
Citation: Kohútka, L.; Mach, J. A

New FPGA-Based Task Scheduler for

Real-Time Systems. Electronics 2023,

12, 1870. https://doi.org/10.3390/

electronics12081870

Academic Editors: Andres Upegui,

Andrea Guerrieri and Laurent Gantel

Received: 28 February 2023

Revised: 8 April 2023

Accepted: 12 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A New FPGA-Based Task Scheduler for Real-Time Systems
Lukáš Kohútka 1,* and Ján Mach 2

1 Institute of Informatics, Information Systems and Software Engineering, Slovak University of Technology
in Bratislava, 812 43 Bratislava, Slovakia

2 Institute of Computer Engineering and Applied Informatics, Slovak University of Technology in Bratislava,
812 43 Bratislava, Slovakia

* Correspondence: lukas.kohutka@stuba.sk

Abstract: This research demonstrates a novel design of an FPGA-implemented task scheduler for real-
time systems that supports both aperiodic and periodic tasks. The periodic tasks are automatically
restarted once their period has expired without any need for software intervention. The proposed
scheduler utilizes the Earliest-Deadline First (EDF) algorithm and is optimized for multi-core CPUs,
capable of executing up to four threads simultaneously. The scheduler also provides support for task
suspension, resumption, and enabling inter-task synchronization. The design is based on priority
queues, which play a crucial role in decision making and time management. Thanks to the hardware
acceleration of the scheduler and the hardware implementation of priority queues, it operates in only
two clock cycles, regardless of the number of tasks in the system. The results of the FPGA synthesis,
performed on an Intel FPGA device (Cyclone V family), are presented in the paper. The proposed
solution was validated through a simplified version of the Universal Verification Methodology (UVM)
with millions of test instructions and random deadline and period values.

Keywords: real-time; task scheduling; EDF; FPGA; hardware acceleration; periodic tasks; CPU; SoC

1. Introduction

Real-time systems are a type of embedded system that handles tasks that require
real-time processing. The success of these tasks is dependent on both the accuracy of the
results and the time at which they are finished. Missing deadlines for real-time tasks can
be considered a failure, just like calculating the wrong results. Therefore, real-time system
reliability is achieved when tasks are finished within the specified time frame [1,2].

Task scheduling algorithms often use priority queues that are performed within soft-
ware. Such software-based solutions work well for relatively simple and tiny real-time
systems containing a limited number of tasks. However, as the number and complexity
of tasks increase, the performance and constant response time become more critical, espe-
cially for safety-critical systems. Meeting the deadlines of tasks is considered a reliability
requirement, as missing a deadline is seen as a failure of the system. Even using a high-
performance processor does not guarantee that all tasks will meet their deadlines, which is
why a dedicated task scheduler is necessary for real-time and safety-critical systems [3–7].

Real-time task scheduling is a critical aspect of many computing systems, particularly
those that are safety-critical, time-critical, or both. Unfortunately, software-based solutions
for task scheduling have several limitations, particularly with regards to the time consumed
for scheduling, the determinism, dependability, and predictability of the system, and the
algorithms used for scheduling. In an ideal world, a task scheduler for real-time systems
would be able to generate an optimal schedule, using zero CPU time to perform the
scheduling itself. This would allow all of the CPU time to be used for executing the
tasks themselves rather than for scheduling. Of course, this ideal scenario is unlikely
to be achievable in practice, and real-world schedulers will always spend CPU time to
some extent. However, it is possible to minimize the time spent on scheduling and make

Electronics 2023, 12, 1870. https://doi.org/10.3390/electronics12081870 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081870
https://doi.org/10.3390/electronics12081870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5679-6250
https://orcid.org/0000-0003-4810-1655
https://doi.org/10.3390/electronics12081870
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081870?type=check_update&version=2


Electronics 2023, 12, 1870 2 of 18

it as constant as possible, which would improve the determinism, dependability, and
predictability of a real-time system. One drawback of task schedulers implemented in
software is that they are restricted in the algorithms they can use, as they need to consume
a very low and constant quantity of processor time. This often results in the use of priority-
based scheduling algorithms, rather than algorithms based on task deadlines, leading to a
lack of robustness and efficiency in the scheduling process. One possible solution to these
limitations is the use of hardware acceleration for task scheduling. By implementing the
task scheduler in hardware, it is possible to use deadline-based scheduling algorithms that
minimize the time spent on scheduling and make it constant as well. This would allow for
a more robust and efficient scheduling process, which would be a significant improvement
over software-based solutions [7–16].

Hardware-accelerated task schedulers have been traditionally used for simple systems
that consist solely of aperiodic hard real-time (RT) tasks. However, these solutions have
proven to be insufficient for more complex and robust real-time systems that have a
higher number of tasks and a greater variety of task types. To address this issue, a more
advanced and sophisticated task scheduler is required. One that has the ability to support
a diverse range of processes/threads. Apart from aperiodic RT tasks, hard RT systems
also perform periodic tasks. These tasks can be managed by task schedulers in the same
way as aperiodic tasks. However, including dedicated support for periodic tasks directly
within the HW-based scheduler can significantly improve the overall performance of
the system. This is because the addition of this support in HW eliminates the need for
any further software extensions for periodic task management because periodic tasks are
autonomously rescheduled without using the CPU whenever a period is completed. As a
result, the system can operate more efficiently and effectively, providing the desired level
of real-time performance and reliability. Overall, the implementation of a more robust and
complex task scheduler is necessary to meet the demands of modern real-time systems
that have a greater number of tasks and a wider range of task types. This will ensure that
the system can perform at its optimal level and deliver the desired level of performance,
reliability, and functionality [17–24].

The aim of the research presented in this article is to design a new version of a copro-
cessor unit that is capable of scheduling tasks based on the Earliest-Deadline First (EDF)
algorithm [7]. The EDF algorithm is widely regarded as a dynamic version of deadline-
based scheduling algorithms [25], as it eliminates the need for assigning individual task
priorities. One of the main challenges faced by modern CPUs is the parallel execution of
multiple tasks, which is a result of the widespread adoption of the many-core paradigm
in processor design. This poses significant complications for hardware-accelerated task
scheduling, particularly for RT systems that contain periodic hard RT tasks and require
inter-task synchronization. In order to address these challenges, the research focuses on
ensuring that the coprocessor unit is highly efficient and scalable in terms of performance
while also ensuring that the overall system remains reliable and deterministic. This is a crit-
ical aspect that must be considered when developing hardware-accelerated task scheduling
systems for real-time systems. In principle, the research presented in this article seeks to
provide a solution to the obstacles and challenges faced by modern CPUs in the implemen-
tation of hardware-accelerated task scheduling. By focusing on the implementation of the
EDF algorithm and addressing the critical aspects of efficiency, scalability, reliability, and
determinism, the proposed coprocessor unit is designed to deliver improved performance
and functionality for real-time systems containing periodic hard RT tasks.

This paper is structured the following way: The paper’s Section 2 covers task sched-
ulers for real-time systems. In Section 3, the paper introduces a new solution for task
scheduling. The proposed solution is verified in Section 4. The paper presents synthesis
results for the proposed solution in Section 5 and discusses the outcomes. Section 6 con-
tains an evaluation of the performance achieved by the proposed solution, including a
comparison with software-based scheduling. Finally, the paper concludes with a summary
in Section 7.



Electronics 2023, 12, 1870 3 of 18

2. Related Work

There are a lot of scheduling algorithms, each with pros and cons [26,27]. A deep
comparison of global, partitioned, and clustered EDF scheduling algorithms in software
has been presented in [28]. The authors performed experiments on a 24-core Intel Xeon
L7455 system, where each core was running at 2.13 GHz. For these algorithms, they
analyzed the overheads of the algorithms for the scheduling of tasks, their release, context
switching, and several other types of overheads. The outcome was that as the number of
tasks increases, the scheduling overhead is increasing, mainly for the global EDF, where the
worst-case scheduling overhead for 250 tasks was 200 µs. The partitioned and clustered
EDF algorithms reached up to around 30 µs overhead.

The scheduling overhead analysis of several algorithms has also been done in [29].
The authors run tests on a single-core ATmega2560 clocked at 16 MHz. The overhead
of two tested non-preemptive EDF schedulers increased with the number of tasks. The
maximum scheduling overhead by the basic EDF for twelve tasks was 136 µs, while the
Critical-Window EDF had a maximum overhead of 404 µs.

Authors in [30] used the profiler of the Virtual Machine for a comparison of two
algorithms to get information about their scheduling overhead on multiple cores. The
first algorithm (LRE-LT) tried very hard to ensure that all deadlines were met. On the
other hand, the second algorithm (USG) tried to minimize task preemption and migrations
between cores, so it was expected that the second one missed a few deadlines. It was
shown that the scheduler has been invoked a lot more often in the LRE-L and that the
decision-making process took longer. The result was that the time spent on scheduling was
approximately 10,000 times longer in the LRE-LT than in the USG.

Task scheduling plays a crucial role in operating systems, as it determines which
task (i.e., thread or process) should be running in the processor and in what order. The
algorithms used for scheduling greatly impact these decisions. Classic operating systems
typically schedule tasks based on their priorities of tasks, while RT systems must schedule
tasks based on their deadlines. This is because meeting the deadlines of all hard real-time
tasks is of the utmost importance in real-time systems. The Earliest-Deadline First (EDF)
algorithm is one of the most widely used and well-known algorithms for scheduling hard
real-time tasks. It operates by sorting all tasks based on their deadlines, with the task
having the earliest deadline being selected for execution first. Since tasks need to be sorted
according to their deadlines, priority queues are the ideal data structure for implementing
the EDF algorithm. Also, task scheduling is a core and critical component of operating
systems that must be carefully designed and implemented [7,31,32].

The ideal real-time task scheduler is one that schedules tasks optimally, ensuring that
all tasks are completed before their deadlines while minimizing the overhead on the CPU.
The more CPU time that is consumed by the scheduling algorithm, the less effective the
CPU becomes at executing the scheduled tasks. It is inevitable that some CPU time will
be consumed, as the scheduler must use at minimum one clock cycle for transferring data
to and from the scheduling unit. However, to achieve optimal performance, the goal is to
spend the minimum amount of processor time. Maintaining a predictable and deterministic
embedded system is critical, and this requires that a constant amount of CPU time be spent
on scheduling, regardless of the actual amount of tasks currently present in the scheduler
or even the maximum amount of tasks that can be handled by the system (i.e., the capacity
of the task queue). This ensures that the system operates in a consistent and predictable
manner, making it easier to debug and optimize. These qualities are essential for ensuring
that real-time systems operate reliably and efficiently.

Our previous research [33] resulted in the development of a novel real-time task sched-
uler based on the Earliest-Deadline First (EDF) algorithm. This scheduler was implemented
as a coprocessor unit, and a comparison was made between HW and SW realizations
with regards to efficiency and performance. The coprocessor is designed to consume two
cycles of the processor’s clock domain, no matter how many tasks the system contains.
Subsequently, an improved variant of the coprocessor was developed to be suitable for



Electronics 2023, 12, 1870 4 of 18

dual-core CPUs. To solve the issue of conflicting situations where more than one CPU
core attempts to access the coprocessor at the same time, two approaches were proposed
and compared [34]. Finally, support for scheduling non-real-time tasks was added to the
scheduler, utilizing priorities instead of deadlines [35].

In addition to our coprocessor, there are other existing solutions for HW-accelerated task
scheduling on RT systems. Some of them are also utilizing the EDF algorithm [21,22,36,37].
One solution, presented in [37], uses the EDF algorithm as well, but with a limited maximum
number of tasks of 64. On the other hand, another solution relies on task priorities instead of
deadlines, which is not suitable for hard RT systems [38]. There are also other approaches that
adopt a priority-based or static scheduling method [39–42]. One solution, presented in [43],
supports EDF, LST (Least-Slack-Time) and priority-based scheduling. Schedulers based on
genetic algorithms and fuzzy logic are presented in [44,45].

Our previous coprocessor solution is efficient for simple RT systems with hard RT
tasks in conjunction with single-core CPUs. On the other hand, as RT systems become
more complex and require higher performance, multi-core CPUs are often used, requiring
a more complex task scheduler to support multiple cores. A thorough analysis of the
suitability of the EDF algorithm in uniform multiprocessor systems reported that this
algorithm is applicable in such cases too [37]. Some of the existing solutions also incor-
porate a method to monitor the remaining execution time of real-time tasks and predict
potential deadline misses [38,41,42]. Based on the analysis of existing schedulers, we have
decided to design a new RT task scheduler implemented as a coprocessor unit suitable
for quad-core RT embedded systems and that would support periodic tasks and inter-task
synchronization too.

The performance of real-time task schedulers based on deadlines relies heavily on the
ability to sort tasks using their deadlines. To achieve this, a priority queue data structure
is used as the central component in hardware-implemented task schedulers. There have
been numerous designs for data sorting in priority queues for real-time systems, including
the FIFO approach [36,38,40,46], Shift Registers [37,47–49], and Systolic Array [41,42,49,50].
Each of these architectures has been developed to provide efficient sorting capabilities,
making them popular choices for use in real-time task scheduling.

The FIFO approach is extremely inefficient in terms of chip area and suitable for a small
range of possible values (deadlines in this case), up to four or five bits only [36,38,40,46].

The architecture called Shift Registers is made up of homogeneous cells that each
consist of a comparator, control logic, and registers to store one item. The cells are connected
in a line, and each cell can exchange items with its two neighbors. The cells receive
instructions simultaneously from the queue input, which results in an increase in the
critical path length with an increase in the number of cells. The critical path length is a
result of the bus width used for simultaneous instruction delivery and the exchange of
control signals between all cells. The critical path issue of Shift Registers can be resolved
by using a register at the inputs of cells, dedicating one clock cycle for the shared bus.
The throughput of the Shift Registers architecture is one instruction per clock cycle. An
illustration of a four-cell Shift Registers architecture can be seen in Figure 1 [37,47–49].

The architecture called Systolic Array is quite like Shift Registers, but it overcomes the
critical path length issue by utilizing pipelining. The Systolic Array features homogenous
cells, which are connected in a linear manner, with each cell having one neighboring cell
to the left and right, excluding the first and last cell of the structure. The first cell in the
queue serves as the only source of output for the entire queue and is receiving instructions
through the queue’s input. All instructions are gradually passed from one cell to the
next cell, at a rate of one cell per clock cycle, in a manner similar to how instructions are
processed through pipeline stages in pipelined processors. The throughput, however, of
this architecture is smaller than Shift Registers because each delete instruction takes two
clock cycles instead of just one. An example of the Systolic Array architecture consisting of
four cells is displayed in Figure 2. The first cell on the right side contains the first item in



Electronics 2023, 12, 1870 5 of 18

the priority queue and serves as the interface between the surrounding circuits. Clock and
reset are the only parallel signals [41,42,49,50].

Electronics 2023, 12, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Shift Registers architecture example [48]. 

The architecture called Systolic Array is quite like Shift Registers, but it overcomes 
the critical path length issue by utilizing pipelining. The Systolic Array features homoge-
nous cells, which are connected in a linear manner, with each cell having one neighboring 
cell to the left and right, excluding the first and last cell of the structure. The first cell in 
the queue serves as the only source of output for the entire queue and is receiving instruc-
tions through the queue’s input. All instructions are gradually passed from one cell to the 
next cell, at a rate of one cell per clock cycle, in a manner similar to how instructions are 
processed through pipeline stages in pipelined processors. The throughput, however, of 
this architecture is smaller than Shift Registers because each delete instruction takes two 
clock cycles instead of just one. An example of the Systolic Array architecture consisting 
of four cells is displayed in Figure 2. The first cell on the right side contains the first item 
in the priority queue and serves as the interface between the surrounding circuits. Clock 
and reset are the only parallel signals [41,42,49,50]. 

 
Figure 2. Systolic Array architecture example [41,42,49,50]. 

The Systolic Array priority queue brings a solution to the critical path issue present 
in Shift Registers. The instructions are propagated through the cells, with each cell repre-
senting one pipeline stage with pipeline registers. This means N clock cycles are required 
for an instruction to propagate via the entire queue, where N is the queue capacity. Since 
every cell is performing a different instruction at a time, the throughput of this structure 
is one instruction per clock cycle. However, after deleting an instruction, a pause (NOP) 
is needed for one cycle, resulting in a throughput of one instruction per two clock cycles. 
The priority queue is providing an updated output in just two cycles. Thus, response time 
is two clock cycles. This response time remains constant, regardless of the number of cells 
in the queue. In addition to the lower throughput of this architecture in comparison to 

Figure 1. Shift Registers architecture example [48].

Electronics 2023, 12, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Shift Registers architecture example [48]. 

The architecture called Systolic Array is quite like Shift Registers, but it overcomes 
the critical path length issue by utilizing pipelining. The Systolic Array features homoge-
nous cells, which are connected in a linear manner, with each cell having one neighboring 
cell to the left and right, excluding the first and last cell of the structure. The first cell in 
the queue serves as the only source of output for the entire queue and is receiving instruc-
tions through the queue’s input. All instructions are gradually passed from one cell to the 
next cell, at a rate of one cell per clock cycle, in a manner similar to how instructions are 
processed through pipeline stages in pipelined processors. The throughput, however, of 
this architecture is smaller than Shift Registers because each delete instruction takes two 
clock cycles instead of just one. An example of the Systolic Array architecture consisting 
of four cells is displayed in Figure 2. The first cell on the right side contains the first item 
in the priority queue and serves as the interface between the surrounding circuits. Clock 
and reset are the only parallel signals [41,42,49,50]. 

 
Figure 2. Systolic Array architecture example [41,42,49,50]. 

The Systolic Array priority queue brings a solution to the critical path issue present 
in Shift Registers. The instructions are propagated through the cells, with each cell repre-
senting one pipeline stage with pipeline registers. This means N clock cycles are required 
for an instruction to propagate via the entire queue, where N is the queue capacity. Since 
every cell is performing a different instruction at a time, the throughput of this structure 
is one instruction per clock cycle. However, after deleting an instruction, a pause (NOP) 
is needed for one cycle, resulting in a throughput of one instruction per two clock cycles. 
The priority queue is providing an updated output in just two cycles. Thus, response time 
is two clock cycles. This response time remains constant, regardless of the number of cells 
in the queue. In addition to the lower throughput of this architecture in comparison to 

Figure 2. Systolic Array architecture example [41,42,49,50].

The Systolic Array priority queue brings a solution to the critical path issue present
in Shift Registers. The instructions are propagated through the cells, with each cell repre-
senting one pipeline stage with pipeline registers. This means N clock cycles are required
for an instruction to propagate via the entire queue, where N is the queue capacity. Since
every cell is performing a different instruction at a time, the throughput of this structure is
one instruction per clock cycle. However, after deleting an instruction, a pause (NOP) is
needed for one cycle, resulting in a throughput of one instruction per two clock cycles. The
priority queue is providing an updated output in just two cycles. Thus, response time is
two clock cycles. This response time remains constant, regardless of the number of cells in
the queue. In addition to the lower throughput of this architecture in comparison to Shift
Registers, the second disadvantage is the almost doubled amount of flip flops needed for
implementation of the Systolic Array [41,42,49,50].

3. Proposed Solution

The proposed solution is a task scheduler based on FPGA technology, which is de-
signed as a coprocessor that receives instructions from the processor and sends back deci-
sions about which instructions are supposed to be executed at the moment. This implies
that the scheduler will be encapsulated or integrated into an existing CPU, much like any
other coprocessor, for example a multiplier or divider. Figure 3 illustrates the architecture
at the top level of abstraction of the top-level module of the designed coprocessor, which is
comprised of seven submodules: Ready Queue, Waiting Queue, Idle Queue, Tasks Memory,
Running Tasks, Control Unit, and Semaphore.



Electronics 2023, 12, 1870 6 of 18

Electronics 2023, 12, x FOR PEER REVIEW 6 of 19 
 

 

Shift Registers, the second disadvantage is the almost doubled amount of flip flops needed 
for implementation of the Systolic Array [41,42,49,50]. 

3. Proposed Solution 
The proposed solution is a task scheduler based on FPGA technology, which is de-

signed as a coprocessor that receives instructions from the processor and sends back de-
cisions about which instructions are supposed to be executed at the moment. This implies 
that the scheduler will be encapsulated or integrated into an existing CPU, much like any 
other coprocessor, for example a multiplier or divider. Figure 3 illustrates the architecture 
at the top level of abstraction of the top-level module of the designed coprocessor, which 
is comprised of seven submodules: Ready Queue, Waiting Queue, Idle Queue, Tasks 
Memory, Running Tasks, Control Unit, and Semaphore. 

The scheduler top-level module contains four input ports, known as instr_1, instr_2, 
instr_3 and instr_4, which are used by the CPU to provide the coprocessor instructions for 
the scheduler. It is assumed that up to four tasks/processes/threads can run simultane-
ously (for example, on a quad-core CPU). The output port of the scheduler is providing 
valuable data for the processor. Using this output port, the processor also gets the infor-
mation about which (up to four) processes are currently dedicated to run right now, and 
the processor is also able to obtain memory data from the Tasks Memory submodule this 
way as well. 

Ready QueueIdle Queue Waiting Queue

Running TasksSemaphore Control Unit

Tasks Memory

stats

tasks

output

input_1 instruction_1

input_2 instruction_2

input_3 instruction_3

input_4 instruction_4

instruction

Task Scheduler

 
Figure 3. Block diagram of proposed task scheduler. 

The proposed task scheduler is providing the following list of new instructions: 
• MEMORY_WRITE—can be used to create a new task in Tasks Memory or to modify 

already created tasks. This instruction performs a standard write operation into the 
memory. 

• MEMORY_READ—can be used to read any information about tasks stored in Tasks 
Memory. This instruction performs a standard read operation from the memory. 

• SCHEDULE_TASK—is used to schedule an existing task to be executed by the CPU. 
This causes the task to be moved to Running Tasks or Ready Queue, which is a deci-
sion based on the scheduling algorithm (i.e., deadline values). Task states that are 
stored inside Tasks Memory will be modified if needed, too. 

• KILL_TASKL—is used to deschedule (i.e., to kill) an already scheduled task. As a 
result, the task is removed from the queues, such as Running Tasks, and the task state 
is set to IDLE_TASK in Tasks Memory. 

Figure 3. Block diagram of proposed task scheduler.

The scheduler top-level module contains four input ports, known as instr_1, instr_2,
instr_3 and instr_4, which are used by the CPU to provide the coprocessor instructions for
the scheduler. It is assumed that up to four tasks/processes/threads can run simultaneously
(for example, on a quad-core CPU). The output port of the scheduler is providing valuable
data for the processor. Using this output port, the processor also gets the information about
which (up to four) processes are currently dedicated to run right now, and the processor is
also able to obtain memory data from the Tasks Memory submodule this way as well.

The proposed task scheduler is providing the following list of new instructions:

• MEMORY_WRITE—can be used to create a new task in Tasks Memory or to modify
already created tasks. This instruction performs a standard write operation into
the memory.

• MEMORY_READ—can be used to read any information about tasks stored in Tasks
Memory. This instruction performs a standard read operation from the memory.

• SCHEDULE_TASK—is used to schedule an existing task to be executed by the CPU.
This causes the task to be moved to Running Tasks or Ready Queue, which is a decision
based on the scheduling algorithm (i.e., deadline values). Task states that are stored
inside Tasks Memory will be modified if needed, too.

• KILL_TASKL—is used to deschedule (i.e., to kill) an already scheduled task. As a
result, the task is removed from the queues, such as Running Tasks, and the task state
is set to IDLE_TASK in Tasks Memory.

• BLOCK_TASK—is used to temporarily block a scheduled task, forbidding its execution
for a limited time. As a result, the state of the selected task is changed to WAITING,
and the task is moved into the Waiting Queue. The task is blocked for a specified time
only; therefore, a waiting time is set too. When the waiting time elapses, the blocked
task will be automatically unblocked.

• UNBLOCK_TASK—is used to unblock a blocked task. As a result, an existing blocked
task is released (i.e., unblocked), changing its state from WAITING to a different state,
and this task is also removed from the Waiting Queue, returning the task back to the
Ready Queue or Running Tasks. Since blocked tasks are automatically unblocked after
a specific waiting time elapses, this instruction is just meant for unblocking the task
earlier, eliminating the need to wait until the waiting time has elapsed.

• GET_RUNNING_TASKS—is used to obtain the list of running tasks or the task that is
selected for execution in a particular processor core using the scheduler output port.
This information is provided by the Running Tasks module.



Electronics 2023, 12, 1870 7 of 18

3.1. Ready Queue

The Ready Queue is a key component in the task scheduler, as it holds all tasks that
are ready for execution but are waiting their turn. This component is designed as a priority
queue, sorting tasks that are ready by their deadline values so that the next task to be
executed can be quickly identified. The sorting of tasks is performed by utilizing the Shift
Registers architecture, which was explained in Section 2. This architecture is composed of
sorting cells, each of which consists of a comparator for comparing deadlines, control logic
for deciding when and what to store in this cell, and a register as an actual storage element
to remember the ID of the task and its deadline. These cells are able to move tasks to
neighboring cells, and they receive instructions simultaneously via a common bus. Ready
Queue ensures that the tasks are executed in a timely manner, based on their deadlines,
and provides the necessary information to the CPU for task selection and execution.

3.2. Waiting Queue

The Waiting Queue is an integral part of the task scheduler and is designed to hold
all the temporarily suspended or blocked tasks. This component is also implemented as a
priority queue, just like the Ready Queue, to sort the waiting tasks based on their remaining
waiting times. The waiting tasks are referred to as such because they are temporarily put
on hold and are waiting to be unblocked. This can occur in two ways: either through
the execution of the UNBLOCK_TASK instruction or if the remaining time for waiting
has elapsed. Once a task is unblocked, it is extracted from the Waiting Queue. This
prioritization of waiting tasks ensures that the task scheduler can effectively manage the
execution of multiple tasks and maintain a high level of performance.

The Waiting Queue is used only for the inter-task synchronization instructions
BLOCK_TASK and UNBLOCK_TASK. While this queue is allowing users to block and
unblock tasks, the inter-task synchronization logic itself is not implemented and is only
supported by providing these two instructions. It is up to the software extension to
decide whether and when a particular task is supposed to be blocked, for how long
it is blocked, and eventually, whether a blocked task is unblocked before the block
time elapses.

3.3. Idle Queue

The Idle Queue is a module designed to hold idle periodic tasks (i.e., state = idle), either
because they were completed naturally or terminated using the KILL_TASK instruction.
This component is only relevant for periodic tasks; tasks that are not periodic are not
stored in the Idle Queue. The module is structured as yet another priority queue, similar to
Waiting Queue and Ready Queue, with each task being sorted based on their remaining
period times. The output of Idle Queue represents the next periodic task that is going to
finish its period. When current time reaches the task’s period time, the task is extracted
from the Idle Queue and rescheduled to start a new instance of this task for the new period.
It is efficient handling of periodic tasks, and it is possible despite the fact that only one task
can be extracted from the Idle Queue at a time. If more tasks end their period at the same
time, i.e., they need rescheduling simultaneously, then those tasks that are rescheduled
later automatically adjust their remaining deadline time by the delay incurred. Thus, such
tasks may be rescheduled in any sequence under the condition that the rescheduled tasks
get adjusted for their remaining deadlines appropriately.

Unlike the Waiting Queue, the Idle Queue does not need any instructions to be called
from the CPU in order to manage the idle (completed) periodic tasks that are waiting for
their next period. Whenever the period of the periodic task elapses, the task is automatically
moved from the Idle Queue back to Running Tasks. The state of this task is automatically
changed from idle to ready or running (depending on the EDF logic, i.e., deadlines of tasks).
This automation is provided by the Control Unit module.



Electronics 2023, 12, 1870 8 of 18

3.4. Semaphore

The Semaphore component is designed to handle conflicts that arise when multiple
CPU cores simultaneously attempt to use the scheduler, e.g., to schedule a new task or
to kill a task in exactly the same clock cycle. This situation is referred to as a conflict. To
resolve conflicts, the Semaphore is a module that is responsible for arbitrating instructions
by selecting one of the instructions as the arbitration winner and the rest of the instruc-
tions becoming losers. The winner’s instruction is passed on to the Control Unit. The
loser instructions cannot be executed immediately; therefore, other CPU cores are stalled.
Semaphore module uses a widely known algorithm called Round-Robin, which guarantees
that the arbitration is fair, and the load is evenly balanced. This is an important aspect of
the FPGA-based task scheduler design, as it ensures that all CPU cores have equal access to
the scheduler coprocessor and that no core is favored over the others.

The total number of possible conflicts that can arise in the system is eleven, and each
conflict is identified by a different combination of CPU cores attempting to use the scheduler
at the same time. When two processor cores try to access the coprocessor simultaneously,
there are six combinations possible: 1_2 (processor core 1 and core 2 conflict), 1_3 (core 1
and core 3 conflict), 1_4 (core 1 and core 4 conflict), 2_3 (core 2 and core 3 conflict), 2_4
(core 2 and core 4 conflict), and 3_4 (core 3 and core 4 conflict). In the case where three CPU
cores attempt to access the scheduler at the same time, there are four possible combinations:
1_2_3 (core 1, core 2, and core 3 conflict), 1_2_4 (core 1, core 2, and core 4 conflict), 1_3_4
(core 1, core 3, and core 4 conflict), and 2_3_4 (core 2, core 3, and core 4 conflict). The final
combination occurs if all four processor cores try to access the coprocessor simultaneously,
and this is named 1_2_3_4.

The Semaphore module has two essential demands, a primary and a secondary one.
The most critical demand is to have a limited maximum number of delays caused by
conflicts and to keep this number low. This demand is vital since the scheduler is designed
for RT embedded systems. The second demand is to have fairness among all CPU cores,
ensuring that each core has a similar chance of winning the conflict and accessing the
scheduler immediately.

The design of the Semaphore module is based on a 2-bit counter to represent four
distinct states. These states, referred to as 1234, 2143, 3412, and 4321, are used to determine
the priority order in case of any of these eleven possible combinations of access conflicts.
For instance, if the current state is 1234, then processor core 1 is prioritized over core 2,
processor core 2 is prioritized over core 3, and processor core 3 is prioritized over core 4.
To resolve the conflicts, the current state is shifted to the new state through an increment
of a 2-bit counter. The decision was taken to limit the amount of possible priority order
permutations to just four instead of the original twenty-four permutations in order to
simplify the FSM that is deciding which processor core wins the arbitration. This results
in a relatively simple design of the FSM consisting of four states instead of twenty-four
states, reducing chip area and energy consumption. These four states have been carefully
selected to ensure symmetry, fairness, and rotations after each conflict. Whenever there is a
conflict, the order is updated by shifting FSM to the next state. The 2-bit counter is used to
represent the states in the following manner:

• Counter set to “00” is representing state 1234, and is incremented to “01”.
• Counter set to “01” is representing state 2143, and is incremented to “10”.
• Counter set to “10” is representing state 3412, and is incremented to “11”.
• Counter set to “11” is representing state 4321, and is incremented to “00”.

The scenarios in which two or more CPU cores conflict, along with the winner selection,
are presented in Table 1. This table outlines the different potential scenarios for conflicting
CPU cores, with each line representing a possible conflict. The columns represent the
four possible orders, where one order is used at the moment based on which state the
FSM is currently in. It is noticeable that the primary as well as secondary demands for
the Semaphore were satisfied, as each processor core stalled three times in a row, at most,
and the distribution of wins among the CPU cores is even. The rotating nature of the



Electronics 2023, 12, 1870 9 of 18

states/orders ensures that the worst-case scenario for one instruction to be completed is
2N clock cycles (in the event that all processor cores attempt to access the coprocessor
continuously), where N is the number of processor cores (i.e., N = 4). On the other hand,
the best-case access time is just two cycles. Consequently, the amount of time it takes for
one instruction to be executed on a quad-core CPU ranges from two to eight clock cycles,
which depends on the frequency of access conflicts.

Table 1. Table of conflict resolutions in Semaphore module.

Title 1 1234 2143 3412 4321

1_2 1 2 1 2
1_3 1 1 3 3
1_4 1 1 4 4
2_3 2 2 3 3
2_4 2 2 4 4
3_4 3 4 3 4

1_2_3 1 2 3 3
1_2_4 1 2 4 4
1_3_4 1 1 3 4
2_3_4 2 2 3 4

1_2_3_4 1 2 3 4

A block diagram of the Semaphore module is shown in Figure 4, based on the pre-
viously described information. The module includes 3 multi-bit multiplexers, 2 D-FFs,
5 AND gates, 4 NAND gates, 2 inverters, a Winner Selector submodule, and a Conflict
Detector. The Winner Selector and Conflict Detector submodules only require the instruc-
tion’s bit, which indicates if the instruction is valid or not (if the processor is attempting to
access the coprocessor). The Winner Selector submodule selects the winner of arbitration,
i.e., deciding which of the valid instructions should be selected. The selection signals are
called SEL00, SEL01, and SEL1. These signals drive the control inputs of MUXes that pass
the winning instruction to an output port named “instr”. This port is used by Control
Unit module.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 4. Block diagram of Semaphore module. 

The Semaphore module in Figure 4 also outputs four single-bit outputs to the indi-
vidual processor cores, named stall_core_#. These signals serve to notify the respective 
processor core when the attempt to access the coprocessor is declined due to losing an 
arbitration caused by the situation when another core is trying to use the coprocessor as 
well (i.e., during a conflict). The processor core receiving the stall response must wait until 
the stall is active. In the meantime, it can perform other operations. The signals core_#_in-
str_valid and stall_core_# act as a means of handshaking-based communication between 
the processor and coprocessor. 

The Conflict Detector submodule is illustrated in Figure 5 as a logic circuit. It consists 
of one 6-input NAND gate and six basic 2-input NAND gates. The purpose of this sub-
module is to detect whether 2 or more processor cores are trying to access the coprocessor 
simultaneously. If two or more inputs are set to 1, the conflict output will be 1 to indicate 
a conflict. However, if there is only one valid instruction from a single CPU core at most, 
the conflict output will be 0. 

 
Figure 5. Logic circuit of Conflict Detector. 

Figure 4. Block diagram of Semaphore module.



Electronics 2023, 12, 1870 10 of 18

The Semaphore module in Figure 4 also outputs four single-bit outputs to the indi-
vidual processor cores, named stall_core_#. These signals serve to notify the respective
processor core when the attempt to access the coprocessor is declined due to losing an
arbitration caused by the situation when another core is trying to use the coprocessor as
well (i.e., during a conflict). The processor core receiving the stall response must wait
until the stall is active. In the meantime, it can perform other operations. The signals
core_#_instr_valid and stall_core_# act as a means of handshaking-based communication
between the processor and coprocessor.

The Conflict Detector submodule is illustrated in Figure 5 as a logic circuit. It consists
of one 6-input NAND gate and six basic 2-input NAND gates. The purpose of this sub-
module is to detect whether 2 or more processor cores are trying to access the coprocessor
simultaneously. If two or more inputs are set to 1, the conflict output will be 1 to indicate a
conflict. However, if there is only one valid instruction from a single CPU core at most, the
conflict output will be 0.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 4. Block diagram of Semaphore module. 

The Semaphore module in Figure 4 also outputs four single-bit outputs to the indi-
vidual processor cores, named stall_core_#. These signals serve to notify the respective 
processor core when the attempt to access the coprocessor is declined due to losing an 
arbitration caused by the situation when another core is trying to use the coprocessor as 
well (i.e., during a conflict). The processor core receiving the stall response must wait until 
the stall is active. In the meantime, it can perform other operations. The signals core_#_in-
str_valid and stall_core_# act as a means of handshaking-based communication between 
the processor and coprocessor. 

The Conflict Detector submodule is illustrated in Figure 5 as a logic circuit. It consists 
of one 6-input NAND gate and six basic 2-input NAND gates. The purpose of this sub-
module is to detect whether 2 or more processor cores are trying to access the coprocessor 
simultaneously. If two or more inputs are set to 1, the conflict output will be 1 to indicate 
a conflict. However, if there is only one valid instruction from a single CPU core at most, 
the conflict output will be 0. 

 
Figure 5. Logic circuit of Conflict Detector. Figure 5. Logic circuit of Conflict Detector.

The Winner Selector submodule, as depicted in Figure 6, implements its decision logic
through the use of one 3-input NOR and three 2-input NORs for the SEL1 output, and
two 2-input NANDs for each of the SEL00 and SEL01 outputs. The circuit includes two
inverter gates for creating inverted input signals as well. The decision logic for this module
is the same as that outlined in Table 1. The Q1 and Q0 inputs represent the actual state of
the FSM. The inputs CPU1, CPU2, CPU3, and CPU4 represent information about which
processor cores are attempting to access the coprocessor at the moment. The output signals
SEL00, SEL01, and SEL1 are needed for controlling the multiplexing presented in Figure 4.

3.5. Running Tasks

The Running Tasks module holds the tasks that are currently being executed. With
a capacity of four tasks, it can execute up to four tasks at once. To minimize unnecessary
task switches, this component can assign a task that was previously running on one CPU
core to another CPU core due to task preemption. By doing so, the number of task switches
is reduced to the minimum possible amount, and the scheduling overhead is minimized
this way.



Electronics 2023, 12, 1870 11 of 18

Electronics 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

The Winner Selector submodule, as depicted in Figure 6, implements its decision 
logic through the use of one 3-input NOR and three 2-input NORs for the SEL1 output, 
and two 2-input NANDs for each of the SEL00 and SEL01 outputs. The circuit includes 
two inverter gates for creating inverted input signals as well. The decision logic for this 
module is the same as that outlined in Table 1. The Q1 and Q0 inputs represent the actual 
state of the FSM. The inputs CPU1, CPU2, CPU3, and CPU4 represent information about 
which processor cores are attempting to access the coprocessor at the moment. The output 
signals SEL00, SEL01, and SEL1 are needed for controlling the multiplexing presented in 
Figure 4. 

 
Figure 6. Winner Selector logic circuit. 

3.5. Running Tasks 
The Running Tasks module holds the tasks that are currently being executed. With a 

capacity of four tasks, it can execute up to four tasks at once. To minimize unnecessary 
task switches, this component can assign a task that was previously running on one CPU 
core to another CPU core due to task preemption. By doing so, the number of task switches 
is reduced to the minimum possible amount, and the scheduling overhead is minimized 
this way. 

The control logic of Running Tasks performs decisions about whether to keep the 
current tasks or make changes. If a task is terminated, the task that has the lowest deadline 
value within the Ready Tasks submodule is moved into the Running Tasks submodule. 
When the coprocessor is scheduling new tasks, a preemption may occur, depending on 
the task deadline and the deadlines of currently running tasks. Whenever the task is 
scheduled with an earlier deadline than the deadline of any running task, the running task 
with the latest deadline is replaced, causing task preemption, and execution of the 
preempted task is suspended. If preemption occurs, the preempted task is stored in the 
Ready Tasks module; otherwise, the new task is added to it. 

The Running Tasks component has five comparators and requires two clock cycles 
for decision logic due to the length of the critical path in the combination logic. The results 
of the comparison performed in the first cycle are stored in registers holding temporary 
results along with 2 bits for task identification. The first cycle performs two parallel 

Figure 6. Winner Selector logic circuit.

The control logic of Running Tasks performs decisions about whether to keep the
current tasks or make changes. If a task is terminated, the task that has the lowest deadline
value within the Ready Tasks submodule is moved into the Running Tasks submodule.
When the coprocessor is scheduling new tasks, a preemption may occur, depending on the
task deadline and the deadlines of currently running tasks. Whenever the task is scheduled
with an earlier deadline than the deadline of any running task, the running task with the
latest deadline is replaced, causing task preemption, and execution of the preempted task is
suspended. If preemption occurs, the preempted task is stored in the Ready Tasks module;
otherwise, the new task is added to it.

The Running Tasks component has five comparators and requires two clock cycles for
decision logic due to the length of the critical path in the combination logic. The results of
the comparison performed in the first cycle are stored in registers holding temporary results
along with 2 bits for task identification. The first cycle performs two parallel comparisons,
comparing running_task_core_1 with running_task_core_2 and running_task_core_3 with
running_task_core_4. During the second cycle, the deadlines of temporary results obtained
from the registers are compared, which may result in a preemption, replacing one running
task with a new one. The previously running task that is being replaced is sent to the Ready
Queue if preemption occurs. Regardless of preemption, one of the tasks is sent to the Ready
Tasks module—either the new task (i.e., no preemption occurs) or one of the previously
running tasks (i.e., preemption occurs).

3.6. Control Unit

The Control Unit component manages all task queue modules (Idle Queue, Waiting
Queue, Ready Queue, and Running Tasks) and reads from and writes to the Tasks Memory
module. When a valid instruction is received from the Semaphore component, the Control
Unit module decodes it and performs it by providing data and control signals to surround-
ing modules. The Control Unit directly controls all task queue components, except for the
Ready Queue, which it can only access indirectly using the Running Tasks module. When
no valid instruction is received from the CPU or Semaphore, the Control Unit can still
transfer tasks autonomously between the Running Tasks module and Idle Queue module



Electronics 2023, 12, 1870 12 of 18

and between the Running Tasks module and Waiting Queue module. This ensures that
managing waiting or blocked tasks, including periodic idle tasks, is done automatically,
reducing the CPU time needed for task scheduling, which is crucial for RT tasks.

Control Unit is also responsible for managing states of tasks. There are four possible
states the task can have in this scheduler: IDLE, RUNNING, READY and WAITING. The
IDLE state is used for tasks that are not yet scheduled or are completed already. This
is especially important for periodic tasks to determine that the task is finished, and that
the scheduler is waiting for the next period of the task to automatically schedule a new
instance of the periodic task. The RUNNING state is used for tasks that are running,
i.e., being executed at the moment. The READY state is used for tasks that are scheduled
and ready to be executed but have not yet been chosen for execution due to other tasks
being prioritized over the ready task. WAITING state is used for those tasks that are blocked
by the BLOCK_TASK instruction, so these tasks are waiting to be unblocked either by the
UNBLOCK_TASK instruction or by elapsing the waiting time set by the BLOCK_TASK
instruction. These states and possible changes between the states are depicted in Figure 7.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 19 
 

 

KILL_TASK

RUNNING READY

WAITING

IDLE

KILL_TASK
KILL_TASK

SCHEDULE_TASKSCHEDULE_TASK

BLOCK_TASK

UNBLOCK_TASK UNBLOCK_TASK

PREEMPT

 

Figure 7. State diagram of task states. 

3.7. Tasks Memory 

The Tasks Memory component is a multi-port standard memory designed to support 

various features in other components. Though it could potentially be implemented using 

SRAM, it has been realized with registers due to the need for multiple read/write ports. 

While this implementation based on registers consumes more chip area, the added 

read/write ports are essential to the functions described in other components. 

The Tasks Memory stores all information about tasks, including task type, task state, 

ID of parent task, and timing characteristics such as starting/remaining deadline, start-

ing/remaining period (if the task is periodic), and starting/remaining execution time of the 

task. While the starting timing characteristics are provided by the CPU when a task is 

created, the remaining timing characteristics are automatically maintained by the sched-

uler itself. The memory’s layout is outlined in Table 2, with the lowest three bits of address 

being reserved to choose specific data within the particular task while the upper bits are 

utilized to choose a task. 

Table 2. Memory map of Tasks Memory. 

Address Bits 2 Downto 0 Field Number of Bits 

000 ID of parent task 8 

001 Task state + task type 4 + 5 

010 Remaining deadline time 20 

011 Remaining period time 20 

100 Remaining execution time 20 

101 Starting deadline time 20 

110 Starting period time 20 

111 Starting execution time 20 

 

Figure 7. State diagram of task states.

3.7. Tasks Memory

The Tasks Memory component is a multi-port standard memory designed to sup-
port various features in other components. Though it could potentially be implemented
using SRAM, it has been realized with registers due to the need for multiple read/write
ports. While this implementation based on registers consumes more chip area, the added
read/write ports are essential to the functions described in other components.

The Tasks Memory stores all information about tasks, including task type, task state,
ID of parent task, and timing characteristics such as starting/remaining deadline, start-
ing/remaining period (if the task is periodic), and starting/remaining execution time of
the task. While the starting timing characteristics are provided by the CPU when a task is
created, the remaining timing characteristics are automatically maintained by the scheduler
itself. The memory’s layout is outlined in Table 2, with the lowest three bits of address



Electronics 2023, 12, 1870 13 of 18

being reserved to choose specific data within the particular task while the upper bits are
utilized to choose a task.

Table 2. Memory map of Tasks Memory.

Address Bits 2 Downto 0 Field Number of Bits

000 ID of parent task 8
001 Task state + task type 4 + 5
010 Remaining deadline time 20
011 Remaining period time 20
100 Remaining execution time 20
101 Starting deadline time 20
110 Starting period time 20
111 Starting execution time 20

4. Design Verification

The task scheduling coprocessor that was introduced was described using the Sys-
temVerilog language and then tested through simulations. The ModelSim tool was used
to perform these simulations. Additionally, to the SystemVerilog language, a simplified
variant of the Universal Verification Methodology (UVM) was also utilized during the
verification phase. The interface of the scheduler was quite simple, making it possible to
simplify the use of UVM as well. In this scenario, a single transaction within the UVM test
equates to one instruction executed in two clock cycles, eliminating the need for agents to
interface with the device under test (DUT).

The verification phase involved the use of one test procedure that generated con-
strained random input values, a scoreboard, and a predictor. This test generated millions
of instructions with deterministic instruction opcodes and unique task ID values, but with
random timing values. The predictor is responsible for predicting the expected output of
DUT (Design Under Test) based on the input values. The predictor behaves similarly to
the DUT but at a higher level of abstraction, similar to high-level software languages. The
predictor’s description was purely sequential and high-level, utilizing the SystemVerilog
priority queue data structure and the sort() procedure to order the tasks within each queue.
Figure 8 demonstrates the testbench that was applied for verification simulations.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 19 
 

 

4. Design Verification 
The task scheduling coprocessor that was introduced was described using the Sys-

temVerilog language and then tested through simulations. The ModelSim tool was used 
to perform these simulations. Additionally, to the SystemVerilog language, a simplified 
variant of the Universal Verification Methodology (UVM) was also utilized during the 
verification phase. The interface of the scheduler was quite simple, making it possible to 
simplify the use of UVM as well. In this scenario, a single transaction within the UVM test 
equates to one instruction executed in two clock cycles, eliminating the need for agents to 
interface with the device under test (DUT). 

The verification phase involved the use of one test procedure that generated con-
strained random input values, a scoreboard, and a predictor. This test generated millions 
of instructions with deterministic instruction opcodes and unique task ID values, but with 
random timing values. The predictor is responsible for predicting the expected output of 
DUT (Design Under Test) based on the input values. The predictor behaves similarly to 
the DUT but at a higher level of abstraction, similar to high-level software languages. The 
predictor’s description was purely sequential and high-level, utilizing the SystemVerilog 
priority queue data structure and the sort() procedure to order the tasks within each 
queue. Figure 8 demonstrates the testbench that was applied for verification simulations. 

To verify that the designed scheduler is working properly and as expected, more than 
2,000,000 iterations of the test were performed, each containing at least 1000 randomly 
generated instructions. The full capacity of the scheduler was utilized during this test. 
Scheduler parameters were set to the following values during the design verification: eight 
bits for task IDs, a capacity of Ready Queue set to sixty tasks, and twenty bits for random 
deadlines, execution times, and task periods. 

The verification process was thorough, ensuring that the proposed task scheduler 
was functioning as expected. The use of the SystemVerilog language and UVM, along with 
the test procedure and predictor, provided a comprehensive and efficient method for ver-
ifying the coprocessor unit’s behavior. The results of these simulations demonstrate the 
reliability and effectiveness of the task scheduler, making it a suitable solution for real-
time task management. 

 
Figure 8. Testbench architecture. 

5. Synthesis Results 
The proposed task scheduler was implemented on an Intel Cyclone V FPGA, more 

specifically the 5CSEBA6U23I7 device. The synthesis process was performed using the 
Intel Quartus Prime 16.1 Lite Edition tool. To ensure that the scheduler would operate 
properly, a static timing analysis was performed to determine the maximum clock fre-
quency for each version of the design. 

Figure 8. Testbench architecture.

To verify that the designed scheduler is working properly and as expected, more than
2,000,000 iterations of the test were performed, each containing at least 1000 randomly
generated instructions. The full capacity of the scheduler was utilized during this test.
Scheduler parameters were set to the following values during the design verification:



Electronics 2023, 12, 1870 14 of 18

eight bits for task IDs, a capacity of Ready Queue set to sixty tasks, and twenty bits for
random deadlines, execution times, and task periods.

The verification process was thorough, ensuring that the proposed task scheduler
was functioning as expected. The use of the SystemVerilog language and UVM, along
with the test procedure and predictor, provided a comprehensive and efficient method for
verifying the coprocessor unit’s behavior. The results of these simulations demonstrate the
reliability and effectiveness of the task scheduler, making it a suitable solution for real-time
task management.

5. Synthesis Results

The proposed task scheduler was implemented on an Intel Cyclone V FPGA, more
specifically the 5CSEBA6U23I7 device. The synthesis process was performed using the Intel
Quartus Prime 16.1 Lite Edition tool. To ensure that the scheduler would operate properly,
a static timing analysis was performed to determine the maximum clock frequency for each
version of the design.

The synthesis results presented in Table 3 indicate that the maximum clock frequency
of all versions of the proposed scheduler is 105 MHz or higher. The critical path, i.e., the
path that is limiting the maximum clock frequency, was found in priority queues. Therefore,
increasing the size of these priority queues has an impact on the maximum clock frequency
(fMax). However, the resource requirements, as measured by Adaptive Logic Module
(ALM) consumption, are relatively low considering the large capacity of current FPGA
devices, which often have hundreds of thousands, if not millions, of ALMs.

Table 3. FPGA synthesis results.

Tasks Capacity ALMs Registers fMax (MHz)

8 334 325 177.99
16 591 541 156.98
24 832 756 137.85
32 1067 976 127.67
40 1324 1181 122.05
48 1576 1403 118.10
56 1817 1624 107.49
64 2044 1833 105.52

It is important to note that the Tasks Capacity, or the maximum number of tasks the
scheduler can handle, has a direct and significant impact on both the resource costs and the
maximum clock frequency. As the Tasks Capacity increases, the logic utilization increases
and the timing performance (fMax) decreases. The implementation of each timing variable,
such as deadline, period, waiting time, and execution time, uses twenty bits, while the task
ID is comprised of eight bits.

6. Performance Evaluation

This section demonstrates the performance benefits of using the proposed task sched-
uler instead of the existing software-based task scheduler, the G-EDF (Global Earliest
Deadline First) algorithm that was presented in [28] and used on a 24-core Intel Xeon CPU
running at 2.13 GHz.

Two use cases of the proposed scheduler are considered: one case when a CPU that
is running four tasks in parallel (i.e., four CPU cores) is used, and the second case when
a CPU with one task (i.e., one CPU core) is used. In both cases, the proposed scheduler
is running on the FPGA described in the previous section at 100 MHz. Using this clock
frequency means that one clock cycle takes ten nanoseconds, which is equal to 0.01 us.
Table 4 shows the worst-case CPU overhead of task scheduling, i.e., the time needed to
schedule one task (to call one SCHEDULE_TASK instruction). This overhead is displayed
in microseconds (us). The four CPU cores version takes seven clock cycles in the worst-case



Electronics 2023, 12, 1870 15 of 18

scenario, which occurs when the CPU core has to wait for six clock cycles plus one clock
cycle for calling the SCHEDULE_TASK instruction.

Table 4. Worst-case CPU overhead of task scheduling comparison in microseconds (us).

Number of Tasks G-EDF on Xeon [28] Proposed Scheduler
(with 4 CPU Cores)

Proposed Scheduler
(with 1 CPU Core)

25 20 0.07 0.01
36 28 0.07 0.01
50 42 0.07 0.01
64 51 0.07 0.01

100 140 0.07 0.01

The worst-case overhead of software-based EDF scheduling is around 20 us when
25 tasks are used. If this scheduling is hardware-accelerated using the proposed solu-
tion, then the overhead drops to less than 0.1 us, effectively reducing the CPU overhead
more than 200-times, i.e., more than 99.5% overhead reduction is achieved. It is worth
noting that the overhead of the proposed solution is constant with respect to the num-
ber of tasks—unlike in software-based scheduling, where the CPU overhead increases
with the number of tasks. Thus, the relative reduction of CPU overhead is even 99.95%
(i.e., 2000-times lower overhead) when 100 tasks are used. Therefore, the proposed HW-
based scheduler has much better scalability for the growing number of tasks, allowing
more complex real-time systems with a higher number of tasks to be implemented.

The proposed solution significantly outperformed the existing software-based schedul-
ing despite the fact that the existing solution used a 2.13 GHz clock and the proposed
solution used only a 100 MHz clock. If the proposed solution was implemented using
cutting-edge ASIC technology together with a CPU, then the performance benefits would
be even bigger, reducing the scheduling overhead down to around 3.5 ns (i.e., 0.0035 us) and
further reducing the overhead by around 200-times if a 2 GHz clock was used. On the other
hand, since the main limitation of the proposed solution is the amount of HW resources
(i.e., chip area in ASIC or Look-Up Tables in FPGA), which heavily depends on the number
of tasks to be supported, the FPGA technology brings a significant advantage in the form
of configurability and reconfigurability (including the partial reconfiguration feature of
FPGAs) of the scheduler. In FPGA, the scheduler can be configured to have optimal task
capacity, whereas in ASIC, the scheduler cannot be reconfigured for optimal task capacity,
which can lead to significant waste of chip area if the actual real-time system is using much
less tasks than the scheduler capacity. The optimal setting of scheduler capacity is hard to
determine as it depends on the real-time system requirements and needs.

The overall performance benefits of using a hardware-accelerated task scheduler also
depend on what percentage of the CPU time is spent on the scheduling and what percentage
is used for the actual execution of scheduled tasks. This depends on the actual application
of the real-time system and the granularity of tasks—whether the application uses a few big
tasks or many smaller ones. However, regardless of the actual application, by accelerating
the task scheduling in hardware, it is possible to use almost all of the CPU time for the
actual execution of scheduled tasks instead of scheduling those tasks. Thanks to Moore’s
Law, the costs of hardware-accelerated scheduling are gradually lower and lower, causing
the overall benefits to outweigh the costs.

7. Conclusions

The proposed task scheduler is a novel solution that implements the Earliest-Deadline
First (EDF) scheduling algorithm on an FPGA. This scheduler is well-suited for complex
real-time systems that consist of a mixture of aperiodic hard RT tasks, periodic hard RT
tasks, and non-real-time (best-effort) tasks. It leverages a priority queue-based approach to
handle all types of tasks efficiently and with ease.



Electronics 2023, 12, 1870 16 of 18

The scheduler uses priority queues not only to sort the ready tasks but also to handle
idle periodic tasks and waiting/blocked tasks. As a result, managing these types of tasks is
straightforward, allowing for an autonomous handling process with no need for software
extension, with the only exception being the Tasks Memory initialization. Additionally, the
priority queue-based approach makes the proposed scheduling solution highly efficient
in managing periodic RT tasks and readily extensible to include task synchronization and
inter-task communication capabilities.

This scheduler is optimized for use on quad-core CPUs, which can execute up to
four tasks in parallel. All of the supported instructions take a maximum of three clock
cycles to complete, no matter the system configuration or the actual or maximum amount
of tasks in the system, provided there are not any conflicts between multiple processor
cores attempting to access the scheduler simultaneously. However, in the event of such
conflicts, an extra delay of two to six cycles may occur, leading to a maximum latency of
nine clock cycles per instruction in the worst-case scenario.

In conclusion, the proposed task scheduler is a highly efficient solution for real-
time systems that can handle a diverse range of tasks, including aperiodic hard RT tasks,
periodic hard RT tasks, and non-real-time (best-effort) tasks. Its utilization of priority
queues simplifies the handling of periodic idle tasks and blocked/waiting tasks, making it
a suitable option for systems that require minimal software intervention. The scheduler’s
performance is further enhanced by its compatibility with quad-core CPUs and its ability to
execute instructions in a few cycles, regardless of the number of tasks the system contains.
These features make the proposed task scheduler an attractive option for complex real-time
systems that require efficient task management and optimal performance.

Author Contributions: Conceptualization, L.K.; methodology, L.K.; software, L.K.; validation, L.K.;
formal analysis, L.K.; investigation, L.K.; resources, L.K. and J.M.; data curation, L.K.; writing—original
draft preparation, L.K.; writing—review and editing, L.K. and J.M.; visualization, L.K.; supervision, L.K.;
project administration, L.K.; funding acquisition, L.K. All authors have read and agreed to the published
version of the manuscript.

Funding: The work reported here was supported by the Operational Programme Integrated Infras-
tructure for the project Advancing University Capacity and Competence in Research, Development
and Innovation (ACCORD) (ITMS code: 313021X329), co-funded by the European Regional Develop-
ment Fund (ERDF). This publication was also supported in part by the Slovak national project KEGA
025STU-4/2022, APVV-19-0401 and APVV-20-0346.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mall, R. Real-Time Systems: Theory and Practice, 2nd ed.; Pearson Education India: Delhi, India, 2008; ISBN 978-81-317-0069-3.
2. O’Reilly, C.A.; Cromarty, A.S. “Fast” Is Not “Real-Time” in Designing Effective Real-Time AI Systems; Application of Artificial

Intelligence II; SPIE: New York, NY, USA, 1985; Volumes 5–8, pp. 249–257. [CrossRef]
3. Stankovic, J.A.; Ramamritham, K. Tutorial Hard Real-Time Systems; Computer Society Press: Washington, DC, USA, 1988.
4. Buttazzo, G.; Stankovic, J. Adding Robustness in Dynamic Preemptive Scheduling. In Responsive Computer Systems: Steps toward

Fault-Tolerant Real-Time Systems; Fussell, D.S., Malek, M., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 1995.
5. Caccamo, M.; Buttazzo, G. Optimal scheduling for fault-tolerant and firm real-time systems. In Proceedings of the Fifth

International Conference on Real-Time Computing Systems and Applications (Cat. No.98EX236), Hiroshima, Japan, 27–29
October 1998; pp. 223–231.

6. Buttazzo, G.C.; Sensini, F. Optimal deadline assignment for scheduling soft aperiodic tasks in hard real-time environments. IEEE
Trans. Comput. 1999, 48, 1035–1052. [CrossRef]

7. Buttazzo, G.; Conticelli, F.; Lamastra, G.; Lipari, G. Robot control in hard real-time environment. In Proceedings of the Fourth
International Workshop on Real-Time Computing Systems and Applications, Taipei, Taiwan, 27–29 October 1997; pp. 152–159.

8. Buttazzo, G.C. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications; Springer: New York, NY,
USA, 2011. [CrossRef]

9. Spuri, M.; Buttazzo, G.; Sensini, F. Robust aperiodic scheduling under dynamic priority systems. In Proceedings of the 16th IEEE
Real-Time Systems Symposium, Pisa, Italy, 5–7 December 1995; pp. 210–219.

https://doi.org/10.1117/12.948443
https://doi.org/10.1109/12.805154
https://doi.org/10.1007/978-1-4614-0676-1


Electronics 2023, 12, 1870 17 of 18

10. Heath, S. Embedded Systems Design; Newnes: Newton, MA, USA, 2003; ISBN 0750655461.
11. Lee, I.; Leung, J.Y.-T.; Son, S.H. Handbook of Real-Time and Embedded Systems; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007;

ISBN 9781584886785.
12. Joseph, M. Real-Time Systems Specification, Verification and Analysis; Prentice Hall International: London, UK, 2001.
13. Marwedel, P. Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems; Springer: Berlin/Heidelberg,

Germany, 2010; ISBN 9400702566.
14. Pohronská, M. Utilization of FPGAs in Real-Time and Embedded Systems. In Proceedings of the Informatics and Information

Technologies Student Research Conference; Bratislava, Slovakia, 29.4.2009; Bielikova, M., Ed.; Vydavatel’stvo STU: Bratislava,
Slovakia, 2009.

15. Lange, A.B.; Andersen, K.H.; Schultz, U.P.; Sorensen, A.S. HartOS—A Hardware Implemented RTOS for Hard Real-time
Applications. FAC Proc. Vol. 2012, 45, 207–213. [CrossRef]

16. Liu, S.; Ding, Y.; Zhu, G.; Li, Y. Hardware scheduler of Real-time Operating. Adv. Sci. Technol. Lett. 2013, 31, 159–160.
17. Gergeleit, M.; Becker, L.B.; Nett, E. Robust scheduling in team-robotics. In Proceedings of the International Parallel and Distributed

Processing Symposium, Nice, France, 22–26 April 2003; p. 8.
18. Norollah, A.; Derafshi, D.; Beitollahi, H.; Fazeli, M. RTHS: A Low-Cost High-Performance Real-Time Hardware Sorter, Using a

Multidimensional Sorting Algorithm. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1601–1613. [CrossRef]
19. Derafshi, D.; Norollah, A.; Khosroanjam, M.; Beitollahi, H. HRHS: A High-Performance Real-Time Hardware Scheduler. IEEE

Trans. Parallel Distrib. Syst. 2020, 31, 897–908. [CrossRef]
20. Suman, C.; Kumar, G. Performance Enhancement of Real Time System using Dynamic Scheduling Algorithms. In Proceedings of

the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–6.
21. Teraiya, J.; Shah, A. Optimized scheduling algorithm for soft Real-Time System using particle swarm optimization technique.

Evol. Intell. 2021, 15, 1935–1945. [CrossRef]
22. Norollah, A.; Kazemi, Z.; Sayadi, N.; Beitollahi, H.; Fazeli, M.; Hely, D. Efficient Scheduling of Dependent Tasks in Many-Core

Real-Time System Using a Hardware Scheduler. In Proceedings of the 2021 IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, USA, 20–24 September 2021; pp. 1–7. [CrossRef]

23. Kotaba, O.; Nowotsch, J.; Paulitsch, M.; Petters, S.M.; Theiling, H. Multicore in Real-Time Systems—Temporal Isolation Challenges
Due to Shared Resources. Available online: http://www.cister-labs.pt/docs/1044 (accessed on 24 February 2023).

24. Wandeler, E.; Maxiaguine, A.; Thiele, L. Quantitative Characterization of Event Streams in Analysis of Hard Real-Time Applica-
tions. In Real-Time Systems; Springer: Berlin/Heidelberg, Germany, 2005; Volume 29, pp. 205–225. [CrossRef]

25. Liu, C.L.; Layland, J.W. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 1973, 20, 46–61.
[CrossRef]

26. Omar, H.K.; Jihad, K.H.; Hussein, S.F. Comparative analysis of the essential cpu scheduling algorithms. Bull. Electr. Eng. Inform.
2021, 10, 2742–2750. [CrossRef]

27. Ramesh, P.; Ramachandraiah, U. Performance evaluation of real time scheduling algorithms for multiprocessor systems. In
Proceedings of the 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE), Chennai,
India, 18–20 February 2015; pp. 1–4. [CrossRef]

28. Bastoni, A.; Brandenburg, B.B.; Anderson, J.H. An Empirical Comparison of Global, Partitioned, and Clustered Multiprocessor
EDF Schedulers. In Proceedings of the 2010 31st IEEE Real-Time Systems Symposium, San Diego, CA, USA, 30 November–3
December 2010; pp. 14–24. [CrossRef]

29. Nasri, M.; Davis, R.I.; Brandenburg, B.B. FIFO with Offsets: High Schedulability with Low Overheads. In Proceedings of the 2018
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Porto, Portugal, 11–13 April 2018; pp. 271–282.
[CrossRef]

30. Alhussian, H.; Zakaria, N.; Abdulkadir, S.J.; Fageeri, S.O. Performance evaluation of real-time multiprocessor scheduling
algorithms. In Proceedings of the 2016 3rd International Conference on Computer and Information Sciences (ICCOINS), Kuala
Lumpur, Malaysia, 15–17 August 2016; pp. 310–315. [CrossRef]

31. Churnetski, K. Real-Time Scheduling Algorithms, Task Visualization. Ph.D. Thesis, Computer Science Department Rochester
Institute of Technology, Rochester, NY, USA, 2006.

32. Mohammadi, A.; Akl, S.G. Scheduling Algorithms for Real-Time Systems; School of Computing Queens University: Kingston, ON,
Canada, 2005.

33. Kohutka, L.; Vojtko, M.; Krajcovic, T. Hardware Accelerated Scheduling in Real-Time Systems. In Proceedings of the Engineering
of Computer Based Systems Eastern European Regional Conference, Brno, Czech Republic, 27–28 August 2015; pp. 142–143.
[CrossRef]

34. Kohutka, L.; Stopjakova, V. Task scheduler for dual-core real-time systems. In Proceedings of the 23rd International Conference
Mixed Design of Integrated Circuits and Systems, Lodz, Poland, 23–25 June 2016; pp. 474–479. [CrossRef]

35. Kohútka, L.; Stopjaková, V. Improved Task Scheduler for Dual-Core Real-Time Systems. In Proceedings of the 2016 Euromicro
Conference on Digital System Design (DSD), Limassol, Cyprus, 31 August–2 September 2016; pp. 471–478. [CrossRef]

36. Bloom, G.; Parmer, G.; Narahari, B.; Simha, R. Real-Time Scheduling with Hardware Data Structures; IEEE Real-Time Systems
Symposium: San Juan, PR, USA, 2010.

https://doi.org/10.3182/20120523-3-CZ-3015.00041
https://doi.org/10.1109/TVLSI.2019.2912554
https://doi.org/10.1109/TPDS.2019.2952136
https://doi.org/10.1007/s12065-021-00599-6
https://doi.org/10.1109/HPEC49654.2021.9622857
http://www.cister-labs.pt/docs/1044
https://doi.org/10.1007/s11241-005-6885-x
https://doi.org/10.1145/321738.321743
https://doi.org/10.11591/eei.v10i5.2812
https://doi.org/10.1109/RACE.2015.7097297
https://doi.org/10.1109/RTSS.2010.23
https://doi.org/10.1109/RTAS.2018.00035
https://doi.org/10.1109/ICCOINS.2016.7783233
https://doi.org/10.1109/ECBS-EERC.2015.32
https://doi.org/10.1109/MIXDES.2016.7529789
https://doi.org/10.1109/DSD.2016.44


Electronics 2023, 12, 1870 18 of 18

37. Tang, Y.; Bergmann, N.W. A Hardware Scheduler Based on Task Queues for FPGA-Based Embedded Real-Time Systems. IEEE
Trans. Comput. 2015, 64, 1254–1267. [CrossRef]

38. Starner, J.; Adomat, J.; Furunas, J.; Lindh, L. Real-Time Scheduling Co-Processor in Hardware for Single and Multiprocessor
Systems. In Proceedings of the EUROMICRO Conference, Prague, Czech Republic, 2–5 September 1996; pp. 509–512. [CrossRef]

39. Varela, M.; Cayssials, R.; Ferro, E.; Boemo, E. Real-time scheduling coprocessor for NIOS II processor. In Proceedings of the VIII
Southern Conference Programmable Logic, Bento Gonçalves, Brazil, 20–23 March 2012; pp. 1–6. [CrossRef]

40. Ferreira, C.; Oliveira, A.S.R. Hardware Co-Processor for the OReK Real-Time Executive. Eletrón. Telecomun. 2010, 5, 160–166.
41. Ong, S.E.; Lee, S.C. SEOS: Hardware Implementation of Real-Time Operating System for Adaptability. In Proceedings of the 2013

First International Symposium on Computing and Networking, Matsuyama, Japan, 4–6 December 2013; pp. 612–616. [CrossRef]
42. Kim, K.; Kim, D.; Park, C.H. Real-Time Scheduling in Heterogeneous Dual-core Architectures. In Proceedings of the 12th

International Conference on Parallel and Distributed Systems, Minneapolis, MN, USA, 12–15 July 2006. [CrossRef]
43. Wulf, C.; Willig, M.; Goehringer, D. RTOS-Supported Low Power Scheduling of Periodic Hardware Tasks in Flash-Based FPGAs.

Microprocess. Microsyst. 2022, 26, 104566. [CrossRef]
44. Slimani, K.; Hadaoui, R.; Lalam, M. Hardware Fuzzy Scheduler for Real-Time Independent Tasks. J. Circuits Syst. Comput. 2022,

31, 2250155. [CrossRef]
45. Khare, A.; Patil, C.; Chattopadhyay, S. Task mapping and flow priority assignment of real-time industrial applications for

network-on-chip based design. Microprocess. Microsyst. 2020, 77, 103175. [CrossRef]
46. Ferreira, C.M.; Oliveira, A.S. RTOS Hardware Coprocessor Implementation in VHDL. In Proceedings of the Intellectual Prop-

erty/Embedded Systems Conference, Boston, MA, USA, 21–24 September 2009.
47. Chandra, R.; Sinnen, O. Improving Application Performance with Hardware Data Structures. In Proceedings of the 2010 IEEE

International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23
April 2010; pp. 1–4. [CrossRef]

48. Moon, S.W. Scalable Hardware Priority Queue Architectures for High-Speed Packet Switches. In Proceedings of the Third IEEE
Real-Time Technology and Applications Symposium, Montreal, QC, Canada, 9–11 June 1997; pp. 203–212. [CrossRef]

49. Kohútka, L. Efficiency of Priority Queue Architectures in FPGA. J. Low Power Electron. Appl. 2022, 12, 39. [CrossRef]
50. Klass, F.; Weiser, U. Efficient systolic arrays for matrix multiplication. In Proceedings of the International Conference on Parallel

Processing, Austin, TX, USA, 12–16 August 1991; Volume III, pp. 21–25.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TC.2014.2315637
https://doi.org/10.1109/EURMIC.1996.546476
https://doi.org/10.1109/SPL.2012.6211775
https://doi.org/10.1109/CANDAR.2013.110
https://doi.org/10.1109/ICPADS.2006.90
https://doi.org/10.1016/j.micpro.2022.104566
https://doi.org/10.1142/S0218126622501559
https://doi.org/10.1016/j.micpro.2020.103175
https://doi.org/10.1109/IPDPSW.2010.5470740
https://doi.org/10.1109/RTTAS.1997.601359
https://doi.org/10.3390/jlpea12030039

	Introduction 
	Related Work 
	Proposed Solution 
	Ready Queue 
	Waiting Queue 
	Idle Queue 
	Semaphore 
	Running Tasks 
	Control Unit 
	Tasks Memory 

	Design Verification 
	Synthesis Results 
	Performance Evaluation 
	Conclusions 
	References

