We
normalize the spatial correlation matrix and the popularity correlation matrix by column
and calculate the correlation weights as the element values of the adjacency matrix, which
is shown in (1):

ai,j =

{
(τ · rp

i,j
′
+ (1− τ) · rs

i,j
′)/2 i 6= j

0 i = j
, (1)

rs
i,j
′ = max

 rs,max
∗,j − rs

i,j

rs,max
∗,j − rs,min

∗,j
, ps

τ

, (2)

rp
i,j
′
= max

 rp
i,j − rp,min

∗,j

rp,max
∗,j − rp,min

∗,j
, pp

τ

, (3)

where τ ∈ [0, 1] is a hyperparameter to control the impact of spatial distance and social pop-
ularity. rs

i,j
′ and rp

i,j
′

are the column-normalized spatial weights and the column-normalized

popularity weights, respectively. r·,max
∗,j (r·,min

∗,j ) is the maximum (minimum) of the j-th
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column of the matrix. ps
τ (pp

τ) < 1 is the truncated probability for preserving the structural
invariance of a graph. It is worth mentioning that we assume that the closer the geo-
graphical location, the greater the correlation between POIs. Therefore, we calculated the
differential value between the maximum distance between the node j and all neighbors and
the distance of the target neighbor to ensure that the spatial weight is inversely proportional
to the distance.

4.1.2. Graph Data Augmentation

The purpose of graph data augmentation is to create a new and reasonable graph
structure through certain operations to provide auxiliary supervision signals for the model
without affecting the basic topology. At present, common data augmentation strategies
for graph contrastive learning (GCL) [18] include random node (edge) dropping, feature
masking, and random walk, but they have the following boundedness in our task: (1) The
general graph augmentation paradigm targets static graph data with relatively stable node
and edge attributes, but the user check-in trajectory graph will be dynamically expanded
with the unstable factor of user interest. (2) In reality, the user’s check-in data have a
long-tailed distribution. Unprocessed, random data augmentation operations will reduce
the ability of the model to fit user behavior.

In this paper, through the analysis of a large number of user behavior data, we
summarize the three implicit behavioral patterns of users: sequential visit, skip visit, and
indefinite order visit (refer to Figure 1). Additionally, two edge-based data augmentation
operations have been developed. Algorithm 1 describes the process in which the target user
u obtains the augmented graph from the trajectory graph. From the historical trajectory
graph G, we construct an augmented graph Ĝ = f a(G), where Â and Ê are the adjacency
matrix and edge set of Ĝ, respectively. f a(·) is the data augmentation operation. The details
are listed as follows:

Algorithm 1 Graph data augmentation operation for user u.

Input: Historical trajectory graph G, historical check-in data S(u), parameter ρm, parame-
ter ρc and operation type t̂

Output: Augmented graph Ĝ
1: Extracting adjacency matrix A and in-degree matrix D from trajectory graph G;
2: Obtain the length N of S(u);
3: if t̂ == 1 then
4: Edge Masking and Bridging: Â = f a

1 (A, ρm, N, D);
5: else if t̂ == 2 then
6: Edge Inversion: Â = f a

2 (A, ρc, N);
7: end if
8: Get augmented graph Ĝ from augmented adjacency matrix Â;
9: return Ĝ;

• Edge Masking and Bridging. By randomly masking the edges in the graph and bridg-
ing the nodes at both ends of the obscured edge with each other’s forward nodes
and backward nodes, the skip visit behavior pattern can be simulated. Specifically,
the shadowing probability of the directed edge (i, j) ∈ E of G is defined as 1− ai,j,
and ρm × (N − 1) edges are randomly shadowed based on the shadowing probability,
where ρm < 1 is a hyperparameter to control the number of edges to be shadowed. In
the next step, we bridge the forward and backward nodes at both ends of the shading
edge (e.g., Figure 3, assuming that the edge p2 → p3 is obscured, p1 is the forward
node of p2, and p4 is the backward node of p3, we will connect p1 → p3 and p2 → p4
if they do not exist). Finally, the centrality measure ε = A>D−1 ∈ R|P| of each node is
calculated, where D ∈ R|P|×|P| is the in-degree matrix of the node of graph G, and the
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centrality score εj of the target node j is used to obtain the weight of the newly added
edge â ∈ Â. The formulas are:

âi f ore ,j = ai f ore ,i · ai,j, âi,jrear = ai,j · aj,jrear , (4)

where ∗ f ore and ∗rear are described as the forward and backward nodes of the target
node, respectively. ai f ore ,i and aj,jrear are attenuation factors to prevent new edges from
being strongly related to all incoming edges of the sinks. Finally, we get the augmented
graph Ĝ1.

Figure 3. Edge masking and bridging. We shadow part of the edge and selectively bridge the forward
and backward nodes at both ends.

• Edge Inversion. By randomly selecting the edge and changing the direction of the
edge, the indefinite order visit behavior pattern can be simulated. Specifically, the
edge weight ai,j represents the importance of users tending to visit the i-th and j-th
POIs, so we regard ai,j as the selection probability and randomly select ρc × (N − 1)
edges, where ρc < 1 is a hyperparameter to control the number of edges to be selected.
We use the reverse operation reverse(i, j) for the selected directed edge (i, j) ∈ E to
obtain a new edge (j, i) ∈ Ê , and âj,i = ai,j. Finally, we get the augmented graph Ĝ2.

4.1.3. Graph Preference Representation Encoder (GPRE)

This section proposes GPRE, which consists of an edge-weighted graph attention
network (GAT) layer and a graph readout layer. It is a graph encoder that learns the
relationship between check-ins in a trajectory graph/augmented graph and outputs graph-
level feature representations.

The edge-weighted GAT layer of GPRE will learn the representation vector of nodes
from the transformation relationship of nodes in the user’s trajectory graph and update
it. Specifically, we first perform user-based personalized embedding on graph nodes and
obtain a set of node features X0 = {x0

1, x0
2, . . . , x0

|P|}. The specific embedding operation is:

x0
i = eu‖epi , (5)

where x0
i ∈ R2d is the initial node characteristic and ‖ represents splicing two vectors.

The traditional GAT does not take edge weights into account. Therefore, we em-
bed additional weights between nodes in the edge-weighted GAT layer of GPRE, which
makes the updated graph node feature vector contain spatial attributes and popularity
attributes. The attention score is nonlinearly activated using the LeakyRelu function, which
is calculated as:

eij = LeakyRelu
(
Wa
[
Wxi‖Wxj‖Weai,j

])
, (6)

where Wa, W, and We are trainable weight matrices. i ∈ N (j) is the neighbor node pointing
to node j, and N (j) is the set of neighbor nodes pointing to node j.

Then, in order to make the weights between nodes comparable, we use the softmax
function to normalize the attention coefficient in the form of probability:

αij = so f tmaxi(eij) =
exp(eij)

∑m∈N (j) exp(emj)
. (7)
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Finally, we apply the attention coefficient obtained in (7) to calculate the linear com-
bination of the corresponding nodes, and potentially assign nonlinearity to the results to
obtain the updated node features. Meanwhile, in order to learn more stable node features,
we used the method of multi-head attention recommended in [41]. The specific operation
is to perform the attention mechanism multiple times and splice the results. The final
paradigm is as follows:

x′j =
K
‖

k=1
σ( ∑

i∈N (j)

αk
ijW

kxi), (8)

where K denotes the number of heads, the parameters of each head are independent of
each other, ‖ in (8) denotes the splicing of all heads, and σ is the ReLU activation function.

The vector dimension of the node feature x′ after using multi-head GAT is 2Kd rather
than the original vector dimension 2d. Therefore, after applying (6)–(8), we add a multi-
head GAT layer and discard the stacking operation, instead of calculating the average value
of the multi-head as the final graph node to embed xupdate

j :

xupdate
j =

1
K

K

∑
k=1

∑
i∈N (j)

αk
ijW

kx′i . (9)

The graph readout layer of GPRE aims to embed the feature-representation vector of
the output graph based on the trajectory graph nodes. Obviously, according to the different
user behavior patterns, POIs have personalized high-order order transfer characteristics.
Commonly used graph readout operations such as sum, mean, and max cannot make
the model learn this feature. Set2Set [42] is a graph pooling strategy based on attention
for weighted summation of node embedding, which can learn the possible sequence
relationship between nodes. The specific calculation process is:

q = LSTM(0), (10)

er
i = f (xupdate

i , q), (11)

αr
i = so f tmaxi(e

r
i ), (12)

r = ∑
i

αr
i xupdate

i , (13)

g∗ = MLP(q‖r), (14)

where q ∈ R2d is the query vector for attention, derived from an implicit state generated
by an empty input LSTM. The i index represents the i-th node in the user trajectory graph,
and the function f (·) is used to calculate the similarity er

i between the embedding xupdate
i

of each node and the query vector (the function is the dot product in this model). αr
i is a

probabilistic attention coefficient after softmax normalization of similarity, which is used
to calculate a linear combination with each node embedding xupdate

i . The final output
graph represents the vector g∗, which is obtained by concatenating the query vector q and
the output result r ∈ R2d of a forward propagation. In particular, in order to ensure the
dimensional consistency between the graph representation vector and the POI embedding
vector, we use a multi-layer perceptron to ensure g∗ ∈ Rd.

To date, we can simplify (6)~(14) to the general paradigm of GPRE:

g∗ = encoder(X0,A), (15)
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where A is the adjacency matrix of any trajectory graph. By inputting the adjacency
matrices A, Â1, and Â2 of G, Ĝ1, and Ĝ2 into GPRE, respectively, we can obtain g∗, ĝ∗1 ,
and ĝ∗2 , which are described as the graph feature-representation vectors of G, Ĝ1, and Ĝ2,
respectively. Formally, for G and Ĝ1, we use the online encoder εθ , and for Ĝ2, we use the
target encoder εφ.

4.1.4. Graph Contrastive Learning

An augmented graph based on the potential behavior pattern modeling plays an
important role in learning users’ preferences. Differently from the general contrastive
learning paradigm, we consider the augmented graphs Ĝ1 and Ĝ2 as positive pairs, aiming
to maximize the consistency of features of the two positive-pair views in the feature space
through the loss function. Formally, we follow BGRL [43,44], which is non-contrastive
and does not require any negative examples. It can be seen in Figure 2 that for the online
encoder εθ , we use the nonlinear transformation module Converter (FC→ PReLu→ FC)
to process ĝ∗1 to obtain ẑ∗1 , which makes the structure of the online pipeline and the target
pipeline asymmetric. We define a contrastive learning loss function:

Lgcl = 2− 2 · 〈ẑ∗1 , ĝ∗2〉/(‖ẑ∗1‖2 · ‖ĝ∗2‖2). (16)

The loss function Lgcl updates the parameter θ of the online encoder εθ by following a
gradient of cosine similarity.

On the other side, we update the momentum of parameter φ of the target encoder εφ

to be the exponential moving average (EMA) of the online parameter θ:

φ← βφ + (1− β)θ, (17)

where β ∈ [0, 1) is a hyperparameter, defined as the decay rate that controls the distance
between φ and θ.

4.2. Dynamic Preference-Learning Module

The dynamic preference-learning module plays a key role in capturing users’ short-
term sequential action patterns and context-aware patterns, such as the periodicity of daily
behavior within a week. In this paper, we benefit from the help of the user’s check-in
timestamp and intercept the latest week’s visit from the user’s complete check-in trajectory
as a short-term check-in sequence S′(u) = {cm, cm+1, . . . , cN}, where S′(u) ⊆ S(u) and
tm ≥ tN − (7× 24) > tm−1. Here, the timestamp t in hours is modulo 24, mapping each
check-in to 24 dimensions, representing 24 h in a day to capture the periodicity of short-
term behavior patterns. Naturally, we get the embedding eci = eu + epi + eti of check-in
ci ∈ S′(u) by linear summation; eu and epi are the embeddings of user and POI, respectively;
and eti ∈ Rd denotes check-in time embedding. The embedding of a short-term check-in
sequence is denoted by ES′ = {ecm , ecm+1 , . . . , ecN} ∈ RN′×d, where N′ is the length of S′(u).

Benefiting from the success of self-attention mechanism in sequence recommendation,
we propose an adaptive self-attention-based dynamic preference-learning module, aiming
to learn the high-order correlations among user check-ins in the short term. Self-attention
can capture the dependencies between check-ins within a trajectory and calculate the
weights of each visit relative to the most recent one in an end-to-end manner. Moreover,
by taking into account the influence of the check-in time interval, geographical distance
between POIs, and social popularity of POIs on user decision making, such as users prefer-
ring to go to nearby and popular places, we incorporate multiple feature embeddings into
weight calculation. Specifically, in order to model the complex context relationship between
check-ins, a mask layer of length N is set, and the check-ins belonging to S′(u) are set to one
(otherwise zero). The purpose is to extract the short-term preference correlation matrix from
the temporal, spatial, and popularity correlation matrices, which are Rt ′, Rs ′, Rp ′ ∈ RN′×N′ .
The d-dimensional embedding matrix Et

R′ , Es
R′ , Ep

R′ ∈ RN′×N′×d corresponding to the short-
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term preference correlation matrix is obtained by interpolation embedding method [45].
Furthermore, the short-term check-ins are embedded into a matrix ES′ , multiplied by three
different trainable parameter matrices V1, V2, and V3 to obtain query vector Q, key vector
K, and value vector V, and then update the embedded short-term check-ins:

E∗S′ = so f tmax

(
QK> + Et

R′ + Es
R′ + Ep

R′√
d

)
V. (18)

Here, E∗S′ ∈ RN′×d is the embedded representation of the updated short-term check-in
trajectory of the user. Since the last check-in cN is closest to the user’s next visit, we use the
last check-in embedded representation e∗cN

as the user’s short-term preference.

4.3. Prediction Layer

As shown in Figure 2, the trajectory graph feature representation g∗ and the short-term
preference feature e∗cN

are spliced to obtain the user preference representation l∗ ∈ R2×d,
and then l∗ and candidate POI are embedded into e∗p ∈ R|P|×d as input into the next location
prediction module. The prediction module will output the probability that the candidate
location is visited:

ŷ = so f tmaxp(Wo(e∗pl∗>)). (19)

Here, Wo is the weight matrix that can be learned, and the softmax function outputs
the result in a probabilistic form. Finally, we apply the popular cross entropy as the loss of
our supervised task to optimize the model’s parameters:

Lmain = − ∑
u∈U

|P|

∑
i=1

yi · log (ŷi) + (1− yi) · log (1− ŷi), (20)

where the index i represents the i-th candidate POI and yi ∈ 0, 1 is the label of the i-
th candidate POI. In order to optimize our recommendation model through graph self-
supervised tasks, we use a multi-task training strategy for collaborative optimization
of parameters.

L = Lmain + λ1Lgcl + λ2‖η‖2
2 + λ3‖θ‖2

2. (21)

In this formula, η and θ are the parameter sets of the supervised model and the self-
supervised model, respectively; and λ1, λ2, and λ3 are the hyperparameters which control
the influences of graph self-supervised learning and L2 regularization, respectively.

5. Experiments

In this section, the experimental results are presented. All experimental results are
displayed in the form of tables and charts.

5.1. Experimental Setup
5.1.1. Datasets

We evaluated our proposed BPGCL recommendation framework on three real-world
LSBN datasets, the popular Gowalla, TKY, and NYC, respectively; and all three benchmark
datasets are publicly accessible. In the experiment, given the differences in the rich context
categories provided by the dataset, we only used the four common raw data of user, POI,
check-in time, and spatial coordinates (longitude and latitude) of POI in the dataset. In
order to ensure data quality, based on previous research work experience, we applied a
10-core setting for each dataset, that is, to retain users who have interacted with at least
10 POIs and POIs that have interacted with at least 10 users. Table 1 summarizes the
detailed information of the dataset. In terms of dataset partitioning, we selected the top
90% check-in records of each user as the training set and the rest as the test set based on the
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timestamp. In addition, 10% of the check-in records from the training set were selected as
the validation set to adjust the hyperparameters.

Table 1. Experimental dataset’s statistical details.

Dataset #User #POI #Check-in

Gowalla 6265 19532 512332
TKY 2195 5491 303591
NYC 1063 5135 147938

5.1.2. Baselines

In order to verify the effectiveness of the proposed model, we compare it with the
following supervised task baselines:

• LSTM [46]: A widely used classical sequential modeling method.
• ST-RNN [20]: An effective recommendation method for extending the RNN by mod-

eling local temporal and spatial contexts.
• DeepMove [6]: An attention-based recursive network for mobility prediction from

long and sparse trajectories.
• STGN [22]: This is a state-of-the-art approach that extends the time and distance gates

in LSTM to personalize recommendations by modeling users’ long- and short-term
preferences in a spatial-temporal context.

• ASGNN [28]: This is an attention sequence model based on GNN that models user
check-in behavior as a graph and updates the check-in feature representation locally
through a gated graph neural network for recommendation.

• LSTPM [21]: A state-of-the-art model for joint recommendation through a non-local
network for long-term preference modeling and a geographically extended RNN for
short-term preference learning.

• STAN [47]: This is the state-of-the-art model that multi-modally models personalized
trajectory and uses a self-attention combined with a spatial-temporal margin matrix to
model the association between non-adjacent locations and discontinuous visits.

5.1.3. Evaluation Matrices

To evaluate the effectiveness of the model’s TOP-K recommendation and recommen-
dation ranking, we applied two widely used evaluation protocols: Recall@K and NDCG@K.
The recall rate is described as the proportion of POI hits in all recommendation results.
The larger the recall rate, the better the recommendation effect. NDCG is a normalized
discounted cumulative gain, which is often used in recommendation and search tasks.
It can measure the ranking order of result in the recommendation list. The larger the
NDCG value, the better the effect. In this paper, we use K ∈ {5, 10} to evaluate the index
parameters, and the evaluation results are averages.

5.1.4. Implementation Details

To ensure fairness, we applied the same benchmark dimension d to all embedding
and weighting matrices. Specifically, for the datasets Gowalla, TKY, and NYC, we set d to
50. The truncation probabilities ps

τ and pp
τ were set to 0.01. Following the setting in [43],

we set the momentum temperature coefficient β to 0.99. Note that the number of heads K
is 8 by default. In our model, we implemented GSBPL with Pytorch and carefully tuned
its key parameters. For the remaining hyperparameters, we performed grid searching:
for λ2 and λ3, we took values in the range of [0, 1]; the masking control ratios ρm and ρc

in the data augmentation were searched in the range of [0, 0.2] to change the structure of
the original trajectory as little as possible. We took λ1 in {0.01, 0.05, 0.1, 0.5, 1.0}; τ took
values in {0, 0.2, 0.5, 0.8, 1} and was analyzed experimentally. We used Adam as the model
optimizer. The learning rate was 0.002, and the training epoch was 30.
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5.2. Performance Comparison

Table 2 shows the recommended performance comparison between the proposed
model and the baseline. We used a T-test with a p-value of 0.01 to evaluate the statistical
significance of GSBPL improvement. We set the best result as bold, and in the last line, we
list the performance improvements of our model. We observe the following conclusions
from the statistics:

• Our proposed model exceeded the baseline in terms of each metric on three datasets
with different densities. For example, in the check-in-data-rich NYC dataset, GSBPL’s
Recall@5 and NDCG@5 were 18.94% and 13.92% higher than those of our competitors,
respectively. In particular, we achieved 14.99% and 14.06% improvements in the
TKY dataset with comparable check-in density, which verifies the superiority of our
proposed method in active datasets. In addition, the performance improvement of
almost 7.3% in the Gowalla dataset also proves the effectiveness of GSBPL at dealing
with sparse data. We consider that the significant improvement of the model is due to
the powerful ability of self-supervised learning of implicit behavior patterns.

• As a classical deep learning method for processing sequences, LSTM has stable per-
formance in this recommendation scenario, but it does not outperform and ST-RNN,
DeepMove, or STGN. This was not a surprise, since these three models take into
account the impacts of time slices and relative distances on users’ future visits in the
long-term preference modeling of the RNN framework. In addition, the recommen-
dation performances of these methods are far less than that of LSTPM based on the
RNN. It is reasonable, since LSTPM fine-grained divides users’ preferences into long-
and short-term preferences, and geographically expands the short-term preference
RNN framework with a stronger correlation. However, these RNN-based methods
cannot fit the complex behavior patterns of users due to their concatenated structure,
resulting in sub-optimal performance.

• ASGNN is a simple GNN-based model, and its result is similar to that of LSTPM.
This demonstrates the ability of GNN to capture the transfer patterns between POIs.
Additionally, we believe that ASGNN can be improved to have a performance level
beyond that of LSTPM. It applies the gated graph neural network only for the most
basic node-level message propagation, without embedding the POI distance context.
However, ASGNN ignores the key role of trajectory representation, which limits its
performance.

• The state-of-the-art model STAN expresses significant advantages compared to the
baseline. This is reasonable because the previous model ignores the correlation among
non-adjacent locations and discontinuous visits and user behavior, and STAN uses
the self-attention to calculate the spatial-temporal correlation between each node,
which solves the defects caused by the series structure of the RNN-based method.
Although effective, STAN dilutes the order dependence between POIs and cannot
model the implicit behavior patterns of users. In addition, STAN ignores the impact
of a location’s social popularity on users’ short-term dynamic decisions.

Table 2. Recommended performance comparison with baseline.

Gowalla TKY NYC

Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

LSTM 0.1576 0.1733 0.1388 0.1491 0.1703 0.1884 0.1501 0.1673 0.2123 0.2741 0.1788 0.1835
ST-RNN 0.1791 0.2279 0.1398 0.1426 0.1987 0.2161 0.1776 0.1877 0.2367 0.2803 0.1991 0.2082

STGN 0.1817 0.2381 0.1408 0.1513 0.2178 0.2387 0.1848 0.1954 0.2608 0.3262 0.2193 0.2405
DeepMove 0.1973 0.2475 0.1487 0.1607 0.2398 0.2587 0.1998 0.2175 0.2909 0.4084 0.2276 0.2554

ASGNN 0.2087 0.2510 0.1754 0.1909 0.2622 0.3241 0.2205 0.2498 0.3476 0.4209 0.2544 0.2801
LSTPM 0.2121 0.2563 0.1626 0.1826 0.2894 0.3479 0.2174 0.2411 0.3369 0.4119 0.2516 0.2776
STAN 0.2386 0.2811 0.1854 0.2087 0.3147 0.3941 0.2353 0.2613 0.4012 0.4953 0.2909 0.3209

GSBPL 0.2561 0.3016 0.2007 0.2231 0.3619 0.4478 0.2684 0.2947 0.4772 0.5798 0.3314 0.3615

Improvement 7.33% 7.29% 8.25% 6.89% 14.99% 13.62% 14.06% 12.78% 18.94% 17.06% 13.92% 12.65%
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5.3. Ablation Study

We conducted ablation studies to analyze the effects of the modules in our model. We
removed the core components of GSBPL in turn to form different derivative models. These
derivative models were as follows:

• GSBPLr−gsl : This model removes the graph data augmentation and contrastive loss
and only retains the representation vector of the GPRE generated trajectory graph.

• GSBPLr−g: This model removes the whole trajectory learning module and only con-
siders the influence of users’ short-term dynamic preferences.

• GSBPLr−spop: This model removes the embedding of POI social popularity features in
the short-term dynamic preference module.

• GSBPLr−s: This model removes the entire short-term dynamic preferences module
and only uses the trajectory graph learning module (including the part of graph
contrastive learning) for recommendation.

Table 3 illustrates the results of the ablation study. We can draw the following conclu-
sions from the observation of the results. Firstly, after we discarded the entire trajectory-
learning module, the performance of the derived model GSBPLr−g was significantly differ-
ent from that of GSBPL, which proves that the trajectory-learning module plays a key role
in performance improvement. Secondly, the performances of GSBPLr−spop and GSBPLr−s
on the two datasets were lower than that of GSBPL, and GSBPLr−spop obtained 2–6% higher
results than GSBPLr−s. The data not only prove the effectiveness of the short-term dynamic
preference module, but also express that the social popularity of POI can dynamically affect
users’ temporary decisions. Finally, we can also observe from the performance reduction
after removing the GSBPLr−gsl module that the optimization of our recommendations by
the graph self-supervised contrastive learning framework is obvious. In addition to the
above conclusions, we can also note that the performance degradation of GSBPLr−gsl on the
Gowalla dataset was lower than that on the NYC dataset. One of the reasons we guessed
is that it is relatively difficult for GSBPL to capture users’ implicit behavior patterns in
sparse datasets.

Table 3. Ablation study of different derivative models of GSBPL.

Model
Gowalla NYC

Recall@5 Recall@10 Recall@5 Recall@10

GSBPLr−gsl 0.2416 0.2927 0.4193 0.5166
GSBPLr−g 0.1797 0.2183 0.2399 0.2954

GSBPLr−spop 0.2378 0.2787 0.4511 0.5382
GSBPLr−s 0.2241 0.2623 0.4216 0.5239

GSBPL 0.2561 0.3016 0.4772 0.5798

5.4. Impact of Hyperparameters

Figure 4 demonstrates the experimental results regarding the effects of parameters.
We study the influences of three key hyperparameters on the proposed model, including
the hyperparameter λ1 that controls the intensity of the contrastive loss in the loss func-
tion, the influence coefficient τ of the control space distance and social popularity in the
forward propagation of nodes, and the embedding dimension d. The settings of other
hyperparameters were relatively fixed, so they are no longer described.
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(a)

(b)

(c)
Figure 4. Impact evaluation of hyperparameters: (a) Impact of Parameter λ1; (b) Impact of Parameter
τ; (c) Impact of Parameter d.

5.4.1. Impact of Graph Contrastive Learning

In order to further verify the importance and effectiveness of contrastive learning in
GSBPL, we conducted in-depth analysis on two datasets from Recall@10 and NDCG@10 by
adjusting the value of hyperparameter λ1. We assigned λ1 in {0.01, 0.05, 0.1, 0.5, 1.0}. By
observation, the performance improvement of our model was not obvious when λ1 ≤ 0.1,
because our model is mainly guided by the supervised task to propagate the gradient back.
A good result was obtained when λ1 was set to 0.5 and 1.0. It is worth noting that we
can see that the performance in the Gowalla dataset will decrease slightly when λ1 = 1.0,
which confirms our conclusion in Section 5.3 that it is difficult to capture implicit behavior
patterns through contrastive learning on sparse check-in datasets. Thus, we set λ1 to 0.5 in
the experiment.
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5.4.2. Impact of Spatial Distance and Social Popularity

We observed the influences of spatial distance and social popularity on recommen-
dation performance by adjusting the control coefficient τ in the node propagation of the
trajectory graph. Taking the value of τ in turn as {0, 0.2, 0.5, 0.8, 1}, this setting enabled
us to accurately evaluate the extreme states and equilibrium states of the two factors. By
observation, when the τ values were zero and one, the performance was relatively low.
The best performance was obtained when τ = 0.5 in the NYC dataset, and the performance
was better when τ = 0.8 in the Gowalla dataset. This reflects that spatial distance and
social popularity have different effects on user decision making in different datasets. We
attribute this change to the different groups and strategic positioning of different LBSNs.
Therefore, users are more inclined to check in popular locations in one LBSN and check in
daily trajectories in another LBSN.

5.4.3. Impact of the Embedding Dimension

The influence of the embedding dimension on the performance of proposed model
is significant. In order to explore the effect of the embedding dimension on GSBPL, we
selected a group of values within a reasonable range for experimentation. Specifically, we
assigned {25, 50, 75, 100, 125} to the embedding dimension d sequentially. As shown in
Figure 4c, the comprehensive performance of GSBPL is optimal when the embedding size
is 50. Specifically, the model is insensitive to changes in hyperparameters in the range of
[50, 100], though the performance of the model cannot be fully exerted when d = 25, owing
to the fact that a too-low embedding size cannot fully represent the characteristics of POIs.
It is worth noting that the model’s recommendation performance on both datasets showed
a declining trend when d reaches 125, which may be caused by overfitting due to the large
embedding dimensions and many parameters.

5.5. Effectiveness of Graph Augmentation Operation

In order to further investigate whether the graph expansion strategy has an impact on
the GSBPL recommendation results and the impact degree, we evaluated it on a represen-
tative NYC dataset. We set Edge Masking and Bridging to graph augmentation operation
A and Edge Inversion to graph augmentation operation B. Figure 5 illustrates our experi-
mental results. The yellow dotted line is the effect of the derivative model GSBPLr−gsl in
Section 5.3.

(a) (b)
Figure 5. Effectiveness visualization of data augmentation: (a) Operation A; (b) Operation B.

Figure 5a shows that the excessive enhancement of operation A will lead to the
deterioration of the model’s performance, though the effect is lower than that of the
derivative model GSBPLr−gsl . It works best when ρm = 0.15. On the other hand, Figure 5b
illustrates that the Recall@10 of operation B is generally higher than that of GSBPLr−gsl ,
which indicates that the user’s visit order to some POIs is not fixed, which verifies the
effectiveness of operation B. In particular, we found that the performance improvement of
operation A is generally higher than that of operation B, even if the line chart of operation A
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is unstable. This demonstrates that the implicit behavior pattern of skip visit has a stronger
impact on the next check-in than indefinite order visiting.

6. Conclusions

In this paper, we proposed a graph self-supervised learning model GSBPL for rec-
ommending the next point of interest. Firstly, based on real check-in data, we proposed
the concept of implicit behavior patterns and designed two graph data augmentation
operations to generate augmented trajectory graphs for modeling implicit behavior pat-
terns. Then, we proposed a graph preference representation encoder (GPRE), to learn the
high-order representation of the enhanced trajectory graphs and adopted an asymmetric
graph contrastive learning architecture based on positive examples to learn personalized
behavior patterns of users. Finally, we designed a multi-feature self-attention mechanism
to learn users’ short-term dynamic preferences and recommend the next POI by combining
user trajectories’ graph representations. We conducted extensive experiments on three
popular LBSN datasets, and the results prove the great competitiveness and effectiveness
of GSBPL compared to supervised learning tasks.

The following improvements are listed as future work to address the limitations of the
model: (1) Introduction of POI side information (e.g., POI categories) into the trajectory
graph representation learning process to enhance performance in sparse datasets and
alleviate the cold start problem. (2) Exploration of the possibility of moving the graph
contrastive learning module to the model pre-training stage to achieve model decoupling
and improve recommendation efficiency.
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