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Abstract: As the demand for high-performance battery technology increases, the new energy vehicle
industry has an urgent need for safer and more efficient battery systems. A model combining five
side reactions was developed to be applied to the studies related to this paper. In this paper, the
thermal runaway triggering process of Li-ion batteries is simulated, and the relationship between the
local heating of the cathode collector surface and the change of the high-temperature area distribution
of the diaphragm layer is analyzed. The thermal runaway mechanism is further revealed. Based
on the simulation results, the following conclusions can be drawn: phosphonitene compounds can
delay the decomposition of the solid electrolyte interphase membrane and reduce the energy yield
of battery-side reactions. Compared with the phosphonitene compound, the optimized structure of
adding phosphonitene has little effect on the thermal stability of the battery.

Keywords: lithium-ion battery; electro-hydraulic ratio; heat loss; thermodynamic simulation;
thermal stability

1. Introduction

Currently, most of the new energy vehicle battery systems use refilled lead-acid batter-
ies. The technology for these two types of batteries is relatively mature [1–3], and the search
for higher-performance batteries is imminent. Due to the increasing demand for higher-
performance batteries, lithium-ion batteries are challenging these new battery systems.
Compared to conventional lead-zinc batteries, lithium-ion batteries have a better energy
density [4–6]. Given their superior performance, lithium-ion batteries have attracted much
attention recently as a power source for electric vehicles and electronic load devices [7–10].
While chemical properties such as battery capacity and high-magnification performance
have improved due to the thermal runaway prognosis of battery systems using the mod-
ified multi-scale entropy in real-world electric vehicles, the thorny issue of lithium-ion
battery safety has not yet been addressed [11–14].

The safety of lithium-ion batteries has been a serious impediment to their widespread
use in electric and hybrid vehicles [15–17]. Because the electrolyte in high-energy batteries
is a flammable organic solvent, lithium-ion batteries can suffer thermal runaway under
various electromechanical-electrical-thermal abuse conditions, such as overcharging, exter-
nal shocks, and thermal shock. Thermal runaways in lithium-ion batteries can cause high
temperatures, smoke, explosions, and fires [18,19]. In recent years, many efforts have been
made to improve the safety of battery materials. In order to obtain a more stable and safer
high-energy lithium-ion battery, a more stable and high-performance electrolyte needs to
be applied to the battery system. Systematic approaches and technological breakthroughs
based on electrolyte research are essential in studying lithium-ion batteries, and better
electrolytes facilitate stable improvements in high-energy lithium-ion battery systems [20].

The addition of flame retardants to the electrolyte is one of the most effective ways to
improve the safety of lithium-ion batteries today. It has elucidated the mechanism of action

Electronics 2023, 12, 1876. https://doi.org/10.3390/electronics12081876 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081876
https://doi.org/10.3390/electronics12081876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5265-3466
https://doi.org/10.3390/electronics12081876
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081876?type=check_update&version=1


Electronics 2023, 12, 1876 2 of 14

of trimethyl phosphate (TMP) by studying the effect of TMP on the thermal stability of
electrolytes. The results showed that TMP, when subjected to thermal decomposition and
vaporization, produces free radicals of both phosphorus, which can combine with hydrogen
radicals and reduce the content of hydrogen radicals in the reaction system, effectively
inhibiting the combustion process of electrolytes [21]. A large number of new organic films
have been used as flame retardants for lithium-ion batteries and have been verified to have
better flame retardancy, providing a safer electrolyte for lithium-ion batteries [22,23]. From
the above studies, it can be seen that conducting research on composite flame retardants
with characteristics such as a low melting point, a high flash point, a low viscosity, stable
electrochemical properties, and efficient flame retardant properties is one of the critical
development directions for flame retardant additives for lithium-ion batteries.

Therefore, in this paper, a thermal model combining five side reactions is established
in COMSOL to simulate the thermal runaway process of lithium-ion battery cells, and the
effect of local heating of lithium-ion batteries under different heat dissipation conditions on
the change in the distribution of the high-temperature region of the diaphragm is mainly
analyzed to reveal further the effect of varying electrolyte ratios on the thermal runaway of
lithium-ion batteries.

2. Model Design and Construction
2.1. Numerical Model

Consider a cylindrical lithium-ion cell of radius R, radial thermal conductivity kr, heat
capacity Cp, and mass density r. The cell experiences a temperature-dependent internal
heat generation rate Q(T) throughout its volume and is being cooled at the outside surface
with a convective heat transfer h due to a mechanism such as a coolant flow. The interest
is in determining the parameter space within which the cell will not undergo thermal
runaway, i.e., the cell temperature does not become unbounded. In this case, the governing
energy equation for the temperature rise T(r,t) in the cell is given by:

Q(T) = QSEI(t) + Qanode(t) + QPVDF(t) + Qcathode(t) + Qe

where Q(T) is the total heat yield of the reaction. QSEI is the heat generated by the de-
composition of the SEI membrane, and Qanode/Qcathode is the heat generated by the reaction
between the anode/cathode and the electrolyte, respectively. QPVDF is the heat generated
by the reaction of the binder. Qe is the heat generated by the reaction of the electrolyte.

kr(
∂2T
∂r2 +

1
r

∂T
∂r

) + Q(T) = ρ·CP
∂T
∂t

(1)

∂T
∂r

= 0 at r= 0 (2)

−kr(
∂T
∂r

) = h(T − T0) at r = R (3)

Equations (1)–(3) can be used to determine whether a set of preconditions can prevent
thermal runaway by ensuring that T is a bounded solution at all times. A Taylor series
expansion with T = 1/4 T0 is first performed for Q(T), where the terms of second-order and
higher are ignored.

kr

(
∂2T
∂r2 +

1
r

∂T
∂r

)
+ Q(T0) + β(T − T0) = ρCp

∂T
∂t

(4)

where β =
dQ
dT

is the slope of Q(T).
To solve Equation (4), we note that the heat generation term can be linearly divided

into two components, (Q(T0) − bT0) and bT. The first component is a constant, which is
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known from heat conduction theory and will lead to a stable temperature field. How-
ever, the second heat generation component bT increases with temperature and may lead
to an unbounded temperature. T2(r,t) represents the temperature increase caused by
the second heat-generating component, using the variable separation technique in the
following equation:

T2(r, t) =
∞

∑
n=1

Cn JO(
µnr
R

)· exp(
kr

ρ·CP
(

β

kr
− µ2

n
R2 )·t) (5)

where J0 is the Bessel function of the first kind of order 0, Cn is constant coefficients, and µn
are the non-dimensional eigenvalues given by the roots of the equation.

Bi·J0(x)− xJ1(x) = 0 (6)

where Bi =
hR
Kr

is the Biot number. Note that Cn is obtained using orthogonality and the

initial condition of the temperature field. The temperature solution in Equation (5) may be
either bounded or unbounded depending on the sign of the term within the exponential
function in Equation (6).

The negative electrode is protected from direct reaction with solvent by an ionically
conducting film called SEI. Solid electrolyte films are formed during the initial cycle of a
lithium-ion battery. SEI films that are too thick or so thin that they are non-existent are not
suitable for lithium battery applications. The presence of a reasonable SEI film protects
the cathode active material from reacting with the electrolyte. Regarding the cycle life and
safety of Li-ion batteries, when the internal temperature of the battery reaches about 130 ◦C,
the SEI film decomposes, resulting in a completely exposed negative electrode and a large
amount of exothermic decomposition of the electrolyte on the electrode surface, leading
to a rapid increase in the internal temperature of the battery. This is the first exothermic
side reaction inside the Li-ion battery and the starting point of a series of thermal runaway
problems. The heat generation equation is shown in Equation (7):

Rsei = Asei exp[−Ea,sei

RT
]cmsei

sei (7)

where cSEI is the dimensionless number of lithium-containing meta-stable products in
the SEI.

At elevated temperatures (>120 ◦C), an exothermic reaction between intercalated
lithium and electrolyte can occur. The heat generation equation is shown in Equation (8):

Rne = Ane exp[−Ea,ne

RT
]cmne

ne (8)

where cne is the dimensionless number of the lithium-containing meta-stable products in
the reaction.

The cathode material reacts with the electrolyte under oxidizing conditions. It is
mainly various types of lithium compounds, which always react with the electrolyte in
trace amounts under different environmental conditions and with different intensities of
reaction. The cathode material reacts with the electrolyte to produce insoluble products,
making the reaction irreversible. The cathode material involved in the reaction loses
its original structure, and the lithium power battery loses its corresponding power and
permanent capacity. The reaction is called the positive-solvent reaction. The heat generation
equation is shown in Equation (9):

Rpe = Ape exp[−
Ea,pe

RT
]c

mpe
pe (9)
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where cpe is the dimensionless number of the lithium-containing meta-stable products in
the reaction.

Due to the exothermic side reactions of the electrolyte at the negative electrode, the
internal temperature of the cell is increasing, which in turn leads to further thermal decom-
position of LiPF6 and the solvent within the electrolyte. The electrolyte can decompose
exothermically at elevated temperatures (>200 ◦C), as expressed in Equation (10):

Re = Ae exp[−Ea,e

RT
]cme

e (10)

where ce is the dimensionless number of the lithium-containing meta-stable products in
the SEI.

When the temperature is about 513.15 K, the binder starts to react. The reaction can be
expressed in Equation (11).

Rpvd f = Apvd f exp[−
Ea,pvd f

RT
]c

mpvd f
pvd f (11)

The five mentioned reactions are SEI-decomposition, negative-solvent, positive-solvent,
electrolyte decomposition, and the binder reaction. These are the five reactions in the model
that have the most significant effect on the thermal phenomena in the reaction. In this sim-
ulation, the thermal runaway phenomenon will be analyzed under the above five reactions
and the heat transfer of the lithium battery itself. The specific simulation parameters for
the five layers are shown in Table 1. The specific simulation parameters for the five layers
are shown in Table 2 [24].

Table 1. Heating situations.

Label Value Description

Asei 1.667 × 1015 [1/s] SEI-decomposition frequency factor
Ane 2.5 × 1013 [1/s] Negative-solvent frequency factor

Ape1 1.75 × 109 [1/s] Positive-solvent 1 frequency factor
Ape2 1.077 × 1012 [1/s] Positive-solvent 2 frequency factor

Ae 5.14 × 1025 [1/s] Electrolyte decomposition frequency factor
Apvdf 1.917 × 1025 [1/s] Binder frequency factor

Esei 1.3508 × 105 [J/mol] SEI-decomposition activation energy
Ene 1.3508 × 105 [J/mol] Negative-solvent activation energy

Epe1 1.1495 × 105 [J/mol] Positive-solvent 1 activation energy
Epe2 1.5888 × 105 [J/mol] Positive-solvent 2 activation energy

Ee 2.74 × 105 [J/mol] Electrolyte decomposition activation energy
Epvdf 2.86 × 105 [J/mol] Binder activation energy
Hsei 257 [J/g] SEI-decomposition heat release
Hne 1714 [J/g] Negative-solvent heat release

Hpe1 277 [J/g] Positive-solvent 1 heat release
Hpe2 284 [J/g] Positive-solvent 2 heat release

He 155 [J/g] Electrolyte decomposition heat release
Hpvdf 1500 [J/g] Binder decomposition heat release

Wc 6.104 × 105 [g/m3] Specific carbon content
Wp 1.221 × 106 [g/m3] Specific positive active content
We 4.069 × 105 [g/m3] Specific electrolyte content

Table 2. Size of a three-dimensional model.

Parameters d1 d2 d3 d4 d5 d6 W H

Unit/mm 1.01 5.89 4.04 4.54 0.52 16 94 168

The SEI membrane is insoluble in organic solvents and effectively prevents the co-
embedding of solvent molecules, thus greatly improving the cycling performance and
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service life of the electrode. The crystallinity of the material has a great influence on the
formation of the SEI film during the first charging process. The electrolyte conductive agent
inside the battery also has an important influence on the SEI film. If the conductive agent
in the electrode is not uniformly dispersed, it will lead to an uneven SEI film, and different
conductivity will be generated in each part.

2.2. Three-Dimensional Model

In the previous section, a heat transfer model was developed based on the object of
study in this paper, which is a mathematical model created after taking into account the
factors ignored by this paper. In this section, the three-dimensional physical model that
was input into COMSOL is presented. The simulations involved in this study were then
performed after inputting the mathematical model into the physical model. The parameters
of the numerical model are set to describe the thermochemical reactions, such as heat
production and heat transfer in the reaction. Based on the parameter settings and the
numerical model described above, a 3D model that can simulate the 3D shape of the object
and visualize the simulation results is created. Both use the same Cartesian coordinate
system. The 3D model is an external feature of the numerical model simulation results.

The mathematical model established in the previous section can describe the variation
of heat production and heat dissipation in the simplified lithium battery.

Actually, the internal structure of a lithium-ion battery has many layers, and the
thickness of each layer is skinny. The computation will be extensive if it is modeled as the
actual battery. As a result, a 3D model has been established in COMSOL Multiphysics that
has five layers (the cathode current collector layer, the positive material layer, the electrolyte
and separator layer, the negative material layer, and the anode current collector layer) and
two terminals (the positive terminal and the negative terminal) according to the different
side reactions of different parts of the lithium-ion battery in this paper. Figure 1 shows
the simplified model geometry, the five temperature measuring points on the separator
layer, and the computational mesh, and the total number is 375,793. The specific size of
each layer and the battery cell are listed in Table 2.
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2.3. Boundary Condition

The heating location is the cathode current collector, which is divided into ten zones
(shown in Figure 1 and numbered 1 to 10), and the heating is listed in Table 3. The boundary
conditions for some of the simulations are shown in Table 4. In these tests, the test locations
are 1, 2, and 3. The environment is assumed to be air with an ambient temperature of
293.15 K.

Table 3. Heating situations.

Test Number Heating Temperature
(K)

Density
(kg/m3)

Heat Capacity
(J/(kg·K))

Heat Conductivity
Coefficient (w/(m·K))

Test 1 423.15 1008.98 1978.16 0.344
Test 2 473.15 1008.98 1978.16 0.344
Test 3 523.15 1008.98 1978.16 0.344
Test 4 423.15 978.34 2467.34 0.344
Test 5 473.15 978.34 2467.34 0.344
Test 6 523.15 978.34 2467.34 0.344
Test 7 423.15 1006.45 2345.65 0.546
Test 8 473.15 1006.45 2345.65 0.546
Test 9 523.15 1006.45 2345.65 0.546

Table 4. Part of the simulation boundary conditions.

Label Expression/Value

Lcell 94 [mm]
Hcell 168 [mm]
Tcell 16 [mm]
Wtab 10 [mm]

kT_pos 1.74 [W/(m × K)]
kT_neg 1.04 [W/(m × K)]
kT_sep 0.344 [W/(m × K)]
rho_pos 2362.36 [kg/m3]
rho_neg 1347.33 [kg/m3]
rho_sep 1008.98 [kg/m3]
Cp_pos 1142.29 [J/(kg × K)]
Cp_neg 1437.4 [J/(kg × K)]
Cp_sep 1978.16 [J/(kg × K)]

Asei 1.667 × 1015 [s−1]
Ane 2.5 × 1013 [s−1]

Ape1 1.75 × 109 [s−1]
Ape2 1.077 × 1012 [s−1]

Ae 5.14 × 1025 [s−1]
Apvdf 1.917 × 1025 [s−1]

Esei 1.3508 × 105 [J/mol]
Ene 1.3508 × 105 [J/mol]

Epe1 1.1495 × 105 [J/mol]
Epe2 1.5888 × 105 [J/mol]

Ee 2.74 × 105 [J/mol]
Epvdf 2.86 × 105 [J/mol]
Hsei 257 [J/g]
Hne 1714 [J/g]

Hpe1 277 [J/g]
Hpe2 284 [J/g]

He 155 [J/g]
Hpvdf 1500 [J/g]

Wc 6.104 × 105 [g/m3]
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Table 4. Cont.

Label Expression/Value

Wp 1.221 × 106 [g/m3]
We 4.069 × 105 [g/m3]

Wpvdf 8.14 × 104 [g/m3]
csei0 0.15
cne0 0.75

a0 0.04
ce0 1

cpvdf0 1
Tsei 343.15 [K]
Tne 393.15 [K]

Tpe1 443.15 [K]
Tpe2 493.15 [K]

Te 523.15 [K]
Tpvdf 513.15 [K]

Tsp 403.15 [K]

The object of the modeling study is a cobalt-manganese lithium battery with a rated
voltage of 3.4 V. The cathode material is a mixture of nickel, cobalt, and manganese graphite
anode material. The electrolyte is LiPF6.

3. Thermal Runaway Simulation

Tests 1, 2, and 3 are thermal runaway simulations for a battery without any flame
retardant. Tests 4, 5, and 6 are thermal runaway simulation results for a battery with
the addition of a phosphonitene compound. Tests 7, 8, and 9 had phosphorus and
nitrogen added [25–29].

3.1. Locally Heating Tests 1, 2, and 3

The subplots (a, b, and c) of Figure 2 show the heat generation curves for each side
reaction for tests 1, 2, and 3. It can be seen that SEI membrane decomposition and negative
electrolyte reactions were the only side reactions that occurred in both trials. The other
three curves did not change significantly during the healing process. However, in test 3,
the SEI membrane completely decomposed, and the negative electrolyte reaction reached a
heat generation of 1500 W/m3 [30,31].

As shown in Figure 2, the heat transfer process is affected by the different temperatures
of the heating band while the reaction is taking place. When the heating band temperature
increases, the SEI membrane temperature rises faster and decomposes more quickly, so
the heat generation increases faster. The same law is used after replacing the electrolyte
solute, so it is not repeated in the following two parts of the explanation. The changes in
the content of SEI membranes in the model were then analyzed. SEI membrane content
(SEIMC) was analyzed by COMSOL simulation. To further investigate the thermal behavior
of the battery cell, SEI film curves are obtained and shown in Figure 3. It can be seen from
Figure 3 that the SEI film starts to change at about 250 s under the heating condition of
423.15 K. The SEI film starts to change around 200 s under the heating condition of 473.15 K,
and the SEI film starts to change around 180 s under the heating condition of 523.15 K.
The curve of the SEI film in 423.15 K decreases linearly from 250 s, while in 473.15 K and
573.15 K, the curve of the SEI film decreases from 200 s to 180 s, respectively. Combining
the three lines, it can be seen that as the temperature increases, the time point at which the
SEI film begins to decrease becomes more and more advanced, and the decreasing curve of
the SEI film becomes more and more tortuous [32,33].
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Figure 3. Conformational curves for changes in cell composition of SEI films at different temperatures
in tests 1, 2, and 3.

The temperature distribution of each part of the battery heated at 423.15 K, 473.15 K,
and 523.15 K, respectively, is shown in Figure 4. It can be seen from Figure 4 that after
heating for 300 s, the battery has thermal runaway under various working conditions, and
the temperature of each part of the battery reaches above 673.15 K. The temperature of the
battery near the heating zone rises most sharply. In Figure 4a, the highest temperature is in
the positive electrode of the battery, and the temperature has reached 693.15 K or more. In
Figure 4b, the highest temperature is still the positive battery, and the temperature reached
1023.15 K or more. In Figure 4c, the area with the highest battery temperature is at the
negative pole of the battery, and the temperature reaches 753.15 K. It can be seen from
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Figure 4a–c that the temperature change of each part of the battery does not increase with
the increase in the heating temperature.
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3.2. Locally Heating Tests 4, 5, and 6

The heat generation curves of each side reaction of tests 4, 5, and 6 are shown in
Figure 5a–c. It can be seen that the SEI film decomposition and the negative electrolyte
reaction are the only two side reactions that occur in the two tests. The other three curves
did not change significantly during the heating process. However, the SEI film decomposes
completely, and the heat generation of the negative electrolyte reaction reaches 1300 W/m3

in test 6, but the two side reactions are just in the beginning state in test 4.
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To further investigate the thermal behavior of the battery cell, SEI film curves are
obtained and shown in Figure 6. It can be seen from Figure 6 that the SEI film starts to
change after about 500 s under the heating condition of 423.15 K. The SEI film starts to
change around 400 s under the heating condition of 473.15 K, and the SEI film starts to
change around 300 s under the heating condition of 523.15 K. The curve of the SEI film in
423.15 K decreases linearly from 500 s, while in 473.15 K and 573.15 K, the curve of the SEI
film decreases from 400 s to 300 s, respectively.
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Figure 6. Conformational curves for changes in cell composition of SEI films at different temperatures
in tests 4, 5, and 6.

The temperature distribution of each part of the battery heated at 423.15 K, 473.15 K,
and 523.15 K, respectively, is shown in Figure 7. It can be seen from Figure 7 that after
heating for 300 s, the battery has thermal runaway under various working conditions. The
temperature of the battery near the heating zone rises most sharply. In (a), the highest
temperature is in the negative electrode of the battery, and the temperature has reached
693.15 K or more. In (b), the highest temperature is still the negative battery, and the
temperature reached 773.15 K or more. In (c), the area with the highest battery temperature
is at the negative pole of the battery, and the temperature reaches 793.15 K. It can be seen
from (a), (b), and (c) that the temperature change of each part of the battery does increase
with the increase in the heating temperature.
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3.3. Locally Heating Tests 7, 8, and 9

The heat generation curves for each side reaction of tests 7, 8, and 9 are shown in
the subplots (a, b, and c) of Figure 8. It can be seen that SEI membrane decomposition
and negative electrolyte reactions are the only two side reactions in both tests. The other
three curves did not change significantly during the heating changes. However, the
heat generation for the complete decomposition of the SEI membrane and the negative
electrolyte reaction reached 850 W/m3 in test 9, but these two side reactions were only at
the beginning of test 7.
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To further investigate the thermal behavior of the battery cell, SEI film curves are
obtained and shown in Figure 9. It can be seen from Figure 9 that the SEI film starts to
change at about 400 s under the heating condition of 423.15 K. The SEI film starts to change
around 300 s under the heating condition of 473.15 K, and the SEI film starts to change
around 200 s under the heating condition of 523.15 K. The curve of the SEI film in (a)
decreases linearly from 400 s, while in Figure 8b,c, the curve of the SEI film decreases from
300 s to 200 s, respectively.
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The temperature distribution of each part of the battery heated at 423.15 K, 473.15 K,
and 523.15 K, respectively, is shown in Figure 10. It can be seen from Figure 10 that after
heating for 300 s, the battery has thermal runaway under various working conditions. The
temperature of the battery near the heating zone rises most sharply. In (a), the highest
temperature is in the positive electrode of the battery, and the temperature has reached
693.15 K or more. In (b), the highest temperature is still the positive battery, and the
temperature reached 793.15 K or more. In (c), the area with the highest battery temperature
is at the negative pole of the battery, and the temperature reaches 773.15 K. It can be seen
from (a), (b), and (c) that the temperature change of each part of the battery does increase
with the increase in the heating temperature.
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3.4. Discussion

From the test results, the rate of change of the components of the battery and the heat
production decreased after the addition of the flame retardant, mainly because the addition
of the phosphonitene compound can effectively improve the thermal stability of the battery,
the SEI film is not easily decomposed, and the heat production of the side reaction during
heating is significantly reduced [32–34].

However, it can be seen from the heat loss control map that there is no significant
difference between the two groups of test results when the phosphonate compound and
the optimized structure are added, which indicates that the optimized design will not affect
the thermal stability of the battery.

Above all, five thermal models concerning the side reactions of lithium-ion batteries
were established, and numerical simulations of thermal runaway were carried out. The
triggering condition for thermal runaway in this experiment is local heating, which can
effectively simulate the heat exposure of the battery during a real thermal runaway.

4. Conclusions

In this paper, a thermal model containing five lateral reactions is developed to sim-
ulate the thermal runaway triggering process of lithium-ion batteries. The effect of local
heating of the cathode collector surface on the change in the distribution of the high-
temperature region of the diaphragm layer is analyzed by this model, and the thermal
runaway mechanism is further revealed. From the simulation results, the following con-
clusions can be drawn: (1) Phosphonitene compounds can delay the decomposition of the
cell SEI membrane; and (2) phosphonitene compounds can reduce the energy yield of the
cell-side reaction.
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In this paper, the changes in the distribution of the high-temperature region of the
spacer when the lithium-ion battery is locally heated under different heat dissipation
conditions are investigated. In the subsequent analysis, the thermal equilibrium capability
of lithium-ion itself will be further investigated. Meanwhile, a separate mechanistic study
of the reactions occurring on individual layers will be one of the subsequent research
directions of this paper.
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