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Abstract: Human activity recognition (HAR) is crucial to infer the activities of human beings, and to
provide support in various aspects such as monitoring, alerting, and security. Distinct activities may
possess similar movements that need to be further distinguished using contextual information. In
this paper, we extract features for context-aware HAR using a convolutional neural network (CNN).
Instead of a traditional CNN, a combined 3D-CNN, 2D-CNN, and 1D-CNN was designed to enhance
the effectiveness of the feature extraction. Regarding the classification model, a weighted twin support
vector machine (WTSVM) was used, which had advantages in reducing the computational cost in a
high-dimensional environment compared to a traditional support vector machine. A performance
evaluation showed that the proposed algorithm achieves an average training accuracy of 98.3% using
5-fold cross-validation. Ablation studies analyzed the contributions of the individual components of
the 3D-CNN, the 2D-CNN, the 1D-CNN, the weighted samples of the SVM, and the twin strategy of
solving two hyperplanes. The corresponding improvements in the average training accuracy of these
five components were 6.27%, 4.13%, 2.40%, 2.29%, and 3.26%, respectively.

Keywords: ablation studies; context-awareness; convolutional neural network; feature extraction;
human activity recognition; twin support vector machine

1. Introduction

Human activity recognition (HAR) has played an important role in various applica-
tions such as sport performance [1], life logging [2], anti-crime security [3], fall detection [4],
health monitoring [5], and elderly care [6]. Typically, three types of sensors are utilized to
measure the human activities, namely environment-based sensors, object-based sensors,
wearable sensors, and video-based sensors [7]. Examples of environment-based sensors are
radar, sound, and pressure detectors, as well as thermocouples, and barometers. Examples
of object-based sensors are Wi-Fi and RFID. For wearable sensors, examples are the global
positioning system, magnetometers, gyroscopes, and accelerometers. The forms of human
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activities vary from static (e.g., sitting and lying) to dynamic (e.g., walking and running) to
transitive postures (transitions between consecutive activities). Since some human activ-
ities may share similar characteristics, contextual information is included to support the
inferring of actual activities [8]. This is related to the concept of context-awareness, which
is the ability to capture information from the external environment. Common contextual
information includes the task, process, role, user, time, activity, identity, and location [9]. In
this paper, HAR using video-based sensors is not considered in the performance compari-
son because the data type (as videos/images) is different from other types. Readers could
refer to the works [10,11] for more details on HAR using video-based sensors.

Various machine learning algorithms have been proposed for context-aware HAR. Generally,
there are five types of algorithms, namely the fuzzy logic-based [12,13], probabilistic-based [14,15],
rule-based [16,17], distance-based [18,19], and optimization-based approaches [20,21].

To begin the discussion with fuzzy logic-based algorithms, a fuzzy rule-based inference
system using fuzzy logic (FL) was proposed for the HAR of six activities: exercising,
laying, sitting down, standing up, walking, and sleeping [12]. An experimental analysis
of the system with a one day case study showed an accuracy of 97%. Another fuzzy rule-
based inference system was presented for HAR with first person video [13]. The selected
activities in the kitchen for the analysis were cleaning, washing dishes, and cooking. Biased
classification was observed based on the evaluation metrics of recall (54.7%), precision
(58.4%), and accuracy (70%).

Regarding the probabilistic-based algorithms, naive Bayes (NB) was chosen to take in
the features of the fundamental DC component of a fast Fourier transform, as well as the
value and variances of the magnitude, pitch, and roll for HAR [14]. Five human activities
were included: walking, standing up, standing, laying down, and sitting. An accuracy of
89.5% was reported. A hidden Markov model (HMM) [15] was used to analyze 22 activities
for HAR. The activities were: two-leg jump, one-leg jump, shuffle-right, shuffle-left, V-
cut-right-right-first, V-cut-right-left-first, V-cut-left-left-first, run, spin-right-right-first spin-
right-left-first, spin-left-right-first, spin-left-left-first, walk-downstairs, walk-upstairs, walk-
curve-right, walk-curve-left, walk, stand-to-sit, sit-to-stand, stand, and sit. Owing to the
complexity of the recognition of many activities, the model achieved an accuracy of 84.5%.
A recent dissertation reported an extensive analysis of an innovative proposal using a
motion-unit-based hidden Markov model [22]. The results confirmed that the approach
(with a recognition rate over 90%) outperformed many existing works using benchmark
datasets, including CSL-SHARE, ENABL3S, and UniMiB SHAR. It also outperformed
another newly proposed method using various deep learning-based approaches, including
convolutional neural networks, long short-term memory, and ResNet [23]. Attention is also
drawn to a novel approach for automatic speech recognition and kinesiology to construct
an HAR model that ensures expandability, generalizability, interpretability, and effective
model training [24].

One of the rule-based HAR models was built using a random forest (RF) [16]. The
model considered six activities, namely walking upstairs, walking downstairs, walking,
standing, sitting, and laying. Researchers collected samples from 30 volunteers for the
experimental analysis. The results had a sensitivity of 98%, a precision of 98.5%, an accuracy
of 98%, and F1-score of 98%. Another approach was built using a decision tree (DT) [17].
Ten activities, namely walking, standing, sitting, eating, drinking (standing), drinking
(sitting), sitting (standing), smoking (sitting), smoking (standing), and smoking (walking)
were defined for analysis. For static activities, the model achieved an accuracy of 72%,
whereas, for dynamic activities, an accuracy of 78% was observed.

K-nearest neighbor (KNN) is one of the most common distance-based algorithms.
In [18], the authors enhanced the KNN algorithm with random projection to recognize
13 human activities: pushing a wheelchair, jumping, jogging, going downstairs, going
upstairs, turning right, turning left, walking right (circle), walking left (circle), walking
forward, lying down, sitting, and standing. The HAR model achieved an accuracy of 92.6%.
Another work [19] applied two variants of KNN, namely fuzzy KNN and evidence theoretic
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KNN for the HAR of twenty-nine activities using three benchmark datasets. The achieved
accuracies were 77%, 93%, and 97% for datasets with 14, 10, and 5 activities, respectively.

For the optimization-based approach, a support vector machine (SVM) with a radial
basis function was proposed [20]. Six human activities were considered, namely laying,
standing, sitting, walking downstairs, walking upstairs, and walking. The experimental
result showed that the model achieved an accuracy of 96.6%. In [21], an artificial neural
network (ANN) model was built for the HAR of six human activities. The activities were
laying, standing, sitting, walking, walking downstairs, and walking upstairs. An accuracy
of 96.7% was observed.

A detailed pipeline was proposed for HAR research [25]. The key components in-
volved are devices, sensors, software, data acquisition, segmentation, annotation, biosignal
processing, feature extraction, feature study, activity modeling, training, recognition, evalu-
ation, and application. Table 1 summarizes the key elements (sensors, feature extraction,
method, context awareness, dataset, activities, cross-validation, and results) of the existing
works [12–21]. The key research limitations of the existing works include the following:

• There are two major types of feature extraction. Major works [12–17,19–21] utilized
the traditional feature extraction process. There has been less discussion (e.g., [18]) of
automatic feature extraction using a deep learning algorithm, which may extract more
representative features and eliminate the domain knowledge of all human activities;

• The methodology in the existing works [12–21] utilized traditional classification algo-
rithms that may not work well with the nature of a high-dimensional feature space;

• Context awareness was omitted in the design and formulation of most of the existing
works [12–16,18–21];

• Experimental analyses used limited benchmark datasets (and, thus, limited types of
activities), with one dataset in most of the works [12–18,20,21] and three in [19]; and

• Cross-validation was omitted in most works [12–14,16–18,20,21]. It is important to
fine-tune the hyperparameters and to evaluate the issue of model overfitting.

Table 1. Summary of the performance of existing works on HAR.

Work Sensors Feature Extraction Method
Context
Aware-

ness
Dataset Activities CV Results

[12]

Physiological,
infrared debit, and

state-change
sensors;

microphones

Raw sensor data FL No

One-day of
data

(simulated
data)

Exercising, laying, sitting
down, standing up, walking,

and sleeping
No Accuracy: 97%

[13] Head-mounted
camera Motion coefficient FL No

Epic kitchens
dataset (3088
samples) [26]

Cleaning, washing dishes,
and cooking No

Accuracy: 70%
Precision:

58.4%
Recall: 54.7%

[14] Accelerometer

Value and variance of
the magnitude, pitch,
and roll; fundamental

DC component of
FFT

NB No 16,5633
samples [27]

Walking, standing-up,
standing, laying down, and

sitting
No Accuracy:

89.5%

[15]

Airborne
microphone,

electrogoniometer
accelerometer,

electromyography,
and gyroscope

Built-in function
using ASK2.0 HMM No CSL-SHARE

dataset [28]

Two-leg jump, one-leg jump,
shuffle-right, shuffle-left,

V-cut-right-right-first,
V-cut-right-left-first,

V-cut-left-left-first, run,
spin-right-right-first,
spin-right-left-first,
spin-left-right-first,
spin-left-left-first,
walk-downstairs,

walk-upstairs,
walk-curve-right,

walk-curve-left, walk,
stand-to-sit, sit-to-stand,

stand, and sit

five-
fold

Accuracy:
84.5%
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Table 1. Cont.

Work Sensors Feature Extraction Method
Context
Aware-

ness
Dataset Activities CV Results

[16] Gyroscope and
accelerometer

Time –frequency
domain analysis RF No New dataset

(30 volunteers)

Walking upstairs, walking
downstairs, walking,

standing, sitting, and laying
No

Accuracy: 98%
F1-score: 98%

Sensitivity:
98%

Precision:
98.5%

[17] Gyroscope and
accelerometer

Absolute difference,
correlation,

integration, range,
median, kurtosis,
root-mean-square

skewness, standard
deviation, mean,
maximum, and

minimum

DT Yes

3 month
dataset (11
volunteers)

[29]

Walk, stand, sit, eat, drink
(standing), drink (sitting), sit
(standing), smoke (sitting),

smoke (standing), and
smoke (walking)

No

Accuracy: 72%
(static

activities)
Accuracy: 78%

(dynamic
activities)

[18] Accelerometer,
gyroscope CNN

KNN with
random

projection
No

Wearable
action

recognition
database
[30,31]

Push wheelchair, jump, jog,
go downstairs, go upstairs,
turn right, turn left, walk

right (circle), walk left
(circle), walk forward, lie

down, sit, and stand

k-fold
(un-

speci-
fied
k)

Accuracy:
92.6%

[19]

Motion,
temperature,

phone usage, door,
and pressure

sensors

Weighted features
from all sensors

Evidence
theoretic
KNN and

fuzzy KNN

No
Kyoto1,

Kyoto7, and
Kasteren

Clean, cook, eat, phone call,
wash hands, bed to toilet,
prepare breakfast, groom,
sleep, work at computer,

work at dining room table,
groom, prepare dinner,
prepare lunch, watch tv,
leave the house, the use

toilet, take shower, obtain
snack, obtain a drink, use

washing machine, and wash
dishes

LOO

Accuracy:
97% (Kyoto1)

Accuracy:
77% (Kyoto7)

Accuracy:
93%

(Kasteren)

[20] Accelerometer and
gyroscope

Time–frequency
domain analysis SVM No 10,299 samples

[32]

Laying, standing, sitting,
walking downstairs,

walking upstairs, and
walking

No Accuracy:
96.6%

[21] Accelerometer Cyclic attribution
technique ANN No

UCI-HAR (30
volunteers)

[33]

Laying, standing, sitting,
walking, walking

downstairs, and walking
upstairs

No Accuracy:
96.7%

1.1. Research Contributions

To address the limitations of the research works, we propose a combined 3D-CNN,
2D-CNN, and 1D-CNN algorithm (3D-2D-1D-CNN) for feature extraction and a weighted
twin support vector machine (WTSVM) for the HAR model. The contributions of the
algorithm are explained as follows:

• The 3D-2D-1D-CNN algorithm leverages the ability of automatic feature extraction.
An ablation study confirms that the 3D-CNN, 2D-CNN, and 1D-CNN achieve accuracy
improvements of 6.27%, 4.13%, and 2.40%, respectively;

• The WTSVM takes the advantage of high-dimensional feature space and outperforms
the twin SVM by 3.26% in terms of accuracy;

• Context awareness is incorporated to enhance the formulation of the HAR model,
with an accuracy improvement of 2.4%; and

• Compared to existing works, our proposed algorithm enhances the accuracy by
0.1–40.1% with an increase of the total number of activities by 230–3100%.

1.2. Paper Organization

This paper is structured with five sections. Section 2 presents the details of the method-
ology of the 3D-2D-1D-CNN and WTSVM. The experimental results of the algorithm and
its comparison are presented in Section 3. To investigate the contributions of the individual
elements of the algorithm, ablation studies are carried out. A conclusion is drawn, with
directions of future work, in Section 4.
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2. Methodology

The methodology of the proposed HAR model comprises a feature extraction module
using the 3D-2D-1D-CNN and a classification module using the WTSVM. In the following
two subsections, the design and formulations are shared.

2.1. Feature Extraction Module Using the 3D-2D-1D-CNN

The feature extraction module is indispensable in machine learning. Traditional
statistical [34,35] and time–frequency approaches [36,37] are not employed, since these
approaches may not be effective in fully extracting representative features for a complex
context-aware HAR problem with many human activities. Therefore, automatic feature
extraction via CNN was chosen. Feature extractions via the 3D-CNN [38], 2D-CNN [39],
and 1D-CNN [40] have been used in different applications with satisfactory performances.
The features extracted using these algorithms may differ from each other. Combing the
algorithms and, thus, merging more representative features is expected to further enhance
the performance of the context-aware HAR model.

Figure 1 shows the ensemble architecture of the proposed 3D-2D-1D-CNN algorithm
for feature extraction, which supports the classification model using the WTSVM. Three
input layers are required to handle the inputs for the 3D-CNN, 2D-CNN, and 1D-CNN, as
in a sub-model of the 3D-2D-1D-CNN algorithm. The workflows of the 3D-CNN, 2D-CNN,
and 1D-CNN share similarities, with convolution operations, max pooling operations, and
flatten operations.
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The convolution operation acts on two samples to generate outputs representing the
pattern change between the samples. The concept of pooling aims to reduce the data
size, the training complexity of the model, and model overfitting. The maximum pooling
operation takes the maximum values in the blocks to extract significant features. The flatten
operation converts the data into a 1D matrix that is then passed into the fully connected
layer. The features obtained in each algorithm will be merged into a fully connected layer.
The design takes advantage of the effective coordination of training individual 3D-CNN,
2D-CNN, and 1D-CNN. It also facilitates the extraction of more representative features to
enhance the performance of the HAR model. Ablation studies will be carried out to verify
the contributions of the proposed ensemble architecture.

2.2. Classification Module Using a WTSVM

The basis of a weighted support vector machine (WSVM) for an imbalanced binary
classification problem [41]—the hyperplane (or decision function)—is defined as

h(x) = wTx + b = 0 (1)

with weighted vector w ∈ RN and bias b ∈ R.
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The constrained problem of a WSVM with a maximum margin hyperplane is given by:

min
w,b,β− ,β+

1
2‖w‖

2 + p−β− + p+β+

s.t. X−w + c−b ≤ c− − β−
X+w + c+b ≤ c+ − β+

β− ≥ 0
β+ ≥ 0

(2)

where the regularization term 1
2‖w‖

2 represents the maximum margin of the two parallel
hyperplanes; p− and p+ are the penalty parameters to control the weights between terms
for the negative class and positive class, respectively; β− and β+ are the slack variables for
the negative class and positive class, respectively; X− and X+ are the training matrices for
the negative class and positive class, respectively; and c− and c+ are the vectors for the
negative class and positive class, respectively. In general, larger Lagrange multipliers may
be assigned to some support vectors that help reduce the negative impact of imbalanced
classification in an imbalanced dataset (details are provided in Section 3.1).

On the other hand, the basic formulations for the twin support vector machine (TSVM)
are illustrated as follows. Different from WSVM, TSVM considers two non-parallel hyper-
planes, h−(x) and h+(x):

h−(x) = wT
−x + b− = 0 (3)

h+(x) = wT
+x + b+ = 0 (4)

with the weighted vectors w− ∈ RN and w+ ∈ RN and the biases b− ∈ R and b+ ∈ R. In
these formulations, h−(x) is close to X+ and far away from X−, and h+(x) is close to X−
and far away from X+.

The constrained problems of the TSVM are defined as:

min
w− ,b− ,β+

1
2‖X−w− + c−b−‖2 + p1cT

+β+

s.t. X+w− + c+b− ≤ c+ − β+

β+ ≥ 0

(5)

min
w+ ,b+ ,β−

1
2‖X+w+ + c+b+‖2 + p2cT

−β−

s.t. X−w+ + c−b+ ≤ c− − β−
β− ≥ 0

(6)

with the parameters p1 > 0 and p2 > 0.
Regarding our proposed WTSVM, it features (i) weights to adjust the level of the

sensitivity of the hyperplane to respond to the imbalance ratio and (ii) majority points
for the hyperplanes. To be practical, we formulated the WTSVM with a non-linear kernel
function (K). The surfaces generated by the kernel function are given by

h−(x) = K
(

xT , XT
)

w− + b− = 0 (7)

h+(x) = K
(

xT , XT
)

w+ + b+ = 0 (8)

The optimization problems are defined as

min
w− ,b− ,β+

1
2

(
‖w−‖2 + b2

−

)
+ 1

2 p1

((
K(X1−,X)w−+c1−b−

)T D1(K(X1−,X)w− + c−b−) + βT
+β+

)
s.t. (K(X+, X)w− + c+b−) + β+ ≥ c+

β+ ≥ 0

(9)
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min
w+ ,b+ ,γ−

1
2

(
‖w+‖2 + b2

+

)
+ 1

2 p2

((
K(X+,X)w++c+b+

)T
(K(X+,X)w+ + c+b+) + βT

−D2β−
)

s.t.− (K(X2−, X)w+ + c2−b+) + β− ≥ c−
β− ≥ 0

(10)

The Lagrange function of (9) is defined as

L(w−, b−, β+, α) = 1
2

(
‖w−‖2 + b2

−

)
+ 1

2 p1

((
K(X1−,X)w−+c1−b−

)T
(K(X1−,X)w− + c−b−) + βT

+D1β+

)
+ αT(K(X+, X)w− + c+b− − β+ + c+

) (11)

with the Lagrange multiplier α =
(
α1, . . . , αN1

)T . Using Karush–Kuhn–Tucker conditions,
we have

K(X1−,X)T(K(X1−,X)w− + c−b−)+p1w− + K(X+, X)α = 0 (12)

cT
−(K(X1−,X)w− + c−b−) + p1b− + cT

+α = 0 (13)

p1β+ − α = 0 (14)

(K(X+, X)w− + c+b−) + β+ ≥ c+ β+ ≥ 0 (15)

αT((K(X+, X)w− + c+)b− − β+ + c+) = 0 α ≥ 0 (16)

The Lagrange dual problem of (9) becomes

max
α
−1

2
αT
([

K(X+, X)c+
][
[K(X1−,X)c−]

T [K(X1−,X)c−] + p1 I
]−1[

K(X+, X)c+
]T

+
1
p1

D−1
1

)
α + cT

+α (17)

with α ≥ 0. Likewise, the Lagrange dual problem of (10) becomes

max
α
−1

2
γT
(
[K(X2−, X)c2−]

[
[K(X+,X)c+]

T [K(X+,X)c+] + p2 I
]−1

[K(X2−, X)c2−]
T +

1
2

D−1
2

)
γ + cT

2−γ (18)

with the Lagrange multiplier γ =
(
γ1, . . . , γN2

)T .

3. Performance Evaluation of the Proposed 3D-2D-1D-CNN-Based WTSVM for HAR

The proposed 3D-2D-1D-CNN-based WTSVM algorithm was evaluated using a bench-
mark dataset. This was followed by ablation studies to quantify the effectiveness of the
individual components: 3D-CNN, 2D-CNN, 1D-CNN, weighted SVM, and twin SVM. We
aimed to confirm that all components benefit the performance of the HAR model.

3.1. Dataset

To evaluate the performance of the proposed algorithm, a benchmark dataset, namely
the ExtraSensory dataset, was chosen [42]. In this dataset, a mobile application was used to
perform measurements of sixty volunteers for a one-minute recording with three twenty-
second segments of various human activities. Motion-reactive sensors were used to collect
data from the magnetometer, gyroscope, accelerometer, audio, compass, and location ser-
vices. The dataset consisted of 308,306 labelled samples. Two types of labels were assigned
to each record: (i) the primary activity (seven activities were included, namely bicycling,
running, walking, standing and moving, standing in place, sitting, and lying down), and
(ii) the secondary activity (a total of ninety-six specific contexts of various aspects, such as
sleeping, eating, and cooking), which supplemented the primary activities. Each record
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could be linked with only one primary activity and multiple secondary activities. Figure 2
presents the number of samples of each of the primary activities. For activities defined
as secondary activities, the number of samples is summarized in Table 2. As illustrative
examples, Figure 3 shows the samples of the one-axis accelerometer readings with the
phone-accelerometer (walking) and the watch-accelerometer, respectively.
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Table 2. Summary of the number of samples of the secondary activities.

Name of Activity No. of
Samples

Name of
Activity

No. of
Samples

Name of
Activity

No. of
Samples Name of Activity No. of

Samples

Phone on table 11,6425 At home 10,3889 Sleeping 83,055 Indoors 57,021
At school 43,221 Computer work 38,081 Talking 36,293 At work 29,574
Studying 26,277 With friends 24,737 Phone in pocket 24,226 Relaxing 21,223

Surfing the internet 19,416 Phone away
from me 17,937 Eating 16,594 Phone in hand 16,308

Watching TV 13,311 Outside 11,967 Phone in bag 10,760 Listening to music
with earphones 10,228

Written work 9083 Driving as driver 7975 With family 7975 With co-workers 6224

In class 6110 In a car 6083 Texting 5936 Listening to music
without earphones 5589

Drinking non-alcohol 5544 In a meeting 5153 With a pet 5125 Listening to audio
without earphones 4359

Reading a book 4223 Cooking 4029
Listening to
audio with
earphones

4029 Lab work 3848

Cleaning 3806 Grooming 3064 Exercising 2679 Toilet 2655
Driving as a
passenger 2526 At a restaurant 2519 Playing

videogames 2441 Laughing 2428

Dressing 2233 Shower bath 2087 Shopping 1841 On a bus 1794
Stretching 1667 At a party 1470 Drinking alcohol 1456 Washing dishes 1228
Smoking 1183 At the gym 1151 On a date 1086 Strolling 806

Going up the stairs 798 Going down the
stairs 774 Singing 651 On a plane 630

Doing laundry 556 At a bar 551 At a concert 538 Manual labor 494
Playing phone games 403 On a train 344 Drawing 273 Elliptical machine 233

At the beach 230 At the pool 216 Elevator 200 Treadmill 164
Playing baseball 163 Lifting weights 162 Skateboarding 131 Yoga 128

Bathing 121 Dancing 115
Playing a
musical

instrument
114 Stationary bike 86

Motorbike 86 Transfer from
bed to stand 73 Vacuuming 68 Transfer from stand

to bed 63

Limping 62 Playing frisbee 54 At a sports event 52 Phone someone else
using IT 41

Jumping 29 Phone strapped 27 Gardening 21 Ranking leaves 21
At sea 18 On a boat 18 Wheelchair 9 Whistling 5
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Figure 3. Samples of accelerometer readings. (a) Phone accelerometer (walking). (b) Watch accelerom-
eter (walking).

3.2. Results

Owing to a few samples of the secondary activities of wheelchair (9) and whistling
(5), a subject-wise K-fold cross-validation with K = 5 (instead of 10) was employed, which
was also confirmed to be a common setting in the training and testing of machine learning
models [43–45]. Four typical kernel functions, linear, radial basis, sigmoid, and polynomial,
were chosen for the WTSVM model. Figure 4 shows the training accuracy and testing
accuracy of the proposed 3D-2D-1D-CNN-based WTSVM using four kernel functions on
the ExtraSensory dataset. The average training accuracy and average testing accuracy
were 98.3% and 98.1%, respectively. There was only a small deviation between the average
training and testing accuracy.
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To analyze the effectiveness of the 3D-2D-1D-CNN algorithm for feature extraction,
an ablation study was carried out to study the contributions of the 3D-CNN, 2D-CNN,
and 1D-CNN. The training accuracy, testing accuracy, precision, recall, and F1 score are
summarized in Table 3. The key findings of the results are detailed as follows:
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• The average training accuracy, average testing accuracy, average precision, average
recall, and average F1 score were 98.3%, 98.1%, 98.4%, 98%, and 98.2%, respectively,
for the 3D-2D-1D-CNN algorithm; 92.5%, 92.2%, 92.3%, 92.1%, and 92.2%, respectively,
for the 2D-1D-CNN algorithm; 94.4%, 94.3%, 94.6%, 94.2%, and 94.3%, respectively,
for the 3D-1D-CNN algorithm; and 96.0%, 95.9%, 96%, 95.8%, and 95.9%, respectively,
for the 3D-2D-CNN algorithm. The results show that the average training accuracy
was enhanced by 6.27%, 4.13%, and 2.40%, respectively;

• The ranking of the algorithms (from best to worst) based on the training accuracy and
testing accuracy was 3D-2D-1D-CNN, 3D-2D-CNN, 3D-1D-CNN, and 2D-1D-CNN.
This revealed the contributions of the individual components—the 3D-CNN, 2D-CNN,
and 1D-CNN algorithms.

Table 3. Accuracy of the WTSVM using the 3D-2D-1D-CNN, 2D-1D-CNN, 3D-1D-CNN, and 3D-2D-
CNN algorithms.

Method
Training Accuracy (%)/Testing Accuracy (%)/Precision (%)/Recall (%)/F1 Score (%)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

3D-2D-1D-CNN 98.7/98.3/98.5/98.2/98.3 98.0/97.7/98.1/97.6/97.8 98.5/98.3/98.4/98.2/98.3 98.3/98.4/98.6/98.3/98.4 98.2/97.9/98.3/97.7/98.0
2D-1D-CNN 92.8/92.5/92.8/92.3/92.5 92.2/92.4/92.3/92.4/92.3 93.1/92.6/92.8/92.5/92.6 92.5/92.0/91.8/92.0/91.9 92.1/91.7/92.0/91.6/91.8
3D-1D-CNN 94.4/93.9/94.2/93.8/94.0 94.8/94.6/94.9/94.5/94.7 94.2/94.5/94.7/94.4/94.5 93.9/94.2/94.6/94.0/94.3 94.5/94.2/94.4/94.1/94.2
3D-2D-CNN 95.9/95.5/95.7/95.4/95.5 95.7/96.1/96.0/96.1/96.0 96.3/95.8/96.2/95.7/95.9 96.0/96.4/96.3/96.4/96.3 95.9/95.7/96.0/95.6/95.8

In addition, to analyze the effectiveness of the WTSVM, an ablation study was con-
ducted to study the contributions of the weighting factors and the twin strategy. Table 4
summarizes the training accuracy and testing accuracy using the WTSVM, WSVM, and
TSVM. The key observations are illustrated as follows:

Table 4. Accuracy of the 3D-2D-1D-CNN-based WTSVM, WSVM, and TSVM algorithms.

Method
Training Accuracy (%)/Testing Accuracy (%)

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

WTSVM 98.7/98.3/98.5/98.2/98.3 98.0/97.7/98.1/97.6/97.8 98.5/98.3/98.4/98.2/98.3 98.3/98.4/98.6/98.3/98.4 98.2/97.9/98.3/97.7/98.0
WSVM 95.5/95.8/96.0/95.7/95.8 94.9/94.6/94.4/94.7/94.5 95.0/94.5/94.7/94.4/94.5 95.4/95.8/96.0/95.7/95.8 95.0/94.6/94.9/94.5/94.7
TSVM 96.1/95.7/95.9/95.6/95.7 95.9/96.2/96.5/96.1/96.3 96.3/96.0/96.3/95.9/96.1 96.0/95.6/95.8/95.5/95.6 96.3/95.9/96.3/95.7/96.0

• The average training accuracy, average testing accuracy, average precision, average
recall, and average F1 score were 98.3%, 98.1%, 98.4%, 98%, and 98.2%, respectively,
for the WTSVM algorithm; 95.2%, 95.1%, 95.2%, 95.0%, and 95.1%, respectively, for
the WSVM algorithm; and 96.1%, 95.9%, 96.2%, 95.8%, and 95.9%, respectively, for the
TSVM algorithm. The enhancement of the average training accuracy by the WTSVM
algorithm was 2.29% and 3.26%, respectively;

• The ranking of the algorithms (from best to worst) based on the training accuracy and
testing accuracy was WTSVM, TSVM, and WSVM. This revealed the contributions of
the individual components, the WTSVM, WSVM, and TSVM algorithms.

To evaluate the hypotheses, if the proposed approach outperformed all/some of the
other approaches, a non-parametric Wilcoxon signed-rank test [46,47] was carried out.
Table 5 summarizes the results of the five hypotheses. The p-values of all hypotheses were
less than 0.05, suggesting that the proposed approach significantly outperformed the other
approaches in the ablation studies.
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Table 5. Results of hypothesis testing using the Wilcoxon signed-rank test.

Hypotheses Results

H0: 3D-2D-1D-CNN = 2D-1D-CNN; H1: 3D-2D-1D-CNN > 2D-1D-CNN Reject H0
H0: 3D-2D-1D-CNN = 3D-1D-CNN; H1: 3D-2D-1D-CNN > 3D-1D-CNN Reject H0
H0: 3D-2D-1D-CNN = 3D-2D-CNN; H1: 3D-2D-1D-CNN > 3D-2D-CNN Reject H0

H0: WTSVM = WSVM; H1: WTSVM > WSVM Reject H0
H0: WTSVM = TSVM; H1: WTSVM > TSVM Reject H0

The performance of the proposed 3D-2D-1D-CNN-based WTSVM was compared
with existing works [42,48–51] using the benchmark ExtraSensory dataset [42], and our
work was evaluated using the benchmark datasets Kyoto1, Kyoto7, and Kasteren [30,31].
Table 6 summarizes the details of the comparisons. The key observations are summarized
as follows:

• For ExtraSensory, our work enhanced the accuracy by 12.8–20.2% [42,48,51] and
enhanced the F score by 17.2–86.0% [49,50];

• For Kyoto1, our work enhanced the accuracy by 0.918–2.89% [18,19];
• For Kyoto7, our work enhanced the accuracy by 8.89–13.1% [18,19];
• For Kasteren, our work enhanced the accuracy by 2.74–6.09% [18,19].

The results suggest that the proposed algorithm can manage varying scales of HAR
problems with different numbers of activities. Regarding the computational complexity,
the proposed algorithm requires more training time due to the complexity of the feature
extraction process (3D-2D-1D-CNN). Nevertheless, this will not significantly affect the
applicability of low-latency decisions in practice, because the classifier is based on WTSVM,
a traditional machine learning classifier.

Table 6. Comparisons between existing works and our work.

Work Methodology Dataset Number of
Activities Cross-Validation Accuracy (%)

[42] Early fusion

ExtraSensory [42]

25 5-fold 87
[48] Random forest 15 10-fold 84
[49] CNN with random forest 4 5-fold 52.8 (F score)
[50] Deep graph CNN 25 N/A 83.8 (F score)
[51] SVM 5 Single-split 81.6

Proposed 3D-2D-1D-CNN-based
WTSVM 96 5-fold 98.1

[18] Evidence-theoretic KNN
and fuzzy KNN Kyoto1 [30]

5 Leave-one-out 97

[52] discriminative and
generative SVM 5 Leave-one-out 98

Proposed 3D-2D-1D-CNN-based
WTSVM 5 5-fold 98.9

[18] Evidence-theoretic KNN
and fuzzy KNN Kyoto7 [30]

14 Leave-one-out 78

[52] discriminative and
generative SVM 14 Leave-one-out 81

Proposed 3D-2D-1D-CNN-based
WTSVM 14 5-fold 88.2

[18] Evidence-theoretic KNN
and fuzzy KNN

Kasteren [31]
10 Leave-one-out 92

[52] discriminative and
generative SVM 10 Leave-one-out 95

Proposed 3D-2D-1D-CNN-based
WTSVM 10 5-fold 97.6
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4. Conclusions

It is desired for a context-aware HAR to be accurate and able to support the recognition
of many activities. In this paper, we proposed 3D-CNN, 2D-CNN, and 1D-CNN algorithms
(3D-2D-1D-CNN) for feature extraction and a weighted twin support vector machine
(WTSVM) for an HAR model. A performance evaluation was carried out using four
benchmark datasets. The proposed algorithm achieves an average training accuracy of
98.3% and an average testing accuracy of 98.1%. To investigate the contributions of the five
individual components, namely the 3D-CNN, the 2D-CNN, the 1D-CNN, the weighted
samples of the SVM, and the twin strategy of solving two hyperplanes, ablation studies
were conducted. The results show the enhancement of the average training accuracy by
6.27%, 4.13%, 2.40%, 2.29%, and 3.26%, respectively, by the five individual components. In
addition, we compared our work to 10 existing works. The comparison showed that our
work enhanced the accuracy in four benchmark datasets.

The research team would like to suggest future research directions as follows:
(i) generate more samples in the small classes, as in Table 1, using data generation al-
gorithms such as the family of generative adversarial networks to reduce the issue of
imbalanced recognition [53,54]; (ii) conduct online learning with new classes [55,56]; (iii)
consider time-series image data [57,58] as inputs for the 3D-2D-1D-CNN algorithm; (iv)
consider advanced feature extraction methods via high-level features [59], stacking, and
feature space reduction [60,61]; and (v) investigate other non-training-based statistical
methods of low-cost HAR algorithms [62,63].
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