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Abstract: This paper considers a tracking system developed for a full-actuated manipulator with flex-
ible joints under the following assumptions: torques are control actions, and current loop dynamics
are not considered; the mass-inertial characteristics of the manipulator and other parameters are not
exactly known; the external matched and unmatched disturbances act on the system, and matched
disturbances are not smooth; the derivatives of the reference actions are achievable but are unknown
functions of time; the set of sensors is not complete. Based on the representation of the control plant
model in a block form of input–output with respect to mixed variables (functions of state variables,
external influences and their derivatives), we have developed a combined control law for the case
where the control matrix contains additive uncertain elements. In addition, we have designed the
mixed variable observers of the smallest possible dimension with piecewise linear corrective actions
for two cases: (i) only the generalized coordinates of the manipulator are measured; (ii) only the
angular positions and velocities of the motors are measured. It is shown that in a closed-loop system
with dynamic feedback, a given tracking error stabilization accuracy is provided in the conditions of
incomplete information. We presented the results of numerical simulation of these algorithms for a
single-link manipulator.

Keywords: flexible joint manipulator; tracking system; parametric and external disturbances; mixed
variables observer; cascade synthesis; robust linear control with saturation

1. Introduction

Mechatronic systems, which contain a mechanical system with an electric actuator, are
quite diverse and very interesting for researchers. Using the Euler–Lagrange equations, we
can obtain an adequate mathematical model of a mechanical system. In the general case,
this model includes cross-couplings and significant nonlinearities. However, the nonlinear
matrices of this model have characteristic features, which makes it possible to distinguish
mechanical systems into a separate class of automatic control plants [1,2]. Plants of this
class are often used for the approbation and verification of new theoretical methods. From
a practical viewpoint, it is of interest to develop universal and simple algorithms that will
ensure the operability of a closed-loop system with a complex of various uncertainties in
various working scenarios.

The problems with controlling mechanical systems in different formulations have been
considered within the framework of various approaches [1–4], primarily using classical
methods: optimal control [5,6], PI, and PID controllers [7–9]. Optimal control methods
provide minimization or maximization of the selected criteria. However, they are sensitive
to uncertainties. For the synthesis of PI and PID controllers, it is not necessary to know the
mathematical model of the plant. However, accurate tuning of the regulator coefficients is
required. It depends on the operating conditions of the plant.

Electronics 2023, 12, 1930. https://doi.org/10.3390/electronics12081930 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081930
https://doi.org/10.3390/electronics12081930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4265-8279
https://doi.org/10.3390/electronics12081930
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081930?type=check_update&version=1


Electronics 2023, 12, 1930 2 of 25

At present, fuzzy controllers and methods of neural network control have become
popular [10–13]. These methods can provide high performance under changing conditions.
However, an adequate training set is needed to tune the neural network.

The best performance is usually achieved by combining different approaches. The
main efforts of specialists are aimed at the development of robust and adaptive control
under the conditions of parametric uncertainty of the plant model and under the influence
of external uncontrolled disturbances. A separate problem is the task of constructing state
observers. This task arises when it is impossible to install a complete set of sensors for
various reasons [14]. As a rule, these problems are considered separately, when known
approaches can be applied to a system with parametric or external disturbances of a
particular type [15–17].

For example, sliding mode control, both classical and higher order, is an effective way
to suppress matched disturbances, i.e., acting on the same channels with control. The high
performance of such control systems has been demonstrated in many publications [18–22].
The founders of this direction were Russian scientists Emelyanov S.V. and Utkin V.I. At
present, researchers in many countries of the world have used sliding mode control. How-
ever, as an application, researchers often consider only a mechanical system without the
dynamics of the actuators. In this case, they use the moments developed by the actuators as
discontinuous controls. In such systems, disturbances are matched with control moments.
However, discontinuous moments cannot be realized using an actuator.

In some papers, where real installations are described, rigorous proofs are given
in the theoretical part for a system with discontinuous control moments. However, in
the experimental part, they are replaced by continuous analogs (saturation function or
hyperbolic tangent [23–26]). Thus, researchers have demonstrated the performance of a
closed-loop system with continuous analogs, only by the results of experiments. There
were no correct mathematical proofs.

If we consider the complete mathematical model of the electromechanical system, the
unknown forces and moments acting on the mechanical subsystem become the unmatched
disturbances. These disturbances are separated from the true control of several integrators.
As is known, it is impossible to ensure the invariance of the entire state vector with respect
to unmatched disturbances [27]. The control goal can be set only for a group of controlled
variables. Simultaneously, the remaining phase variables will be forced to track the external
disturbances. A typical task for systems with unmatched disturbances is the synthesis of a
tracking system, where it is necessary to ensure that the output variables track the given
signals. In addition, the remaining state variables are bounded. Currently, the control
systems with unmatched disturbances are not fully studied. In such control systems,
two types of disturbances can be distinguished. Note that the applied methods for their
suppression or compensation depend on the type of disturbances.

The first case is when the non-smooth disturbances (dry friction forces, shock loads,
etc.) act on the mechanical subsystem. This case is the most difficult to tackle. One
of the effective ways is the suppression of disturbances using nonlinear smooth and
bounded S-shaped local feedbacks (control moments), which can be implemented in
practical applications [28]. These methods have been developed by the scientists of the V.A.
Trapeznikov Institute of Control Sciences of Russian Academy of Sciences.

In this paper, we consider the second case, which is simpler. Here, the smooth
disturbances act on the mechanical subsystem. However, we allow the non-smoothness of
disturbances, which are matched with the control. In addition, a complete set of sensors
is absent. As a control plant, we consider full-actuated flexible joint manipulators with
n degrees of freedom without taking into account the dynamics of the current loop. The
controls are torques applied to the actuator’s shafts. For the above reasons, we cannot use
the sliding mode control for this system. This paper poses the problem of synthesizing
dynamic feedback, which ensures that the output variables (generalized coordinates of the
manipulator) track the given smooth trajectories. Note that the generation of achievable
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trajectories is an independent problem that is solved at the planning stage. This problem
depends on the working scenario [29], and is not considered in this paper.

The problems of control and observation are very complicated for plants with cross-
couplings and nonlinearities. These problems do not always have a solution under para-
metric and external disturbances. For example, the construction of a state observer for a
Lagrangian system requires the complete certainty of its parameters [30].

Note that unmatched disturbances include the derivatives of the reference actions. For
systems with unmatched smooth disturbances, the universal approach to the synthesis of
the tracking system is a flatness approach. Namely, this approach consists in the transfor-
mation into a canonical [31,32] or block-canonical [33,34] form “input–output”. The mixed
variables of these forms are constructed by successive differentiation of outputs (tracking
errors). The main advantage of this method is that in the canonical basis of mixed variables,
all uncertainties will act through the same channels as controls, i.e., become matched. The
“input–output” form is observable with respect to tracking errors. Therefore, if tracking
errors are measured, we can use this form as the basis for constructing a mixed variable
observer. Thus, both the control (tracking) problem and the observation problem will be
solved on the same coordinate basis of mixed variables. This greatly simplifies the structure
of the controller, since there is no need to perform direct and inverse changes of variables
in real time.

Next, two strategies are possible. The first one is to restore mixed variables using
an observer, and by applying observer synthesis methods for systems with an uncertain
input [31–36]. Moreover, special control laws are used to suppress external matched distur-
bances. To obtain a realizable control law, instead of discontinuous controls, one should use
their continuous analogs [23–26,28,32,37,38]. If the control matrix is uncertain in the canon-
ical system, the hierarchical control method can be applied to tune the controller [18,39]. In
this approach, the controller tuning is performed on the basis of hierarchical inequalities,
in which the lower estimates for the choice of gain factors are obtained for the “worst” case.
Such estimates tend to be very conservative and provide overestimated gains.

The second strategy that we will implement in this paper is to reconstruct both mixed
variables and disturbances using an observer. Next, it will be possible to apply a combined
control consisting of two components. Using the first component, it is possible to com-
pensate for the effect of matched disturbances by their estimates. The second component
stabilizes the tracking errors. Using estimates of mixed variables, the second component
can be constructed in the form of a conventional linear feedback. This strategy has two
limitations. First, most of the known approaches for the synthesis of disturbance observers
are designed to estimate the smooth uncertainties of a particular class. They require an
additional expansion of the state space due to the dynamics of disturbances [32,40–45].
Second, to compensate for disturbances, it is necessary that the control matrix is exactly
known in the canonical system. Under certain conditions, this problem can be solved
if we also introduce the nominal control matrix, which will depend on the measured or
observed signals. Simultaneously, the uncertain part of the control matrix is included
in disturbances [32]. This paper will consider such an implementation. Moreover, the
use of special observers of mixed variables and disturbances will allow us to expand the
class of disturbances to be estimated. This expansion includes non-smooth bounded time
functions with a bounded rate of change. However, in contrast to smooth disturbances of a
particular class, which can be restored with an asymptotically decaying error [32], we can
estimate non-smooth disturbances only with a given accuracy. As a result, we can ensure
the ε-invariance of the output variables with respect to external and parametric matched
and unmatched disturbances. The contributions of this paper are described below.

1. For full-actuated flexible joint manipulators, the mathematical model of which has
a dynamic order 4n and excludes the current loop, we have developed a basic law
of combined control. This law ensures the stabilization of the tracking error with a
given accuracy. We showed that decomposition synthesis with step-by-step formation
of linear local feedback makes it possible to directly control the parameters of the
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process of the tracking error’s convergence in the desired way. The conditions are
formalized; under these conditions, it is possible to compensate for disturbances in
the case when the control matrix is not exactly known.

2. Assuming that only the positions of the manipulator links and their reference tra-
jectories are measured, we have developed a procedure for cascade synthesis of an
observer of mixed variables and non-smooth disturbances of the minimum possible
dynamic order 4n. To synthesize the observer, we simultaneously used the principles
of constructing a classical state observer and a differentiator of external signals. To
stabilize the observational errors and their derivatives, we used piecewise linear
corrective actions with saturation. This made it possible to simplify the tuning of the
observer to avoid large peaks and noise in evaluation signals, in contrast to high-gain
observers and sliding mode observers, respectively.

3. For the case when the manipulator does not have sensors and only the angular
positions and velocities of the gearbox shafts are measured, we have developed
a two-loop observer. In the first loop, the positions of the manipulator links are
estimated with a given error, which can be made arbitrarily small. These estimates,
with reference trajectories, enter the second circuit (the observer of mixed variables
indicated above) and are used in the corrective actions in the second loop. For
a parametrically uncertain system, we formalized the conditions under which it is
possible to construct a physically realizable observer of output variables of a minimum
dimension. Observation problems are considered in a deterministic formulation, i.e.,
in the absence of noise.

The paper has the following structure. Section 2 describes the control plant and poses
the problems to be solved. Section 3 presents the main results of the paper described above.
Section 4 demonstrates the results of numerical simulation of the developed algorithms for
a single-link manipulator with a flexible joint.

2. Control Plant Model Problem Statement

This paper considers a full-actuated manipulator with flexible joints as an automatic
control plant. It has n degrees of freedom. Next, the following 4n-order equations describe
the mathematical model of this control plant without considering the dynamics of the
current loop [1,32]:

.
x1 = x2,

.
x2 = H−1(x1)[K(x3 − x1)− C(x1, x2)x2 − G(x1) + f1(t)]; (1)

.
x3 = x4,

.
x4 = J−1(u− Dx4 − K(x3 − x1) + f2(t)). (2)

Equation (1) is the Lagrangian subsystem, which is used to describe the dynamics of a
manipulator with n rigid links. These links form kinematic pairs of the fifth class. They are
elastically connected to the shafts of the gearboxes (2), on which the electric actuators are
installed. In system (1) and (2), all vectors and matrices have dimensions n and n× n, cor-
respondingly. State variables are vectors of generalized coordinates x1 = (x11, . . . , x1n)

T

and velocities x2 = (x21, . . . , x2n)
T of the manipulator, as well as vectors of angular po-

sitions x3 = (x31, . . . , x3n)
T and velocities x4 = (x41, . . . , x4n)

T of gearbox shafts. The
set of sensors is not complete; we will consider various measurement options during
the presentation.

In subsystem (1), H(x1) is a non-linear symmetric matrix of inertia, H−1(x1) > 0 for all
x1 ∈ X ⊂ Rn, where X is an open bounded workspace for changing generalized coordinates;
C(x1, x2) is the matrix of centripetal and Coriolis forces; G(x1) is the gravity vector. In
subsystem (2), K = diag(Ki), J = diag(Ji), D = diag(Di) are diagonal matrices with
positive elements, where Ki are torsional stiffness coefficients, Ji are reduced moments of
inertia on the gear shafts, and Di are viscous damping coefficients, respectively, i = 1 , . . . , n.

It is difficult to obtain an exact model of a real control plant. During the operation,
the mass-inertial characteristics of the manipulator and other parameters may change.
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Therefore, we admit the parametric uncertainty of the matrices of system (1) and (2). In
addition, we consider vectors f1(t), f2(t) in the model. These are uncontrollable forces and
moments, which are interpreted as external bounded disturbances.

We assume that the vector of torques applied to the actuator shafts is control u.
For the current loop, which is not taken into account here, u is the vector of reference
actions. Therefore, due to physical constraints, controls must be chosen from the class of
continuous functions.

Parametric and external disturbances that act on the second equation of subsystem
(2) are matched. Thus, under certain conditions, we can compensate them directly using
the control. Note that parametric and external disturbances that act on the second equation
of subsystem (1) are unmatched. Its compensation requires special system transformation,
which we will show below.

For system (1) and (2), we pose a problem for designing the control in the form of
dynamic feedback, providing that the output variables x1(t) track the reference actions
g(t) = (g1(t), . . . , gn(t))

T in a closed-loop system. It is assumed that gj(t), j = 1 , . . . , n are
known smooth and achievable functions of time. However, they enter the control system
from an autonomous source, and their analytical description is not known. Accordingly,
their derivatives are also achievable up to the fourth order inclusive but unknown functions
of time.

Let us list the necessary and sufficient conditions for transforming system (1) and
(2) into the block-canonical form “input–output”, where the vector u is the input, and
the output is the vector of generalized coordinates of the manipulator x1 or the vector of
tracking errors e1 = x1 − g:

• Elements of matrices H−1(x1), C(x1, x2) and vectors G(x1), f1(t) must be twice dif-
ferentiable with respect to all arguments;

• Matrices H−1(x1), K, J−1 must be non-singular in all admissible ranges of uncertain
parameters, in particular

B(x1) = H−1(x1)KJ−1, detB(x1) 6= 0, x1 ∈ X. (3)

Expression (3) describes the structural properties of system (1). If (3) is valid, then
system (1) is controllable and observable with respect to the output x1.

Let us assume that these conditions are met for system (1) and (2). Hence, we can
transform it into the block-canonical form “input–output”. This form will consist of four
blocks and its relative degree is four. As we will show in the next section, the control matrix
is presented as (3) in this form. Suppose that the control matrix can be represented as the
sum of two terms B = B0 + ∆B, where B0 is a nominal matrix with known parameters, and
∆B is an uncertain matrix with bounded elements. Next, the requirement (3) is equivalent
to the fulfillment of the condition

rankB0(x1) = rank(B0(x1) + ∆B(x1)) = n, x1 ∈ X. (4)

We do not detail the structural properties of other uncertain matrices, since they do
not play a significant role in the method used. These matrices allow both additive and
multiplicative uncertainty. All uncertain elements are bounded in absolute value. We
assume that the parametrically uncertain model (1) and (2) are adequate, i.e., intervals of
the parameter uncertainty have “reasonable” boundaries relative to the parameters of the
nominal system.

To avoid performing cumbersome real-time calculations, as well as to ensure invari-
ance with respect to matched disturbances under the conditions of uncertain control matrix
(4), we will use a combined control, as well as observers of mixed variables and distur-
bances of the smallest possible dimension. Let us consider the two options for measuring
the state variables of system (1) and (2):

1. Only the positions of the manipulator links x1(t) are measured;
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2. The manipulator has no sensors, and only angular positions x3(t) and velocities x4(t)
of gear shafts are measured.

It is assumed that there is no noise in the measurements. Thus, we consider the
problem in a deterministic formulation.

In the next section, we have developed a procedure for designing a tracking system
with dynamic feedback for plant (1) and (2). A basic control law is obtained, which is formed
by mixed variables of the block-canonical form “input–output”. This control law ensures
the stabilization of the vector of tracking errors under conditions of complete information.
For the mentioned measurement options, we have developed the corresponding observers
of mixed variables. These observers will make it possible to implement the basic control
law under conditions of incomplete information.

3. Theoretical Results
3.1. Basic Control Law

The procedure for synthesizing the basic control law consists in quadruple differenti-
ation of the output of the nonlinear system (1) and (2), obtaining a block-canonical form,
and linearizing it with feedback. The purpose of the standard technique is to obtain the
canonical form of the system [31,32]. In contrast to this technique, we will introduce linear
stabilizing local feedbacks using non-degenerate changes in variables in each block. Our
goal is to stabilize the tracking error vector. Hence, it is taken as the output. Thus, we
introduce the following non-degenerate changes in variables

e1 = x1 − g, e2 = x2 −
.
g + K1e1,

e3 = H−1(x1)Kx3 + w2 + K2e2,

e4 = H−1(x1)Kx4 + w3 + K3e3,

(5)

where ei ∈ Rn are mixed variables. They are a combination of system state variables (1) and (2),
external disturbances and their derivatives, as well as derivatives of the reference actions
up to the fourth order inclusive

w2 = H−1(x1)[−Kx1 − C(x1, x2)x2 − G(x1) + f1(t)]−
..
g(t) + K1(x2 −

.
g(t)),

w3 = d
dt (H−1(x1)K)x3 +

d
dt (w2 + K2e2).

(6)

After we perform the change in variables (5) and (6) system (1) and (2) with (3), namely,
H−1KJ−1 = B = B0 + ∆B, will be represented in a block-canonical form closed with linear
local feedbacks .

e1 = −K1e1 + e2,
.
e2 = −K2e2 + e3,

.
e3 = −K3e3 + e4,

.
e4 = B0(x1)u + e5.

(7)

In system (7), the vector e5(t) depends on f1(t),
.
f 1(t),

..
f 1(t), f2(t), g(t), g(i)(t),

i = 1, . . . , 4. It is important that this vector acts on the same channels as the control, i.e., it is
matched. This vector e5(t) includes not only external, but also parametric disturbances. We
assume that the elements of e5(t) are bounded in absolute value by known constants:

e5 = ∆B(x1)u + H−1(x1)KJ−1(−Dx4 − K(x3 − x1) + f2(t))+

+ d
dt (H−1(x1)K)x4 +

d
dt (w3 + K3e3),

e5 = (e51, . . . , e5n)
T,
∣∣e5j(t)

∣∣ ≤ E5j, j = 1, . . . , n, t ≥ 0.

(8)

Note that we also interpreted the part of the control with an uncertain matrix as
an uncertainty. This fact, as well as a priori assumption (4), will allow us to completely
linearize the closed-loop system in the new coordinate basis of mixed variables (5). It
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will be performed using a combined control consisting of two parts. The first part is the
linear stabilizing component, which is standard and easily implemented. The second part
compensates for the unknown vector e5(t). Thus, the basic law of combined control under
conditions of complete information has the form

u = −B−1
0 (x1)(K4e4 + e5) (9)

and leads to a stable closed-loop virtual system

.
e1 = −K1e1 + e2,

.
e2 = −K2e2 + e3,

.
e3 = −K3e3 + e4,

.
e4 = −K4e4,

Ki = diag(kij), kij = const > 0, i = 1, . . . , 4, j = 1, . . . , n.
(10)

In Lagrangian systems, the matrix B0(x1) depends only on the output variables that,
under the assumptions made, are measurable or recoverable. In systems of a general type,
the control matrix also depends on other state variables. In this case, for the feasibility of
the combined control of the form (9), we must introduce additional requirements: all its
arguments must either be measured or be observed relative to the measured variables [33].

The variables of system (10) converge to zero sequentially “from bottom to top”∣∣eij(t)
∣∣ =

t→+∞
O(exp(−kijt)), i = 4, 3, 2, 1, j = 1, . . . , n. Accordingly, exponential stabiliza-

tion of tracking errors is provided in the closed-loop system (1), (2), (9):∣∣x1j(t)− g1j(t)
∣∣ =

t→+∞
O(exp(−k1jt))+

+ 1
k1j

(
O(exp(−k2jt) + 1

k2j

(
O(exp(−k3jt) + 1

k3j
(exp(−k4jt)

))
, j = 1, . . . , n.

(11)

As you can see, system (10) is more convenient for stability analysis compared to the
classical canonical system, since here you can choose the coefficients that directly affect the
rate of stabilization of the output variable.

However, one must understand that the result (11) is too idealized. We will show
below that, under conditions of incomplete information and the presence of uncontrolled
disturbances, we can obtain estimates of unmeasured signals only with a given accuracy.
These estimates are needed for feedback synthesis. We will obtain them by using state
observers of the smallest possible dimension. Accordingly, the tracking problem will also be
solved with some accuracy depending on the accuracy of estimating unmeasured signals.

With the selected gains kij and considering the permissible ranges of external and para-
metric disturbances, as well as the initial values of the system state variables (1) and (2), let
us estimate the area of initial values of the mixed variables (5):

∣∣eij(0)
∣∣ ≤ Eij,

i = 1, . . . , 4, j = 1, . . . , n. Let γ(t) = (γ1(t), . . . , γn(t))
T be the uncompensated small

estimation errors,
∣∣γj(t)

∣∣ ≤ γj, γj = const > 0, j = 1, . . . , n, t→ ∞, which will appear
in the last equation of system (10), closed by dynamic feedback on evaluation signals.
Next, we can find the boundaries of the regions of the mixed variable changes in the
following form:

∣∣e4j(t)
∣∣ ≤ E4j +

γj

k4j
= E4j,

∣∣eij(t)
∣∣ ≤ Eij +

Ei+1,j

kij
= Eij, i = 3, 2, 1, j = 1, . . . , n, t ≥ 0. (12)

Moreover, we have an estimate of the tracking error in the steady state:

∣∣e1j(t)
∣∣ = ∣∣x1j(t)− g1j(t)

∣∣ ≤ γj

k1jk2jk3jk4j
, t→ ∞, j = 1, . . . , n. (13)

Expression (13) must be considered when choosing gains both in the controller and in
the state observer, the synthesis of which is presented in the next subsection.
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3.2. Cascade Synthesis of Mixed Variable Observer

To implement control law (9), we must know the vector of generalized coordinates
x1(t) and mixed vector variables e4(t), e5(t).

First, let us consider the variant, when only signals x1(t), g(t) are measured in system
(1) and (2). Consequently, the tracking error e1(t) = x1(t)− g(t) is known. Here, we can de-
sign a mixed variable observer for estimation e4(t), e5(t). It is constructed based on system
(7). This system with an uncertain input e5 is observable with respect to the output e1(t).
We apply the method of cascade synthesis of piecewise linear corrective actions [31,33,45].
This will allow us to recover not only the unmeasured state variables of the system (7),
but also its uncertain input e5 by using the state observer of minimum dimension 4n. To
simplify the tuning of the observer, we modified the scheme proposed in [33] and combined
the principles of constructing both the state observer and the differentiator of external
signals [46] in one algorithm.

Thus, the observer–differentiator for system (7) has the form

.
zi = −Kizi + vi, i = 1, 2, 3,
.
z4 = B0(x1)u + v4,

(14)

where zi ∈ Rn are the state variables, and vi ∈ Rn are the corrective actions of the observer.
Let us introduce the vector of observational errors εi = ei − zi ∈ Rn, i = 1, . . . , 4. Using
(7) and (14), we compose a virtual system

.
εi = −Kiεi + ei+1 − vi, i = 1, 2, 3
.
ε4 = e5 − v4,

(15)

where mixed variables ei(t), i = 2, . . . , 5 are considered as external bounded disturbances
(8), (12).

Let us note the fundamental differences between system (15) and the observational
error equations obtained using an ordinary state observer of the form

.
zi = −Kizi + zi+1 + vi,

.
εi = −Kiεi + εi+1 − vi, i = 1, 2, 3,

.
z4 = B0(x1)u + v4,

.
ε4 = e5 − v4.

First, there is an external disturbance ei+1(t), i = 1, 4 in each i-th block of system (15).
Second, the coefficient matrix of system (15) has a lower triangular shape. Therefore, we
cannot ensure its stability using conventional linear corrective actions vi = liεi. Thus, we
use the methods of cascade synthesis and the separation of motions to stabilize system (15).

According to the cascade synthesis, the overall movement of observational errors
εi(t) is separated. It is achieved due to the corrective actions, which aim to suppress the
disturbances. Such corrective actions may be linear controls with high gains, discontinuous
controls, and their continuous analogs. Here, the accuracy of stabilization of the derivatives
of the observational errors

.
εi(t) is controlled. The observer–differentiator is tuned to ensure

consistent stabilization of vector variables with a given accuracy

ε1(t) ≈
→
0 ,

.
ε1(t) ≈

→
0 ⇒ v1(t) ≈ e2(t),

εi(t) ≈
→
0 ,

.
εi(t) ≈

→
0 ⇒ vi(t) ≈ ei+1(t), i = 2, 3, 4,

(16)

which provides a solution to the observation problem. As you can see, in the steady state,
the evaluation signals of mixed variables will be not only the observer’s variables (14),
namely, zi(t) ≈ ei(t), i = 1, . . . , 4, but also their corrective actions (16). Thus, we can use
the corrective actions of the i-th block to form corrective actions in the (i + 1)-th block,
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i = 1, . . . , 4. For system (15), we introduce piecewise linear corrective actions as functions
of both the measured output e1(t) and observer variables

v1 = M1sat(L1(e1 − z1)), vi = Misat(Li(vi−1 − zi)), i = 2, 3, 4,

Mi = diag(mij), Li = diag(lij), mij = const > 0, lij = const > 0,
(17)

where
v1 = M1sat(L1ε1) = (m11sat(l11ε11), . . . , m1nsat(l1nε1n))

T,

m1jsat(l1jε1j) =


+m1j, ε1j > 1/l1j,

m1jl1jε1j,
∣∣ε1j
∣∣ ≤ 1/l1j,

−m1j, ε1j < −1/l1j, j = 1, . . . , n.

(18)

Corrective actions vi, i = 2, 3, 4 have a form similar to (18), namely

vi = Misat(Li(vi−1 − zi)) = (mi1sat(li1(vi−1,1 − zi1)), . . . , minsat(lin(vi−1,n − zin)))
T,

mijsat(lij(vi−1,j − zij)) =

[
mijsign(lij(vi−1,j − zij)),

∣∣vi−1,j − zij
∣∣ > 1/lij,

mijlij(vi−1,j − zij),
∣∣vi−1,j − zij

∣∣ ≤ 1/lij, j = 1, . . . , n.

Piecewise linear corrective actions with saturation (17) and (18) are a continuous non-
smooth hybrid of linear and discontinuous functions and have two adjustable parameters.
The first parameter mij is the amplitude. It must be chosen to ensure the convergence of
the observational error εij(t) to a small neighborhood of zero, where the corrective action
vij is linear (18). We will call these areas “linear zones”. The second parameter lij is high
gain, and its value is inversely proportional to the radius of the linear zone, on which the
stabilization accuracy depends.

Under nonzero initial conditions in system (15), the transient process of observational
errors and their derivatives lasts for some time. Stabilization of each next variable is
possible only after stabilization of all previous variables in the specified order (16), i.e.,
the total transient time of the next vector variable is greater than the previous one. Thus,
the total evaluation time T (i.e., the stabilization time of all specified variables) is the

time of the transient process
.
ε4(t) ≈

→
0 , which can be represented as eight intervals on a

cumulative basis.
Using the measurements e1(t) = x1(t)− g(t) in the observer (14) and, consequently,

in the system (15), the following initial values can be set:

z1(0) = e1(0)⇒ ε1(0) =
→
0 ;

zi(0) =
→
0 ⇒ εi(0) = ei(0), i = 2, 3, 4,

∣∣εij(0)
∣∣ ≤ Eij, j = 1, . . . , n.

(19)

From a theoretical viewpoint, the initial values in the observer can be set arbitrarily.
However, as is known, the closer the initial conditions of the observer and the observed
system are to each other, the faster the convergence of the observer’s variables to the
corresponding unmeasured variables will be. Therefore, we use known data to set the
initial values in the first expression (19). Next, the values ε1(t) will immediately be in the
linear zone, and the total estimation time will include not eight, but seven intervals on a
cumulative basis 0 < t1 < t2 < t3 < t4 < t5 < t6 < t7 = T. At the indicated time intervals,
we must consistently ensure the fulfillment of (16), namely∣∣ε1j(t)

∣∣ ≤ 1/l1j, t ≥ 0; (20)
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∣∣e2j(t)− v1j(t)
∣∣ ≤ α1j, t ≥ t1; (21)

∣∣vi−1,j(t)
∣∣ ≤ 1/lij ⇔

∣∣εij(t)
∣∣ ≤ αi−1,j + 1/lij, t ≥ t2i−2; (22)

∣∣ei+1,j(t)− vij(t)
∣∣ ≤ αij, t ≥ t2i−1, i = 2, 3, 4, j = 1, . . . , n. (23)

The fulfillment of inequalities (20) and (22) (falling into linear zones) is ensured by
choosing the appropriate amplitudes mij. The fulfillment of inequalities (21) and (23) is
ensured by the choice of high gains lij.

Under conditions of uncertainty, the choice of the gains of corrective actions (17) and
(18) is based on inequalities. To determine the minimum allowable values of gains, we use
sufficient stability conditions and estimates of system (15) solutions on the appropriate
time intervals with respect to (12) and (19).

Outside the linear zone, the following component-by-component estimates are valid
for the first equation of system (15) and (18):

ε1j
.
ε1j = ε1j(e2i −m1isign(ε1i)− k1jε1j) ≤ |ε1i|(|e2i| −m1i − k1j

∣∣ε1j
∣∣), j = 1, . . . , n.

Hence, we have inequalities for the choice of amplitudes that provide (20)

m1j > E2j ≥
∣∣e2j
∣∣⇒ ε1j

.
ε1j < 0⇒

∣∣ε1j(t)
∣∣ ≤ 1/l1j, j = 1, . . . , n, t ≥ 0. (24)

Sufficient conditions for choosing the remaining amplitudes that provide (22) are
similar to (24) due to the same structure of the blocks of system (15). When determining
their minimum allowable values, we will consider the convergence time of the observational
errors, namely, convergence εij(t2i−3) in the indicated neighborhoods of zero (22) during the
time t2i−2 − t2i−3, i = 2, 3, 4, j = 1, . . . , n. The corresponding conservative estimates are

∣∣εij(t2i−3)
∣∣ ≤ Eij +

Ei+1,j+mij
kij

, j = 1, . . . , n, i = 2, 3,

mij ≥
|εij(t1)|

t2i−2−t2i−3
+ Ei+1,j ⇒ mij ≥

Eijkij+Ei+1,j(kij(t2i−2−t2i−3)+1)
kij(t2i−2−t2i−3)−1 ;∣∣ε4j(t5)

∣∣ ≤ E4j + (E5j + m4j)t5,

m4j ≥
|ε4j(t5)|

t6−t5
+ E5j ⇒ m4j ≥

E4j+E5jt6
t6−2t5

.

(25)

The constraints (25) must be considered when setting intermediate intervals of estima-
tion time:

t2 > t1 + 1/k2, t4 > t3 + 1/k3, ki = min
{

kij
}

, j = 1, . . . , n, i = 2, 3, t6 > 2t5.

Using (20) and (22), we obtain the inequalities for the choice of high gains lij. This
choice is based on the estimates of solutions of the closed-loop system (15), (17), and (18)
in the linear zones on the intervals [0; t1], [t2i−2; t2i−1], i = 2, 3, 4, and must ensure the
fulfillment of inequalities (21) and (23):

∣∣ε1j(t1)
∣∣ ≤ |e2j(t)|

m1j l1j
+

m1j−E2j
m1j l1j

exp(−(m1jl1j + k1j)t1)⇒∣∣e2j(t)− v1j(t)
∣∣ ≤ α1j, t ≥ t1 ⇔ (m1j − E2j) exp(−(m1jl1j + k1j)t1) ≤ α1j;
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∣∣εij(t2i−1)
∣∣ ≤ |ei+1,j(t)|

mij lij
+ αi−1,j +

mij−Ei+1,j
mij lij

exp(−(mijlij + kij)(t2i−1 − t2i−2))⇒∣∣ei+1,j(t)− vij(t)
∣∣ ≤ αij, t ≥ t2i−1 ⇔

(mij − Ei+1,j) exp(−(mijlij + kij)(t2i−1 − t2i−2)) ≤ αij, i = 2, 3;

(26)

∣∣ε4j(t7)
∣∣ ≤ |e5j(t)|

m4j l4j
+ α3j +

m4j−E5j
m4j l4j

exp(−m4jl4j(t7 − t6))⇒∣∣e5j(t)− v4j(t)
∣∣ ≤ α4j, t ≥ t7 ⇔ (m4j − E5j) exp(−m4jl4j(t7 − t6)) ≤ α4j, j = 1, . . . , n.

Let us set the desired accuracy of stabilization of observational errors, for example,
as follows: ∣∣ε1j(t)

∣∣ ≤ 1/l1j ≤ β1j;
∣∣εij(t)

∣∣ ≤ αi−1,j︸ ︷︷ ︸
≤βij/2

+ 1/lij︸︷︷︸
≤βij/2

≤ βij, i = 2, 3, 4. (27)

Next, the inequalities for choosing high gains lij, under which conditions (21), (23),
(26), and (27) are simultaneously satisfied, have the form:

l1j ≥ max
{

1
β1j

; 1
m1j

(
1
t1

ln
2(m1j−E2j)

β2j
− k1j

)}
;

lij ≥ max
{

2
βij

; 1
mij

(
1

t2i−1−t2i−2
ln

2(mij−Ei+1,j)

βi+1,j
− kij

)}
, i = 2, 3;

l4j ≥ max
{

2
β4j

; 1
m4j(t7−t6)

ln
m4j−E5j

α4j

}
, j = 1, . . . , n.

(28)

We emphasize once again that the minimum possible values (24), (25), and (28) for
choosing the gains of corrective actions were calculated from sufficient conditions for the
“worst” case. Therefore, the obtained estimates are very conservative. An attempt to obtain
less conservative estimates analytically without specifying the initial conditions will lead
to excessively cumbersome constructions. An effective method for the additional “fine”
tuning of the parameters of the observer is the numerical simulation of a closed-loop system
with dynamic feedback.

It follows from inequalities (21)–(23) and (27), in that the evaluation signals of mixed
variables vi(t) ≈ ei+1(t), i = 1, 2, 3 contain less error than the evaluation signals
zi(t) ≈ ei(t), i = 2, 3, 4. Therefore, let us use the following estimates v3(t) ≈ e4(t),
v4(t) ≈ e5(t), t ≥ T. Next, we will implement the control law (9) in a closed-loop sys-
tem (1) with measurements x1(t), g(t) and the observer–differentiator (14) and (17) in the
following form

u = −B−1
0 (x1)(K4v3 + v4). (29)

Here, the total estimation error will be γj ≤ α4j + 0.5k4jβ4j, j = 1, . . . , n in (13).
In Figure 1, we present the block diagram of the proposed method.
Note that we constructed the observer (14) based on system (7). Therefore, this

observer gives estimates of mixed variables that are directly used in the control law. This
greatly simplifies the structure of the controller, since there is no need to perform forward
and backward changes of variables in real time. Moreover, the observer (14) can improve
the performance of the closed-loop system even under the conditions of complete certainty
and measurements. This is due to the fact that the analytical form of expressions e4 (5),
e5 (8) is very cumbersome, and the calculation of these formulas in real time may require
much more time than the calculation of the dynamic model (14).
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3.3. Two-Loop Observer Design

Now, we consider the second measurement option, when the manipulator has no
sensors in system (1) and (2). The only measured variables are positions x3(t) and velocities
x4(t) of the gearbox shafts, as well as g(t). To implement the control law (9), vector variables
x1(t), e4(t), e5(t) are needed. Here, we propose to leave the effective and easy-to-implement
observer of mixed variables (14) in the feedback loop. It is supplemented by an observer–
differentiator of the minimum possible dynamic order n for estimating the n generalized
coordinates x1(t). These estimates are needed both as an output in the observer (14) and
for computing the control matrix B−1

0 (x1).
Let us show that such an observer is physically realizable if the second equation

of system (2) has no uncertainties, namely, the matrix elements J, D, K are known and

f2(t) ≡
→
0 . Next, we can use this equation as the basis for solving the observation problem

for x1(t). Using directly known signals x3(t), x4(t), u(t), we will compose the dynamic
model of the observer in the following form:

.
z = J−1(u− Dx4 − Kx3) + v, (30)

where z ∈ Rn is the state vector, v ∈ Rn is the vector of corrective actions of the observer-
differentiator. Let us introduce the observational error ε = x4 − z ∈ Rn. Using (2) and (30),
we write the differential equation for it

.
ε = Ax1 − v, z(0) = x4(0)⇒ ε(0) =

→
0 ,

A = J−1K = diag(aj), aj = const > 0, j = 1, . . . , n.
(31)

In the virtual system (31), x1(t) is considered to be an external disturbance. The
assumption about the boundedness of the areas of change in the positions of the links of
the manipulator, namely, ∣∣x1j(t)

∣∣ ≤ X1j, j = 1, . . . n, t ≥ 0, (32)
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is natural, and the values X1j = const > 0 depend on its configuration.
We must choose corrective actions to ensure the stabilization of the observational error

and its derivative (31) with a given accuracy in a given time∣∣ε j(t)
∣∣ ≤ β,

∣∣ .
εj(t)

∣∣ = ∣∣ajx1j(t)− vj(t)
∣∣ ≤ α, t ≥ T0, j = 1, . . . , n. (33)

Next, we can use the corrective actions of the observer–differentiator (30) in feedback
instead of the controlled variables A−1v(t) ≈ x1(t), t ≥ T0.

To solve the problem, as well as in the previous subsection, we use piecewise linear
corrective actions with saturation with two adjustable parameters

v = Msat(L(x4 − z)) = (m1sat(l1ε1), . . . , mnsat(lnεn))
T,

M = diag(mj), L = diag(lj), mj = const > 0, lj = const > 0, j = 1, . . . , n.
(34)

Outside the linear zone and using (18), system (31) and (34) have the following
component-by-component form

.
εj = ajx1j −mjsign(ε j), j = 1, . . . , n. Similar to (24) and

considering (32), the inequalities for the choice of gains of corrective actions, under which
the fulfillment of the first task (33) is ensured, have the form

mj > ajX1j ≥ aj
∣∣x1j

∣∣⇒ ε j
.
εj ≤

∣∣ε j
∣∣(aj
∣∣x1j

∣∣−mj) < 0⇒

⇒
∣∣ε j(t)

∣∣ ≤ 1/lj ≤ β⇒ lj ≥ 1/β, j = 1, . . . , n, t ≥ 0.
(35)

In the linear zone and using (18), system (31) and (34) have the following form
.
εj = ajx1j −mjljε j, j = 1, . . . , n. Similar to (26), let us analyze the estimates of its solutions
for the interval t ∈ [0; T0]:∣∣ε j(T0)

∣∣ ≤ aj|x1j(t)|
mj lj

+

(
1
lj
− aj|x1j(t)|

mj lj

)
e−mj ljT0 ≤ ajX1j

mj lj
+

mj−ajX1j
mj lj

e−mj ljT0 ,

mjlj
∣∣ε j(T0)

∣∣− ajX1j ≤ (mj − ajX1j)e
−mj ljT0 ,∣∣ajx1j(t)− vj(t)

∣∣ ≤ α, t ≥ T0 ⇔ (mj − ajX1j)ajX1j ≤ α, j = 1, . . . , n.

As we can see, the observational errors converge in the following neighborhoods
of zero: ∣∣ε j(t)

∣∣ ≤ ajX1j + α

mj
· 1

lj
≤ 1

lj
≤ β, j = 1, . . . , n, t ≥ T0. (36)

Note that if the amplitude values were taken to be large enough mj >> ajX1j, then
inequalities (36) can be used to reduce the lower bound for choosing high gains compared to
(35). In the previous subsection, we did not use this fact; we will demonstrate it below. Thus,
using (36), the minimum values for choosing high gains lj, under which both requirements
(33) are satisfied, can be estimated as follows:

lj ≥
1

mj
max

{ ajX1j + α

β
;

1
T0

ln
mj − ajX1j

α

}
, j = 1, . . . , n, . (37)

Hence, corrective actions (34) of the observer–differentiator (30) will reproduce un-
measured signals

vj(t)/aj ≈ x1j(t),
∣∣x1j(t)− vj(t)/aj

∣∣ = ∣∣ηj(t)
∣∣ ≤ α/aj, j = 1, . . . , n, t > T0. (38)

Evaluation signals (38) additively contain undamped parasitic signals ηj(t) that cannot
be compensated for. However, for t > T0, they can be made arbitrarily small in modulo



Electronics 2023, 12, 1930 14 of 25

by increasing the high gains lj (37). Signals (38) with the reference actions g(t) enter the
second circuit (observer (14)) and are used to form corrective actions (17):

v1j = m1jsat(l1j(vj/aj − gj − z1j)) = m1jsat(l1j(e1j − z1j + ηj)), j = 1, n.

The error ηj(t) will increase the area of convergence ε1(t) (20)∣∣ε1j(t)
∣∣ ≤ α/aj + 1/l1j, t ≥ T0 + t0, j = 1, . . . , n

and the total time for solving the estimation problem, which in the two-loop observer-
differentiator (30) and (14) is equal to T0 + t0 + T, where t0 is the time in which the variable
ε1j(t) enters the linear zones. In the steady state for t ≥ T0 + t0 + T, estimation errors∣∣e4j(t)− v3j(t)

∣∣ ≤ α3j,
∣∣e5j(t)− v4j(t)

∣∣ ≤ α4j can be tuned by increasing the high gains l3j
and l4j (28).

The total dynamic order of a two-loop observer (14), (17), and (30), (34) is 5n. In a
closed-loop system (1) with measurements x3(t), x4(t), g(t) and dynamic feedback, the
control law (9) will be implemented in the form

u = −B−1
0 (A−1v)(K4v3 + v4). (39)

In Figure 2, we show the block diagram of the closed-loop system with a two-loop
observer.
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Here, the total estimation error in (13) will be slightly larger than in the system with
the measurement of output variables x1(t) and control (29).

4. Numerical Simulation Results

Numerical simulation was performed in the MATLAB-Simulink. We used the Euler
method with a constant step 10−4 for numerical integration. As an example for the appli-
cation of the developed algorithms, we considered a single-link rigid manipulator with a
swivel joint elastically connected to the gearbox shaft. Its scheme is shown in Figure 3 [47].
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For a given electromechanical plant, Equations (1) and (2) have the fourth dynamic
order and the following form

.
x1 = x2,

.
x2 = a21(x3 − x1)− a22 sin(x1) + f1(t),

.
x3 = x4,

.
x4 = −a43(x3 − x1)− a44x4 + a45u + f2(t),

(40)

where xi ∈ R are the state variables, and xi(t) = 0, i = 1 , . . . , 4, aij are the positive design
coefficients [47]:

a21 = kl/Jl , a22 = mgh/Jl , a43 = kl/Jm, a44 = d/Jm, a45 = km/Jm.

They are described in Table 1 with the other parameters of the plant.

Table 1. The variables and parameters of the plant.

Notation Description, Measurement Unit

x1 The angular position of manipulator’s link, rad

x2 The angular velocity of manipulator’s link, rad/s

x3 The angular position of DC motor’s shaft, rad

x4 The angular velocity of DC motor’s shaft, rad/s

f1(t) Uncontrolled unmatched disturbance, rad/s2

f2(t) Uncontrolled matched disturbance, rad/s2

kl Gear rigidity, N·m/rad

km Gain, N·m/A

m Manipulator’s link mass, kg

g = 9.81 Acceleration of gravity,m/s2

h Manipulator’s link length, m

Jl The moment of inertia of manipulator’s link, kg·m
Jm The moment of inertia of DC motor, kg ·m2

u The armature current of DC motor, A

We selected the following values of the plant’s parameters for the simulation:

a21 = 27.78, a22 = 49.05, a43 = 20, a44 = 4.5, a45 = 30. (41)
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The output (controllable) variable is x1(t). It is the angular position of the manipu-
lator’s link, |x1(t)| < π (rad), t ≥ 0. The reference actions are smooth and achievable,
namely, |g(t)| < π,

∣∣∣g(i)(t)∣∣∣ < Xi, i = 1, . . . , 4, t ≥ 0, where
∣∣∣x(i)1 (t)

∣∣∣ ≤ Xi are the
manipulator’s design constraints. Parameters are not exactly known and may change
within known ranges 0 < aij,min ≤ aij(t) ≤ aij,max during the operation.

In closed-loop system, (40) and (9), the control’s goal was to ensure that the output
variable will track the given signal

g(t) = 0.15 sin(t) + 0.05. (42)

For model (40), using non-degenerate changes of scalar variables (5), we obtained form
(7). In technical plants, the control resource is usually bounded |u(t)| ≤ U,
t ≥ 0. We assumed that the mixed variables (5) and (8) are bounded. Thus, the inequality
|k4e4(t) + e5(t)|/b0 ≤ U, t ≥ 0 is satisfied for the chosen gains ki, i = 1, . . . , 4 (9). Here,
in contrast to the general case (3), the factor before a control is a number b = a21a45 > 0
and does not depend on x1(t). Therefore, here, the tracking error e1(t) can be directly
measured instead of having to separately measure the signals x1(t) and g(t). For this scalar
case and under parametric uncertainty, requirement (4) has the form a21 > 0, a45 > 0,
b = b0 + ∆b > 0, and b0 > 0. In the case of arbitrary signs of the multipliers, the following
conditions must be met to maintain controllability in all intervals of uncertain parameters

a21 6= 0, a45 6= 0⇒ b = b0 + ∆b 6= 0, b0 6= 0, sign(b0) = sign(b0 + ∆b).

In the virtual system (7) and in the control law (9), the following gains were chosen:

ki = 5, i = 1 , . . . , 4. (43)

To test the performance of the developed algorithms, we implemented three exper-
iments with the values of the plant parameters (41) and the reference action (42). In the
first experiment, system (40) with static feedback (9) was simulated under the assumption
that the exact values of all system parameters, internal and external signals, and their
derivatives are known.

In the second experiment, we assumed that only tracking error e1(t) measurements
are available, and the parameters of the plant (40) are not exactly known. In particu-
lar, parameters a21, a45 are in the range a21 = a21,0 + ∆a21, a45 = a45,0 + ∆a45, where
a21,0 = 27, a45,0 = 29.5 are the nominal values, |∆a21(t)| ≤ 0.78, |∆a45(t)| ≤ 0.5; f1(t) = 0.05,
f2(t) = 0.025t is the sawtooth function with principal period 2 s. To obtain estimates of
mixed variables e4(t) and e5(t) (8) required for the control law (29), we implemented the
observer of mixed variables (14), (17), and (18). Based on the given estimation accuracy
|e4(t)− v3(t)| ≤ α3 = 0.01 and |e5(t)− v4(t)| ≤ α4 = 3, and using inequalities (24), (25),
and (28), we selected the following gains:

l1 = 100, l2 = 850, l3 = 515, l4 = 5,
m1 = 5, m2 = 10, m3 = 30, m4 = 200.

(44)

In the third experiment, only signals g(t), x3(t), and x4(t) were measured. We assumed
that the fourth equation of system (40) does not contain uncertain parameters, and f2(t) ≡ 0.
To obtain estimates of x1(t), e4(t), and e5(t), we constructed two-loop observer (14), (17),
(44), and (30), (34). The corrective action (34) of observer (30) presented the estimate of
x1(t). Based on the given estimation accuracy (38) α = 0.001 (38), and using inequalities
(35) and (37), we accepted the following gains:

m = 20, l = 100. (45)

Figures 4–14 show the simulation results for experiments 1, 2, and 3, respectively. For
each experiment, we present the plots of the reference action g(t) and output variable x1(t),
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which track the reference action (Figures 4a, 6a and 11a, respectively). In addition, we
demonstrate plots of the tracking error e1(t) = x1(t)− g(t) (Figures 4b, 6b and 11b) and
control u(t) (Figures 5, 9 and 14).
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Figure 8. Experiment 2. In (a), plots of the mixed variable e5(t) = f41(t) and its estimate v4(t); in (b),
plot of the estimation error f41(t)− v4(t).
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Figure 14. Experiment 3. Plot of the control u(t).

For experiments 2 and 3, Figures 7a and 12a show plots of the mixed variable e4(t)
and its estimate v3(t) obtained using observer (14), respectively. Figures 7b and 12b present
the plots of estimation errors e4(t)− v3(t). In Figures 8a and 13a, we show the plots of
mixed variables e5(t) for experiment 2 e5(t) = f41(t) and for experiment 3 e5(t) = f42(t),
respectively, as well as their estimates v4(t). Figures 8b and 13b show plots of estimation
errors f41(t)− v4(t), f42(t)− v4(t) for experiments 2 and 3, respectively. In addition, for
experiment 3, Figure 10 presents the plot of the estimation error x1(t)− v(t)/a43 of the
angular position of the manipulator x1(t) by corrective action v(t), (34), and (45) of the
observer (30).

Table 2 shows the values of performance indicators of closed-loop systems in exper-
iments 1, 2, and 3. We calculated the settling time t1 (s): |e1(t)| ≤ 0.005 (rad), t ≥ t1; the
overshoot of the tracking error e1,max (rad): e1,max ≥ |e1(t)|, t ≥ 0, tracking accuracy in the
steady state ∆1 (rad); maximal value of the control umax (A): umax ≥ |u(t)|, t ≥ 0.
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Table 2. Values of performance indicators of closed-loop systems.

Indicator
Experiment’s Number

1 2 3

t1, s 1.6107 0.7871 0.7850
e1,max, rad 0.0824 0.0667 0.0668

∆1, rad 5.95 · 10−6 2.04 · 10−4 1.42 · 10−4

umax, A 0.2263 0.4394 0.4321

It follows from Figures 4, 6 and 11 that the control’s goal is achieved in all experiments:
the tracking errors converge in small neighborhoods of zero. We obtained the following
values for the quality indicators of signal e4(t), f41(t) estimation in experiment 2 and signal
x1(t), e4(t), f42(t) estimation in experiment 3. For experiment 2:

|e4(t)− v3(t)| ≤ 47.8255, t ≥ 0, | f41(t)− v4(t)| ≤ 393.3656, t ≥ 0,

|e4(t)− v3(t)| ≤ 0.01, t ≥ 0.1401 (s), | f41(t)− v4(t)| ≤ 3, t ≥ 0.1472 (s),

|e4(t)− v3(t)| ≤ 0.0011, t ≥ 2 (s), | f41(t)− v4(t)| ≤ 0.8436, t ≥ 2 (s).

(46)

For experiment 3:

|x1(t)− v(t)/a43| ≤ 1.5 · 10−4, t ≥ 0,

|e4(t)− v3(t)| ≤ 47.4419, t ≥ 0, | f42(t)− v4(t)| ≤ 384.4208, t ≥ 0,

|e4(t)− v3(t)| ≤ 0.01, t ≥ 0.1396 (s), | f42(t)− v4(t)| ≤ 3, t ≥ 0.1468 (s),

|e4(t)− v3(t)| ≤ 6.85 · 10−4, t ≥ 2 (s), | f42(t)− v4(t)| ≤ 0.1674, t ≥ 2 (s).

(47)

We can see from Figures 7 and 8 that the presence of non-smooth disturbances f2(t)
in experiment 2 leads to peaks of signals at moments of time when f2(t) has points of
discontinuity. Hence, it deteriorates the accuracy of signal estimation (46) compared with
experiment 3 (47), where f2(t) = 0. Simultaneously, in the transient process, the estimation
time and maximum estimation errors are comparable, being (46) and (47) for experiments
2 and 3. Note that due to the presence of measurement e1(t), the estimated signals are
smoother in experiment 2 compared to experiment 3 (Figures 8b and 13b).

Sufficiently large estimation errors in the transient process (up to 393.3656 (46), (47))
increase the maximum value of the control action by about two times for experiments
2 and 3 compared to experiment 1 (Table 2). Simultaneously, the tracking accuracy of a
given signal deteriorates by about 34 times in experiments 2 and 3 compared to experiment
1 (where the asymptotic convergence of the tracking error (11) is theoretically achieved).
However, the estimation errors converge rather quickly (in less than 0.2 s (46), (47)). The
values of the settling time and overshoot for the tracking error do not exceed the values
obtained for the basic control law in experiment 1 (Table 2). Note that the comparison with
the basic control law is unconstructive, since its formation requires accurate knowledge
not only of all values of the plant’s parameters, but also of external influences and their
derivatives. The organization of such measurements is unrealizable in practice. In addition,
the quality indicators obtained for uncertain systems with observers correspond to the
specified technological requirements.

To test the robustness of the developed algorithms, with respect to changes in parame-
ters and external influences, we performed experiments 4 and 5. In these experiments, in
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comparison with experiments 2 and 3, we selected other laws of change in the reference
action g(t), external disturbances f1(t), and parameter a21(t):

g(t) = 0.1 cos(t)− 0.15 sin(t).

f1(t) = 0.05 cos(0.5t), a21(t) = 27 + 0.78 sin(t),

where the nominal value a21,0 = 27 of the parameter a21(t) was assumed to be known. Other
conditions in experiments 4 and 5 were the same as in experiments 2 and 3, respectively.
Moreover, we used the same observer and controller coefficients as in these experiments.

Figures 15 and 16 show the simulation results for experiments 4 and 5, respectively.
Figures 15a and 16a demonstrate the plots of the reference action g(t), and output variable
x1(t), which tracks the reference action. In Figures 15b and 16b, we show plots of tracking
errors e1(t) = x1(t)− g(t). For experiments 4 and 5, Table 3 presents the values of the same
indicators of quality regulation as in Table 2.
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Table 3. Values of performance indicators of closed-loop systems.

Indicator
Experiment’s Number

4 5

t1, s 0.8403 0.8430
e1,max, rad 0.1000 0.1000

∆1, rad 2.49 · 10−4 1.73 · 10−4

umax, A 0.4394 0.4321

It follows from Figures 15 and 16, and Table 3 that the algorithms remain robust to the
allowable changes in parametric and external disturbances.

Thus, the results of experiments 2–5 confirmed the effectiveness of the developed
algorithms.

5. Discussion

The paper aims to develop a tracking system for a full-actuated manipulator with
flexible joints without considering the dynamics of the current loop. The problem was
complicated by the action of parametric and external disturbances on the system, both
matched and unmatched. We assumed that matched disturbances could be non-smooth. In
addition, we considered different options for installing sensors: when only the generalized
coordinates of the manipulator were measured, and when only the positions and velocities
of the motors were measured. The aim was achieved by the system transformation to the
block form “input–output”, with respect to tracking errors. In this form, all uncertainties
were in the last equation and became matched. Based on this block form, we have syn-
thesized a combined control law with compensation for uncertainties. For its information
support, observers of mixed variables with piecewise linear corrective actions have been
developed. These corrective actions allow us to limit the peaks of evaluation signals in
contrast to corrective actions of the high-gain observers. In addition, the piecewise linear
corrective actions provide estimates of mixed variables with a given accuracy. Hence, the
tracking of a given signal also occurs with a given accuracy.

In the proposed block form, we used linear local feedbacks due to the choice of coef-
ficients, of which one can directly influence the stabilization rate of mixed variables and
tracking errors. Therefore, the “input–output” block form is a more convenient tool for
stability analysis compared to the standard canonical system. In addition, the developed
observers of mixed variables have the smallest possible order. They improve the perfor-
mance of a closed-loop system. In particular, they allow us to avoid cumbersome off-line
calculations typical for known solutions with an uncertain control matrix under control,
such as the hierarchical control method. The simulation results confirmed the effectiveness
of the developed approach. We demonstrated the possibility of its application for real
electromechanical plants with the provision of specified technological requirements.

A further direction in the development of this paper is studying the performance
of observers of mixed variables in the presence of noise in the measurements, as well as
considering the dynamics of the current circuit in the plant model.
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