
Citation: Aslan, Ö. Separating

Malicious from Benign Software

Using Deep Learning Algorithm.

Electronics 2023, 12, 1861.

https://doi.org/10.3390/

electronics12081861

Academic Editors: Leandros

Maglaras, Helge Janicke and

Mohamed Amine Ferrag

Received: 17 March 2023

Revised: 12 April 2023

Accepted: 13 April 2023

Published: 14 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Separating Malicious from Benign Software Using Deep
Learning Algorithm
Ömer Aslan

Department of Software Engineering, Bandırma Onyedi Eylül University, Balıkesir 10200, Turkey;
oaslan@bandirma.edu.tr

Abstract: The increased usage of the Internet raises cyber security attacks in digital environments.
One of the largest threats that initiate cyber attacks is malicious software known as malware. Au-
tomatic creation of malware as well as obfuscation and packing techniques make the malicious
detection processes a very challenging task. The obfuscation techniques allow malware variants to
bypass most of the leading literature malware detection methods. In this paper, a more effective
malware detection system is proposed. The goal of the study is to detect traditional as well as new
and complex malware variants. The proposed approach consists of three modules. Initially, the
malware samples are collected and analyzed by using dynamic malware analysis tools, and execution
traces are collected. Then, the collected system calls are used to create malware behaviors as well as
features. Finally, a proposed deep learning methodology is used to effectively separate malware from
benign samples. The deep learning methodology consists of one input layer, three hidden layers,
and an output layer. In hidden layers, 500, 64, and 32 fully connected neurons are used in the first,
second, and third hidden layers, respectively. To keep the model simple as well as obtain optimal
solutions, we have selected three hidden layers in which neurons are decreasing in the following
subsequent layers. To increase the model performance and use more important features, various
activation functions are used. The test results show that the proposed system can effectively detect
the malware with more than 99% DR, f-measure, and 99.80 accuracy, which is substantially high
when compared with other methods. The proposed system can recognize new malware variants
that could not be detected with signature, heuristic, and some behavior-based detection techniques.
Further, the proposed system has performed better than the well-known methods that are mentioned
in the literature based on the DR, precision, recall, f-measure, and accuracy metrics.

Keywords: cyber security; malware; malware detection; malware dataset generation; deep learning;
traditional learning

1. Introduction

Internet access among users has been increasing worldwide. These days, more than
50% of the world’s population uses the Internet for personal as well as business purposes.
This is because digital environments provide tremendous benefits when compared to
traditional life without using the Internet. On the other hand, the increased usage of
the Internet also raises issues in the cyber security perspective. Cybercriminals spend a
vast amount of time obtaining financial and other benefits from companies [1] as well as
personal users. According to recent studies, hacking, phishing, spoofing, spyware, and
ransomware attacks [2] have risen tremendously. Most of the time, cybercriminals utilize
malicious software known as malware to exploit computer system vulnerabilities to launch
a cyber attack [3]. Malware is a subclass of software that is intended to perform unwanted
actions, such as stealing sensitive data, causing a denial of service attack (DoS), and damage
to victim machines [4]. There are different types of malware, such as virus, worm, trojan,
spyware, rootkit, and ransomware.

Electronics 2023, 12, 1861. https://doi.org/10.3390/electronics12081861 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081861
https://doi.org/10.3390/electronics12081861
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0737-1966
https://doi.org/10.3390/electronics12081861
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081861?type=check_update&version=1

Electronics 2023, 12, 1861 2 of 21

Cyber attacks, which were previously simple and aimless, have been replaced by
wider and more targeted attacks. These days, the cybercrime industry has become one
of the largest economies in the world. The cost of cyber attacks to the world economy
is mentioned in trillions of dollars in many scientific studies. According to Morgan [5],
cybercrime is expected to cost nearly USD 10 trillion to the world economy by 2025, and
it is expected to increase more in the following decades. The effectiveness of malware
as an attack vector in the cyber security domain is increasing rapidly. Recent malware
concerns and trends can be viewed in Table 1. The malware increasing rate is exponential,
and, currently, there are more than a billion malware samples in the wild. Some of these
malware samples are easily accessible on online platforms. Every minute, a few companies
across the world become a victim of malware, and there is no antivirus software that can
effectively detect the new malware variants. Mobile malware variants are increasing, and
IoT devices, cloud environments, banks, and healthcare systems mostly are becoming the
target of the malware [6,7].

Table 1. Recent malware concerns and trends.

Parameter Class Facts on Malware Concerns and Trends

Economic damage Cybercrime expected to cost nearly USD 10 trillion to the world
economy by 2025

Propagation (speed) The current number of malware variants is more than 1 billion
The malware increasing rate is exponential

Spread
method/environment

Most of the malware is delivered by email and drive-by download
Different malware samples are being sold on DarkWeb

Malware target
Mostly small businesses become the target of the malware
IoT devices, cloud environments, banks, and healthcare systems
mostly become the target of malware

Common malware
Trojans are the most common malware types
Mobile malware variants are increasing
Every minute, a few companies become a victim of ransomware

Detectors’ efficiency
Antivirus programs do not effectively detect the new
malware variants
Not resistant to obfuscation techniques

To protect the computer-based system as well as the communication network, the
malware variants must be detected efficiently. There are different malware detection tech-
niques, such as signature, heuristic, behavior, and model checking. The technique names
also vary based on the learning method that was used and what the platform was built
for, including cloud-based, IoT-based, machine learning (ML)-based, and deep learning
(DL)-based. Before the detection phase starts, malware features need to be extracted by
using static or dynamic analysis tools. Then, the most significant features are selected for
classification. Finally, machine learning algorithms as well as deep learning methods can
be used to separate malware from benign files.

A decade ago, signature-based detectors were popular to recognize malware. How-
ever, due to polymorphism and packing techniques that new malware variants are using,
the signature-based detectors generally fail to detect zero-day malware [8]. The same
inefficiency takes place for heuristic techniques as well. Even though the behavior- and
model-checking-based detectors can recognize some portion of the unknown malware
variants, they still fail to detect more complex malware variants that are substantially
different from the existing ones. The machine learning classifiers as well as deep learning
methods increase the performance of malware detection techniques.

Machine learning algorithms can be used in many aspects of malware detection [9,10],
including feature selection, dimensionality reduction, and classification phases. In these
stages, the need for manual work is decreasing while the efficiency of machines is more

Electronics 2023, 12, 1861 3 of 21

involved. In deep learning, even the feature extraction phase can be automated. In this
case, the need for domain experts is greatly reduced while the performance of the detectors
remains the same or better. Deep learning can be used for various purposes in learning
processes, including feature extraction, classification, and dimensionality reduction. Fur-
ther, it can be combined with other ML models to enhance performance. We assume that,
even with domain expert knowledge, the DL model may perform better in some cases.
Because of these benefits, we used a deep learning method to separate malicious software
from benign samples. Deep learning utilizes several hidden layers instead of one hidden
layer, which is used in shallow neural networks. Recently, there are various deep learning
architectures proposed to improve the model performance, such as CNN (convolutional
neural network), DBN (deep belief network), DNN (deep neural network), and RNN
(recurrent neural network) [11–13].

In this study, we aim to detect traditional and more complex malware variants ef-
ficiently. To do so, the deep-learning-based malware detection model is proposed. In
the proposed model, first, the malware samples are analyzed by using dynamic malware
analysis tools, and execution traces are collected. Then, the collected system calls are used
to create malware behaviors as well as features. Finally, a proposed deep learning method-
ology is used to effectively identify malware as well as cleanware. The deep learning
methodology consists of one input layer, three hidden layers, and one output layer. In
hidden layers, dense (fully connected) layers, which consist of 500, 64, and 32 neurons,
are used in the first, second, and third hidden layers, respectively. To increase the model
performance and use more important features, various activation functions in the order of
Sigmoid, ReLU, Sigmoid, and Softmax are used. The proposed system could effectively
distinguish the various malware types from benign files. Further, the proposed system can
detect new malware samples that could not be detected with signature- and heuristic-based
detection techniques.

In summary, the paper makes the following contributions to build a more robust
malware detection model using deep learning:

• The new dataset creation method is proposed;
• The deep-learning-based methodology is suggested to separate malware from benign

files;
• Machine learning classifiers are used to detect malware as well;
• The well-known literature studies are reviewed based on the main idea and important

findings;
• The proposed method reduces the number of features while increasing the perfor-

mance significantly;
• The suggested model can effectively detect both known and zero-day malware.

The rest of the paper is organized as follows. Section 2 explains the important points
in state-of-the-art studies on malware detection approaches and deep learning malware
detection methods. Section 3 presents materials and methods. This section also explains
the dataset creation method and the proposed deep learning methodology in detail. Ex-
perimental results and discussions are interpreted in Section 4, and limitations and future
works are provided in Section 5. Finally, Section 6 presents the conclusion.

2. Related Work

This section presents the vast amount of literature studies on malware detection
and classification approaches. Based on the method and technology that are utilized,
malware detection and classification approaches can be categorized differently. For instance,
based on the analysis methods, they can be categorized as static, dynamic, and hybrid
malware detection. Based upon the feature selection methods, they can be grouped as
signature-, behavioral-, rule-, and model-checking-based detection approaches. Based on
the technologies that are used, it can be cloud-based, IoT-based, blockchain-based, machine-
learning-based, or deep-learning-based. Malicious software detection is a long process,
and several different entities, including technologies, methods, and techniques, are used in

Electronics 2023, 12, 1861 4 of 21

this stage. Malware classification can be defined as one step further to specify the types
or families of malicious software after the detection process takes place. In this section,
we first would like to categorize the malware detection and classification approaches
based on signature-, heuristic-, behavioral-, machine-learning- and deep-learning-based.
Then, we review the literature studies in each category by highlighting the main idea and
important findings.

2.1. Signature-Based Detection

A signature is a sequence of bits that can uniquely identify the program structure. The
program signatures are unique; thus, they can frequently be used in malware detection
as well as classification. Signature- and heuristic-based malware detection approaches
are proposed generally to detect variants of known malware families. However, they
cannot effectively detect zero-day malware. Griffin et al. explained an automatic signature
extraction technique [14]. The suggested technique could automatically generate the string
signatures by using a range of library detection techniques and diversity-based heuristics.
According to the authors, the extracted signatures were generally observed in malware
samples that were similar to one another. The false positive rate was reduced by using the
occurrence probability of arbitrary byte sequences in benign samples.

A signature-based detection method based upon API call tracing was presented by
Savenko et al. [15]. The proposed method consists of two parts: the frequency of API calls
and the interaction of critical API calls. The malware signature for each program sample
was generated from the API calls as well as the interaction of critical API calls. When
specifying the program sample containing malicious codes, the signature of the sample
is extracted as before and compared with a list of signatures for each malware class. If
it matches, it is malware and the class of malware is identified. Otherwise, the analyzed
sample is benign. The paper presented that the proposed signature-based method could
detect malware class with 92.7% (Delf), 93.1% (Gammima), 93.8% (Bifrose), 96.4% (Ramnit),
and 96.56% (MyDoom) accuracy rates.

Sahoo et al. proposed a signature-based detection method for unstructured data in
distributed file system Hadoop [16]. They utilized a Clam-AV signature database and used
a fast string search algorithm based upon the map-reduce technique. For string matching,
Boyer–Moore, Karp–Rabin, and Knuth–Morris–Pratt (KMP) algorithms were used. The
proposed method was tested on a real-world dataset. The different accuracy rates were
obtained when different pattern-matching algorithms were used. The presented method
could not be clearly explained in the paper. Moreover, there was no information about the
tested dataset, which detection and accuracy rates were obtained, and how they handle
new malware variants.

2.2. Heuristic-Based Detection

The heuristic-based detection approach uses experience that utilizes certain rules and
ML techniques to separate malware from cleanware. It is effective to detect metamorphic,
polymorphic, and some of the previously unknown malware, but it cannot detect complex
malware. In the heuristic approach, API system calls, operational code (Opcode), control
flow graph (CFG), and hybrid features were used extensively [10,17].

An intelligent malware detection method, which used a heuristic technique, was
presented by Ye et al. [18]. The proposed method’s goal was to detect previously unseen
malware variants and polymorphic malware samples that could not be detected by antivirus
scanners. Initially, API sequences of a given program were extracted and appropriate rules
were generated using the FP-growth algorithm. Then, classification algorithms were used
to detect malware as well as benign. According to the paper, even though the suggested
method’s performance was better than some antivirus scanners to detect malware variants,
it did show the same performance when detecting unknown malware.

Bilar explained Opcode frequency distributions to detect metamorphic as well as
polymorphic malware variants [19]. Further, 67 malware samples were disassembled,

Electronics 2023, 12, 1861 5 of 21

and their statistical opcode frequency distributions were compared with the statistics of
20 benign samples. The experiment test results indicated that there was a significant
difference in the opcode distribution of malware and benign samples. The presented
method was tested on a small portion of malware and benign samples; more samples need
to be analyzed to obtain more reliable results.

2.3. Behavioral-Based Detection

The behavioral-based approach monitors the sample program behaviors, and, based
on the behaviors that are obtained, the sample program is marked as malicious or benign.
Behavioral-based detection approach has seemed to be a promising solution to detect both
known and unknown malware variants for a decade. However, some malware variants do
not display their actual behaviors in environments such as virtual machines and sandboxes
and, hence, cannot be detected by behavioral-based detection approaches.

A system-centric behavioral model, which separated malware from benign samples,
was presented by Lanzi et al. [20]. The paper presented that the way malicious samples
interact with system resources, including directories, registries, etc., was different from the
interaction of benign samples. Behavior sequences were extracted from the system calls by
using the interaction differences. Finally, malware and benign categories were identified by
using behavior sequences. The n-gram technique was used when the behavior sequences
were generated. Thus, the proposed method was not very effective to separate malware
from benign samples because of the excessive number of sequences of behaviors generated
with the n-gram.

Galal et al. proposed a behavior-based malware detection model that relies on mali-
cious actions displayed by malware as well as benign samples [21]. To extract the malware
features, dynamic analysis was performed on collected malware samples in a controlled
virtual environment, and API call traces were captured. Then, the API call traces were
converted into high-level features. Finally, machine learning classifiers were used, includ-
ing decision tree (DT), random forest (RF), and support vector machine (SVM), to detect
malware. According to the paper, a high accuracy rate was obtained in the detection of
malware variants. However, the numerical statistics, such as detection rate, accuracy rate,
etc., were not provided in the paper.

Ding et al. presented a malware detection technique based upon a family dependency
graph [22]. First, system calls were obtained from the malware and benign samples. Then,
a dynamic taint analysis method was used to identify the dependency relationship among
the system calls. After that, family dependency graphs were generated. Based upon the
generated dependency graphs, common behavior graphs were extracted to represent the
malware family’s behavioral features. In the end, graph-matching, which used maximum
weight subgraphs, was used to recognize malware samples. According to the paper, the
suggested method could detect different malware samples with a high detection rate.
However, for some malware variants, the detection rate was low, and false alarm rates
were high.

2.4. Machine-Learning-Based Detection

Machine-learning-based malware detection methods have become popular after 2015
and still are used in many scientific studies. Malware detection, which used machine
learning, was proposed by Markel [23]. The metadata, specifically header data from
each Windows Portable Executable (PE32), were collected. Then, learning methods were
performed on collected metadata to detect malware. The presented method was tested
on realistic datasets. Based on the test results, it was found that classifiers did not return
satisfactory results on test data with a low malware prevalence. Even with ensemble
learning, satisfactory results were not obtained. It was found that, to obtain the best
performances, the training and testing data should be in the same proportion.

Sethi et al. proposed a machine learning detection as well as classification schema [24].
The Cuckoo sandbox was used to collect the system activities when program samples

Electronics 2023, 12, 1861 6 of 21

were executed. Then, on collected activities, a property extraction, as well as a selection
method, were proposed and performed to separate malware from benign samples. Finally,
various machine learning algorithms were performed to detect malware as well as fine-
grained classification. According to the paper, the obtained detection and classification
results were high when compared with the state-of-the-art methods. However, the obtained
performance results for some machine learning classifiers were low. For instance, for SVM
and RF, the accuracy rate was obtained as 86.7% and 88.2%, respectively, which was much
lower than the deep learning methods.

Singh examined the malware detection techniques that used machine learning algo-
rithms [25]. The paper discussed several challenges in detecting malware when a traditional
approach was used. When machine learning techniques were applied to the malware fea-
tures, the malicious patterns were recognized effectively. Additionally, machine learning
assists to detect unknown variations while reducing time and human intervention during
the detection processes. In addition, machine learning techniques were commonly used in
signature- and behavior-based detection approaches to increase the detection rate as well
as accuracy.

2.5. Deep-Learning-Based Detection

Recently, deep-learning-based malware detection and classification methods have
appeared to be improving the accuracy and resiliency of the detectors. In deep learn-
ing models, there are generally two main techniques to extract malware features before
classification takes place. In the first technique, malicious binary files are converted into
images and then features are extracted. In the second one, execution traces of malware
are collected by using relevant malware analysis tools, and then execution traces are used
to visualize malicious files. After the feature extraction phase is complete, various deep
learning architectures can be used to classify the malware. In the last two years, there has
been growing interest in malware detection approaches that use various deep learning
models [26–32].

Kumar proposed an MCFT-CNN (fine-tuned convolution neural networks) method
to classify malware [26]. The method utilized deep transfer learning by enhancing the
ResNet50 model to categorize different malware families. The suggested model was tested
on Malimg and Microsoft BIG 2015 datasets. The accuracy was measured as 98.63% for the
Microsoft dataset. In [27], the authors used LSTMs (long short-term memory networks) to
detect malware on Windows audit logs. Initially, they extracted properties from Windows
audit logs and then used one-hot encoding to transform them into continuous values. After
that, they used LSTMs to recognize malware from benign files. Even though the proposed
method achieved satisfactory DR, several false alarms reduced the efficiency of the model.
To improve the model performance, the false alarm rate must be decreased, and a larger
dataset is needed to test the model.

Jian et al. suggested a new malicious software detection framework using deep neural
networks [28]. The benign and malware samples were collected and visualized by using
an IDAPro disassembler. To obtain the high-dimensional features, visualized bytes and
asm files were converted into three-channel RGB images. Finally, a deep neural network
model using SEResNet50 + Bi-LSTM was used to detect malware and classify the malware
families. The proposed framework was tested on Microsoft BIG 2015 dataset, and a 98.3%
accuracy rate was obtained. To validate the presented method more clearly, the method
will need to be tested on different datasets.

Baek et al. suggested a hybrid malware detection model, which consists of two
phases, to detect malware on IoT devices [29]. In the first phase, opcode was generated
by performing static malware analysis, and benign files were identified by using Bi-LSTM
(bidirectional long short-term memory). In the second phase, dynamic analysis was used
to extract malware features, and then malware was detected by using the EfficientNet-
B3 model. The accuracy rate of static and dynamic analysis was measured as 94.46%
and 94.98%, respectively. The presented method was not compared with other state-of-

Electronics 2023, 12, 1861 7 of 21

the-art methods enough and the contents of the analyzed malware samples were not
explained enough.

In our previous study [30], we presented a hybrid deep learning architecture to
categorize the malware families. In the proposed model, first, the malware samples were
converted into grayscale images. Then, the high-level malware features were generated
by using pre-trained networks via ResNet-50 and AlexNet. Finally, the generated features
were classified by using a deep neural network as a supervised learner to classify malware
families. The presented method was evaluated on Microsoft BIG 2015, Malimg, and
Malevis datasets. The accuracy rate on the Malimg dataset measured 97.78%, which was
substantially high when compared with ML-based detectors.

A convolutional-neural-network-based deep learning framework was described in [31].
The proposed framework used transfer-learning-based architecture, which utilized spatial
convolutional attention to classify 25 malware families. The framework performances were
tested on the Malimg dataset and obtained precision, recall, specificity, F1, and accuracy
measured as 97.1%, 96.9%, 97.3%, 97%, and 97.4%, respectively. The presented method was
tested on the Malimg dataset; it can be tested on more malware datasets.

Azeez et al. examined ensemble-learning-based models to detect malicious soft-
ware [32]. In the study for the base classification stage, a stacked ensemble of fully con-
nected and 1D convolutional neural networks (CNNs) was used. For the final stage of
classification, machine learning algorithms were used. For meta-learner, 15 ML algorithms
were used, and, for comparisons, AdaBoosting, decision tree, gradient boosting, naïve
Bayes, and random forest were used. The method was tested on malware and benign
samples, which were collected from the Kaggle dataset. Among 14.599 malware samples,
the best accuracy result was measured as 98.62% when XGBoost was used. In some cases,
the accuracy rate was rather low. The presented schema can be tested on different datasets
as well as unknown malware variants.

2.6. Evaluation of Related Works on Malware Detection Approaches

In this section, several state-of-the-art studies were summarized in different cate-
gories, including traditional signature-, heuristic-, behavioral-, machine-learning-, and
deep-learning-based (Table 2). The signature- and heuristic-based malware detectors are
fast and efficient to detect traditional malware, but they fail to detect zero-day malware.
Behavioral-based and machine-learning-based malware detectors are efficient to recognize
some portion of the zero-day malware, but they fail to detect malware variants whose
behavioral patterns are relatively different from the existing ones. DL-based detectors
generally visualize the malware executable and decrease the need for feature creation as
well as the selection process most of the time. This case increases the detection rate for both
known and unknown malware. However, there are still some problems related to machine
learning and deep learning when detecting and classifying malware. These problems can
be listed as follows:

• ML and DL algorithms make assumptions about the data and these assumptions can
be wrong sometimes;

• Sometimes, there is not enough information within flows, need contextual features;
• Generally, data contain high dimensionality, which may decrease system performance;
• The algorithms do not take domain expert knowledge into account; this can generate

meaningless features;
• ML algorithms are prone to bias and cannot handle outliers all the time;
• Detecting zero-day malware is challenging;
• The intelligent malware evades the ML- and DL-based classifiers.

Most of the malware classification approaches, which use deep learning models, were
tested on Microsoft BIG 2015, Malimg, and Malevis datasets. There are a few deficiencies
in these datasets. For instance, most of the malware in the datasets is already known
malware; it is not up to date. There are no benign samples in some of these datasets, and
there are not enough balanced samples for each malware family. Most of the studies that

Electronics 2023, 12, 1861 8 of 21

used these three malware datasets were performing classification tasks that categorized
some malware families; they were not recognizing malware from the benign class. Further,
the analyzed DL-based malware classification methods are similar in most of the studies,
and these studies could not make a major difference in effectively recognizing the new
malware variants. The proposed method tried to eliminate the leading current DL-based
classification state-of-the-art studies and made necessary contributions in this area side by
side to effectively recognize both known and new unknown malware.

Table 2. The summary of the state-of-the-art studies on malware detection and classification methods.

Scientific Research Year
Feature Extraction
Method/Feature
Representation

Detection Method Success

Griffin et al. [14] 2009

Range of library
detection techniques and

diversity-based
heuristics

Signature-Based

Not given

Sahoo et al. [16] 2014
Unstructured data in

Hadoop by using a fast
string search algorithm

Not given

Savenko et al. [15] 2019
Frequency of API calls as
well as the interaction of

critical API calls
92.7% accuracy

Ye et al. [18] 2007 API sequences with
FP-growth algorithm

Heuristic-Based
93.07% accuracy

Bilar [19] 2007 Opcode frequency
distributions Not given

Lanzi et al. [20] 2010
Behavior sequences
extracted from the

system calls
Behavior-Based

91% detection rate

Galal et al. [21] 2016 High-level features were
represented as API calls 93.98% accuracy

Ding et al. [22] 2018 Dependency graph by
using taint analysis 91.6 accuracy

Markel [23] 2015
Header metadata from

Windows Portable
Executable

Machine-Learning-
Based

Low performance

Sethi et al. [24] 2019 Dynamic system
activities 88.2% accuracy

Singh [25] 2021 Runtime features Depends on the
study

Kumar [26] 2021
Fine-tune convolution
neural networks with

ResNet50

Deep-Learning-
Based

98.6% accuracy

Baek et al. [29] 2021 Bi-LSTM with
EfficientNet-B3 model 94.9% accuracy

Aslan and Yilmaz [30] 2021 Grayscale images with
ResNet-50 and AlexNet 97.7% accuracy

Awan et al. [31] 2021
Transfer learning based
on spatial convolutional

attention
97.4% accuracy

3. Materials and Methods

This section explains materials and methods. The proposed system architecture
consists of three modules, namely data collection as well as labeling, feature creation
representation, and classification, which are shown in Figure 1. The main idea is to take
the malware and benign binary files as input to the proposed system and produce a result
that shows whether the binary contains malicious code or not. To increase detection
performance, domain expert knowledge and deep learning models are combined in this
study. This is because deep-learning-based models can easily be deceived by evasion
attacks in the cybersecurity domain, whereas combining domain knowledge with deep
learning increases the resistance level against evasion attacks.

Electronics 2023, 12, 1861 9 of 21

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

 1

Malware & Benign

Binaries

Data Collection and Labeling Module

Feature Creation and Representation Module

Classification Module

010010010

110011011

011100001

010101010

111010010

001010111

• VirusTotal

• Desktop Marking

Malware

Dynamic

Analysis

Tools

NtCreateProcess()

NtCreateFile()

NtReadFile()

NtQueryDirectory

NtCloseFile()

NtWriteFile()

NtRegCreateKey()

NtRegSetKey()

System Call Traces Extract Behaviors

…………..

…………..

Create

Read

Search

Write

SetValue

…………

……

11,11,113

6,36,363,3

0,30,1,1,1,

1,1,1,1,4,4

Feature Frequency

M, 1,0,0,234..

Vectorized

F

e

a

t

u

r

e

V

e

c

t

o

r

Input

Dense (500)

S

i

g

m

o

i

d

 Dense (64) Dense (32)

R

e

L

U

S

i

g

m

o

i

d

S

o

f

t

m

a

x

D

r

o

p

o

u

t

Malware

Benign

Features

………………..

ReadSearchF

ReadWriteF

SendReceiveM

………..………

……………….

Output

Figure 1. Proposed malware detection architecture.

Electronics 2023, 12, 1861 10 of 21

In the first module, various malware and benign samples are collected from different
sources and labeled by using VirusTotal and desktop marking (Figure 1). VirusTotal is a
website that uses various vendor antivirus scanners to label the given program. For desktop
marking, several types of antivirus software are downloaded into the desktop and used.
Further, some basic features that are gathered during the malware analysis process are
taken into consideration during the labeling stage. In some cases, it was difficult to label
the malware samples by using an antivirus scanner; for those cases, extra features are used.

After the labeling stage is completed, we execute each sample in the protected en-
vironment in order to specify malware and benign features. For that, first, the malware
and benign samples are analyzed under dynamic analysis tools and system calls execution
traces are collected. Second, system calls are grouped into six categories, including process,
thread, file, registry, memory, and network. Based on the six categories, the behaviors
are created. Third, features are generated from the behaviors. In this process, behaviors
themselves, in which locations they are executed, and some of the other parameters, in-
cluding PID (process identifier), parent PID, results, time, event class, and sequence are
considered. Finally, feature frequency and the row feature vector are generated. In the
feature creation and representation process, the binary files that consist of hundreds of
thousands of {0, 1} are taken, and feature vectors are generated that comprise a few hundred
natural numbers f = {0, 1, 2, 3, . . . , n}, where f is feature set and n is the last number of
values. We think that examples of malware and benign files display behaviorally similar
sequences in similar frequency.

In the classification module, the new deep learning methodology is presented to detect
malware as well as benign samples. The methodology consists of 1 input, 3 hidden, and 1
output layer (Figure 1). In hidden layers, dense (fully connected), which consists of 500, 64,
and 32 neurons, are used in the first, second, and third hidden layers, respectively. To keep
the model simple as well as obtain optimal solutions, we have selected 3 hidden layers in
which neurons are decreasing in the following subsequent layers. To increase the model
performance and use more significant features, various activation functions in the order of
Sigmoid, ReLU, Sigmoid, and Softmax are used. To decrease the error between the training
and testing, the dropout rate of 60% is applied. A detailed explanation of the proposed
system can be viewed in the following subsections.

3.1. Dataset Creation and Representation Method

Since the malware can easily change its static features to escape from the detection
system, the dynamic features are considered in this study. In order to generate dynamic
malware and benign features, the real active malware and benign samples are collected
and executed under virtual machines. It is known that the way malware samples run
on operating system resources is different from benign samples. Based on this fact, the
execution traces of system calls are collected for each sample. During the execution trace
collection, the processes that are created by each sample that performed system calls are
also considered. The collected system calls are classified based upon the operating system
resources, including process, thread, file, registry, memory, and network. Dynamic analysis
tools, including Autoruns, Process Monitor, Regshot, and Wireshark, are used to capture the
system calls execution traces. For each system call, the available arguments, which provide
extra information on how the system call is performed, such as process name, PID (process
identifier), TID (thread identifier), parent PID, operation, path, image path, results, time,
event class, sequence, category, and detail, are collected as well. These arguments are used
during the behavior and feature creating process. For each malware and benign sample,
thousands of system calls are obtained that are difficult to handle during the detection
process. Due to that, the high-level behaviors are generated based on the performed system
calls. We defined behavior as a group of system calls that perform meaningful actions on
operating system resources.

The created malware and benign behaviors are classified based on the properties, such
as resource types, executed paths, behavior types, PID, parent PID, called DLLs, etc. Then,

Electronics 2023, 12, 1861 11 of 21

the level of behaviors, which represents the probability of being observed in malware and
benign samples, is calculated. For instance, writing normal files and system files, such as
svchost. exe, wininit. exe, winlogon. Exe, is different, or reading a normal file content and
process memory is different. Even if both behaviors are the same, the probability of these
behaviors being viewed in malicious and benign samples will be different. The calling of
Kernel32.dll or Ntdll.dll is different because benign samples generally call Kernel32.dll
while malware calls Ntdll.dll in order to hide its action. Moreover, malware samples
more frequently copy themselves into the computer Autostart file and registry location
than benign samples. These kinds of behaviors are considered more during the feature
creation as well as selection processes. The level of behavior is important during the feature
engineering process. It is because, the higher the level of behavior, the more likely this
behavior will be selected in the feature set.

The malware and benign features are generated by using the relationship among the
behaviors as well as the level of behaviors. When features are generated from the behaviors,
top ten consecutive behaviors are taken into consideration. When n-gram is used, only the
specified n value is used during the feature generation process. For instance, if the order of
the behaviors is {a1, a2, a3, b1, b2} (a and b show different system resources) and n is 2, the
generated features will be {<a1, a2>, <a2, a3>, <a3, b1>, <b1, b2>}. For the same behavior set,
if n is 4, the generated features will be {<a1, a2, a3, b1>, <a2, a3, b1, b2>}. When n-grams are
used this way, many important features will be overlooked. In our proposed method, we
consider the top ten consecutive behaviors each time during the feature generation. For
the same behavior set, the generated candidate features will be {<a1, a2>, <a1, a3>, <a2, a3>,
<a1, a2, a3>, <b1, b2>}. Based on the system resource instances and relationships, the feature
set will be generated from the candidate features. Further, the features whose level values
are below a certain threshold value are also not included in the feature set. That way, the
generated feature set will contain much fewer features than the candidate feature set.

When n grows, the number of features created using n-grams becomes very large,
while the number of features does not increase after a certain number in the dataset created
with the proposed method. When the number of behaviors is 50.000 and n is 2, (n − 1)
features 49.999 will be generated. For the same number of behaviors, when n is 3 and
4, (n − 2) and (n − 3) features 49.998 and 49.997 will be generated, respectively. For the
proposed method, around 100 features are generated for the same behavior set, which is
much fewer than n-gram. This is the case because, during the feature generation process,
we first group the behaviors based on the operating system resources, including process,
thread, file, registry, memory, and network. Then, a candidate feature set is created when
the behaviors on the same resource instance are performed. If a feature is not performed
in a specific resource path, it is also removed from the dataset. Finally, the frequency of
feature values is used when a row feature is created for each sample.

After the feature generation process is completed, the feature frequency is calculated
for each feature and written as a feature value. Finally, the row feature vector is created
for each program sample using the feature frequency. That way, our proposed feature
generation method took malware and benign binary files as input and generated a row
feature vector for each sample. The proposed feature creation method data flow stages can
be summarized as follows:

• Stage 1: The malware and benign samples are employed under the dynamic malware
analysis tools;

• Stage 2: The execution traces of system calls are obtained;
• Stage 3: System calls are converted into behaviors;
• Stage 4: Behaviors are classified based on the resource types and paths;
• Stage 5: The importance level of behaviors is calculated;
• Stage 6: The features are generated based on the relationship among the behaviors as

well as the level of behaviors;
• Stage 7: The feature frequency is calculated for each program sample;
• Stage 8: The row feature vector is created for each program sample.

Electronics 2023, 12, 1861 12 of 21

3.2. Classification Model

In this subsection, the proposed deep learning methodology as well as used ML
algorithms are explained for classification. The subsection is divided into two sections: the
proposed DL methodology and the used ML algorithms.

3.2.1. Using the Proposed Deep Learning Methodology to Detect Malware

Deep learning is a subclass of machine learning that was inherited from artificial
neural networks. In deep learning, high-level features can be learned through the layers.
Deep learning consists of 3 layers: input, hidden, and output layers. The inputs can be in
various forms, including text, images, sound, video, or unstructured data. The idea is to
extract high-level features with no human intervention or with less domain knowledge.
During the malicious software recognition stage, DL can be used for feature extraction,
classification, or also can be used for both. There are various DL architectures and models
that can be used for different problem domains. The most well-known DL architectures
and models can be listed as convolutional neural networks (CNNs), deep belief networks
(DBNs), deep reinforcement learning (DRL), long short-term memory networks (LSTMs),
and recurrent networks (RRNs). Recently, some of these architectures and models have
started to be used in malware detection as well as classification.

The proposed deep learning methodology is performed on our dataset that was created
in the previous subsection. First, the preprocessing stage is performed to eliminate missing
values and convert the string into numerical values. For the learning phase, 1 input layer,
3 hidden layers, and 1 output layer are used. The used hidden layers are dense (fully
connected) layers that consist of 500 neurons in the first hidden layer, 64 neurons in the
second hidden layer, and 32 neurons in the third hidden layer. Three different activation
functions and one optimization function are used. The dropout is employed to decrease
the risk of overfitting. After the training is completed, the malware samples are identified
as malicious or normal by the output layer. Given input features X (x1, x2, x3, . . . , xn),
weights W (w1, w2, w3, . . . , wn), and bias b, the sum of features is calculated as

∑n
x=1 (xiwi) + b (1)

The sum of the calculated values is input into the activation function to generate
the hidden layer’s neurons as well as an output layer. Initially, weights are assigned
randomly. During the training, weights values are changed based on the Sparse Categorical
Cross Entropy loss and Adam optimizer. The used hyperparameters for our deep learning
methodology can be viewed in Table 3. To increase the deep network learning capacity, we
utilized several activation functions in order of Sigmoid, ReLU, Sigmoid, and Softmax. The
activation function transforms the sum of the given input values (output signals from the
previous neurons) into a certain range to determine whether it can be taken as an input to
the next layer of neurons or not. The Sigmoid, ReLU, and Softmax activation functions are
calculated as the following:

Sigmoid : f (a) =
1

1 + e−a =
ea

1 + ea (2)

ReLU : (0, a)= 0, i f a < 0; (0, a)= a, i f a ≥ 0 (3)

where a is the sum of the previous layer neurons output. To increase the generalization
capacity of the proposed deep learning methodology while reducing the overfitting, the
dropout 60% is used.

Softmax : σ(Z)i =
ezi

∑K
j=1 ezj

(4)

where i = 1, 2, 3, . . . , K (number of classes) and Z (input vector) = (z1, z2, z3, . . . , zk). We
used the Adam optimization algorithm to train our network. In the Adam algorithm, the

Electronics 2023, 12, 1861 13 of 21

estimation of the first- and second-order moments are used to adapt the learning rate for
each weight.

Table 3. Hyperparameters of used deep learning models.

Parameter Value

Batch Size 64

The number of hidden layers 3

Epochs 50

Dropout Rate 0.6

Learning Rate 0.01

Activation Function Sigmoid, ReLU, Softmax

Loss Function Sparse Categorical Cross Entropy

Optimizer Adam

3.2.2. Using Machine Learning Algorithms to Detect Malware

After the feature creation and selection processes were completed in the previous
module, the training and testing phases were performed. In this module, machine learning
classifiers, including NB, BN, Decision Stump, SMO, AdaBoost, and LogitBoost, were per-
formed to separate malware samples from benign ones. These classifiers can be explained
shortly as the following:

NB is a probabilistic ML classifier that does not require much computation time and
produces good results with high-dimensional data. It may not return good results because
it calculates assumptions that are not very related to one another. In NB, given n features
(x1, x2, x3, . . . , xn) and m classes (c1, c2, c3, . . . , cm), conditional probability for class Ck
calculated as

P(Ck/X) = P(Ck) P(X/Ck)/P(X) (5)

where X = (x1, x2, x3, . . . , xn), and 1 ≤ k ≤ m.
P(X/Ck) can be calculated as

n

∏
i=1

P(xi/Ck) (6)

P(
X
C k

)= P(
x1

C k
) P(

x2

C k
) P(

x3

C k
). . . P(

xn

C k
)

In our case, k = 2, malware (1) or benign (0). We can recognize the type of malware
when k is larger.

BN is a probabilistic ML classifier that uses a graphical model where the vertex
corresponds to variables and edges representing conditional probability. It generally returns
fast and efficient results. However, it is not very practical for datasets with many features.

Decision Stump (DS) is an ML classifier that consists of a one-level decision tree. Each
time, the algorithm considers one feature and finds the point that can separate the data
most. In other words, only one feature at a time in the decision tree is used for classification.
If input value x is larger than the value a (x > a), then the class of x is specified as c1;
otherwise, the class of x is specified as c2.

SMO is an ML optimization algorithm that is used during the training of SVM (support
vector machines) when solving the quadratic programming problem. Given the set of input
vector Xi and corresponding class label Yi: (X1, Y1), (X2, Y2), . . . , (Xn, Yn); a SVM training
by solving a malware problem can be expressed in the dual form as follows:

maxα ∑n
i=1 αi −

1
2 ∑n

i=1 ∑n
j=1 yiyj K(xi , xj)αiαj (7)

Electronics 2023, 12, 1861 14 of 21

Subject to 0 ≤ αi ≤ C, f or i = 1, 2, 3, . . . , n

∑n
i=1 yiαi = 0, where C is a hyper parameter in SVM

K (xi, xj) is the kernel function, and αi values are Lagrange multipliers.

AdaBoost is a statistical ML algorithm that is utilized from multiple classifiers to
improve the model performance. The goal is to minimize the training error by setting
weights of weak learners in each iteration. AdaBoost produces satisfactory results for
binary classification.

LogitBoost is another boosting ML algorithm that minimizes the logistic loss during
the training. In some studies, even higher performance values were obtained by using
classical ML classifiers, including NB, BN, DS, SMO, Adaboost, and LogitBoost; in our case,
we obtained better performance with deep learning algorithms.

3.3. Case Study

This section explains the case study and test environments. Various versions of
Windows virtual machines, including Windows 7, 8, and 10, as well as real machines, were
used in this study. The collected malware and benign samples were performed on virtual
machines. Totally, ten thousand program samples are tested on these virtual machines;
70% of them are malware samples, while 30% are benign ones. The analyzed malware
samples are from different categories as well as families (Figure 2). In Figure 2, different
colors are used to show the malware types in level as well as various families. For instance,
yellow colors represent the different types of malware samples, while blue colors show
the subclass of malware types. In this regard, downloader, dropper, injector, and adware
can be viewed as a subclass of Trojan, while Keylogger can be viewed as a subclass of
spyware. Pink colors symbolize new malware variants or more complex malwares that
use encryption or packed techniques, while the black colors represent various malware
families. To capture the execution traces that were performed by malware and benign
samples, dynamic malware analysis tools were used. For each sample, a clean version
of the operating system was used. The collected execution traces were analyzed by our
proposed feature creation model, which was implemented in python scripting language.
The detection phase of our model, which was using deep learning, was also implemented
in python.

3.4. Model Performance and Evaluation

To evaluate the proposed model performance, the holdout as well as cross-validation
methods were used. To show the model’s effectiveness, different k values in cross-validation
and several percentage splits in holdout were used. For all cases, the satisfactory perfor-
mance results were obtained. The metric values were calculated to measure the model
performance by using confusion matrix (CM) (Table 4). TP, TN, FP, and FN stand for the
number of malware samples correctly identified as malware, the number of benign samples
correctly identified as benign, the number of benign samples mistakenly identified as
malware, and the number of malware samples mistakenly identified as benign, respectively.
These values were used to calculate the precision, recall, f-measure, and accuracy metrics
as the following:

Precision = (TP)/(TP + FP) (8)

Recall = DR = (TP)/(TP + FN) (9)

F-measure = (2 * precision * recall)/(precision + recall) (10)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (11)

Electronics 2023, 12, 1861 15 of 21

Electronics 2023, 12, x FOR PEER REVIEW 15 of 23

machines. Totally, ten thousand program samples are tested on these virtual machines;
70% of them are malware samples, while 30% are benign ones. The analyzed malware
samples are from different categories as well as families (Figure 2). In Figure 2, different
colors are used to show the malware types in level as well as various families. For instance,
yellow colors represent the different types of malware samples, while blue colors show
the subclass of malware types. In this regard, downloader, dropper, injector, and adware
can be viewed as a subclass of Trojan, while Keylogger can be viewed as a subclass of
spyware. Pink colors symbolize new malware variants or more complex malwares that
use encryption or packed techniques, while the black colors represent various malware
families. To capture the execution traces that were performed by malware and benign
samples, dynamic malware analysis tools were used. For each sample, a clean version of
the operating system was used. The collected execution traces were analyzed by our pro-
posed feature creation model, which was implemented in python scripting language. The
detection phase of our model, which was using deep learning, was also implemented in
python.

Figure 2. Some of the analyzed malware samples (different types, variants, and families).

Figure 2. Some of the analyzed malware samples (different types, variants, and families).

Table 4. Confusion matrix.

Predicted Class

Actual class

Yes No

Yes
No

TP
FP

FN
TN

4. Experimental Results and Discussion

The experiment test results are summarized in Tables 5–8 and in Figures 3 and 4. To
evaluate the presented model’s performances, various combinations of percentage splits as
well as cross-validation were used. Based on the performance metrics that were obtained,
the deep learning algorithms performed relatively well on our created malware dataset.
Most of the time, the obtained detection rate (DR) and accuracy were measured as 99% and
99.80%, respectively. When we changed the DL hyper parameters, similar performances
were obtained as well. This shows that combining the proposed model with an appropriate
DL architecture can efficiently separate malware variants from the cleanware. Our model
could efficiently separate various malicious software: traditional malware as well as new
variants including zero-day malware, from the benign files. When different machine
learning algorithms are applied to the same dataset, the obtained performance values
are decreased sharply. Even ANN performed poorly when compared with DL models.
The proposed model has also been compared with the leading models in the literature.

Electronics 2023, 12, 1861 16 of 21

According to the performance metrics results, the proposed model performed better than
well-known state-of-the-art-studies based on the DR and accuracy.

Table 5. The performance results when a deep learning model was used.

Method
No. of

Neurons in
First Hidden

Layer

No. of
Neurons in

Second
Hidden Layer

No. of
Neurons in

Third Hidden
Layer

Benign
Malware

Prec
(%) Rec (%) F1 (%) Acc (%)

Deep Learning
Using Cross-Validation k = 5 500 64 32

0 99 100 99.5
99.80

1 100 100 100

Deep Learning
Using Cross-Validation k = 10 500 64 32

0 99 100 99.5
99.60

1 100 99 99.5

Deep Learning
Using Percentage Split (85%, 15%) 500 64 32

0 99 100 99.5
99.73

1 100 100 100

Deep Learning
Using Percentage Split (70%, 30%) 500 64 32

0 100 99 99.5
99.67

1 100 100 100

Deep Learning
Using Percentage Split (50%, 50%) 500 64 32

0 99 99 99
99.60

1 100 100 100

Table 6. Performance results when ANN was used.

Method Benign
Malware Prec (%) Rec (%) F1 (%) Acc (%)

ANN Using Percentage Split (85%, 15%)
0 77 98 86

90.8
1 99 88 93

ANN Using Percentage Split (70%, 30%)
0 70 99 82

86
1 99 83 90

ANN Using Percentage Split (50%, 50%)
0 73 91 81

86.7
1 95 85 90

Table 7. Confusion matrices results when DL versus ANN were used for different number of samples.

Predicted Class

Actual Class

Cross-Validation Percentage Split

DL
445 1 1517 8

3 1051 12 3463

ANN
866 11 1384 141

366 1757 523 2952

Table 8. Summary of machine learning classifiers’ results.

Classifier Benign
Malware Prec (%) Rec (%) F1 (%) Acc (%)

NB
0 55.3 92.2 69.2

74
1 94.8 65.7 77.6

BN
0 77.3 94.3 85

89.4
1 97.1 87.2 91.9

Decision Stump
0 86 79.3 82.5

89.4
1 90.8 94.1 92.4

SMO
0 83.9 91.5 87.6

91.8
1 95.9 91.9 93.9

LogitBoost
0 90 89.6 89.8

93.6
1 95.2 95.4 95.3

AdaBoost
0 89.4 91.3 90.4

93.8
1 96 95 95.5

Electronics 2023, 12, 1861 17 of 21

Electronics 2023, 12, x FOR PEER REVIEW 17 of 23

Using Cross-Vali-
dation k = 10

Deep Learning
Using Percentage
Split (85%, 15%)

500 64 32
0 99 100 99.5

99.73
1 100 100 100

Deep Learning
Using Percentage
Split (70%, 30%)

500 64 32
0 100 99 99.5

99.67
1 100 100 100

Deep Learning
Using Percentage
Split (50%, 50%)

500 64 32
0 99 99 99

99.60
1 100 100 100

Tables 5 and 6 indicate the DL performances as well as shallow ANN results on ten
thousand malware and benign samples from different malware types and various mali-
cious categories. We employed three dense hidden layers each with 500, 64, and 32 neu-
rons, respectively. To effectively measure the DL model results, cross-validation with dif-
ferent k values (k = 5 and k = 10) and different proportional splits (85%, 15%, 70%, 30%,
50%, 50%) have been used. The performances are evaluated based on the well-known
measures, including precision (Prec), recall (Rec), f-measure (F1), and accuracy (Acc) for
both benign (0) and malware (1) classes. We achieved 99%-100% precision, 99%-100% re-
call, 99.5%-100% f-measure, and 99.6%-99.8% accuracy when divergent cross-validation
parameters and various percentage splits were used (Table 5). These results indicated that
we almost classified all the tested samples correctly as malicious and benign from several
categories. When the ANN was used for classification, the performances decreased
sharply. For instance, the precision measured as 70%, 73%, 77% for benign class; 95%, 99%,
99% for malware class, and the accuracy measured as 86%, 86.7%, 90.8%, which were
much lower than the used DL model (Table 6). Similar lower test results were obtained
when other metrics were used, including recall and f-measure, with ANN.

Table 6. Performance results when ANN was used.

Method
Benign

Malware
Prec (%) Rec (%) F1 (%) Acc (%)

ANN Using Percentage Split (85%,
15%)

0 77 98 86
90.8

1 99 88 93
ANN Using Percentage Split (70%,

30%)
0 70 99 82

86
1 99 83 90

ANN Using Percentage Split (50%,
50%)

0 73 91 81
86.7

1 95 85 90

Figure 3. Loss (Sparse_categorical_crossentropy) with respect to the number of epochs when detecting
malicious executable.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 23

SMO
0 83.9 91.5 87.6

91.8
1 95.9 91.9 93.9

LogitBoost
0 90 89.6 89.8

93.6
1 95.2 95.4 95.3

AdaBoost
0 89.4 91.3 90.4

93.8
1 96 95 95.5

To accurately assess the proposed feature generation method with appropriate DL
model performances, the obtained results were compared with well-known machine
learning algorithms and various deep learning architecture results in the literature. Most
of the studies that were analyzed in the paper used Microsoft BIG 2015, Malimg, Malevis,
or their own datasets. Several studies focused on the classification of malware families,
while a few studies distinguished malware from benign samples. The obtained experi-
mental results were considerably better than other methods in the literature (Table 9). For
instance, the accuracy was measured as 99.8% for the proposed method while 98.6% [26],
97.7% [30], 96.3% [33], 94.5% [34], 90.4% [35], 95% [36], 89.6% [37], 65.4% [38], 87.4% [39]
for studies from the literature, respectively (Table 9). Similar performance values were
gathered when precision, recall, f-measure, false positive, and false negative measures
were used. It can also clearly be observed from Table 8 that, most of the time, deep-learn-
ing-based models produce a higher accuracy rate than traditional machine learning meth-
ods (NB, SVM, XGBoost, etc.). The distribution of the data as well as the quality of the
data have a major effect on DL model performance. Generally, the datasets used for liter-
ature studies have redundant features and are not up to date. Further, there are no benign
samples in some of these datasets, and there are not enough balanced samples for each
malware category. These deficiencies in data reduce the model performances. On the
other hand, our dataset is new, has a balance on the distribution of samples (malware
category and benign), and is pre-processed well before being provided to the DL model.
Additionally, the different hyperparameter settings as well as hidden layers with a differ-
ent number of neurons increased DL model performances for our test case as well.

Figure 4. Comparing accuracy of our deep learning results with machine learning classifiers.

Figure 4. Comparing accuracy of our deep learning results with machine learning classifiers.

Tables 5 and 6 indicate the DL performances as well as shallow ANN results on ten
thousand malware and benign samples from different malware types and various malicious
categories. We employed three dense hidden layers each with 500, 64, and 32 neurons,
respectively. To effectively measure the DL model results, cross-validation with different
k values (k = 5 and k = 10) and different proportional splits (85%, 15%, 70%, 30%, 50%,
50%) have been used. The performances are evaluated based on the well-known measures,
including precision (Prec), recall (Rec), f-measure (F1), and accuracy (Acc) for both benign
(0) and malware (1) classes. We achieved 99–100% precision, 99–100% recall, 99.5–100% f-
measure, and 99.6–99.8% accuracy when divergent cross-validation parameters and various
percentage splits were used (Table 5). These results indicated that we almost classified all
the tested samples correctly as malicious and benign from several categories. When the
ANN was used for classification, the performances decreased sharply. For instance, the
precision measured as 70%, 73%, 77% for benign class; 95%, 99%, 99% for malware class,
and the accuracy measured as 86%, 86.7%, 90.8%, which were much lower than the used
DL model (Table 6). Similar lower test results were obtained when other metrics were used,
including recall and f-measure, with ANN.

Electronics 2023, 12, 1861 18 of 21

Table 7 demonstrates confusion matrices when DL and ANN are used as a classifier
for different test cases. It can be seen from Table 7 that 4 out of 1500 and 20 out of
5000 samples were misclassified, which was relatively low when compared with scientific
studies results, which shows the efficiency of the proposed model. We could not obtain the
same performance when ANN was used as a classifier. Figure 3 indicates the loss function
values with respect to the number of epochs when separating malware from benign files.
The loss function value measured as 0.2, which was relatively low at the beginning, and
declined over time even further to 0.001, almost 0 when epochs was 50.

Table 8 shows the traditional machine learning classifiers’ results on collected malicious
and benign samples. These classifiers were NB, BN, Decision Stump, SMO, LogitBoost, and
AdaBoost. NB results were relatively poor based upon precision, recall, f-measure, and
accuracy measures. BN, Decision Stump, and SMO classifiers performed better than NB
but still were not satisfactory based on precision, recall, f-measure, and accuracy (Table 8).
LogitBoost and AdaBoost classifiers performed the best among the other machine learning
classifiers as well as ANN, but they performed poorly when compared with the DL model.
The DL model results were substantially high when they were compared with traditional
machine learning classifiers. For example, the accuracy rate was measured as 99.8% when
DL was used versus 74%, 89.4%, 89.4%, 91.8%, 93.6%, 93.8%, and 90.8% when NB, BN,
Decision Stump, SMO, LogitBoost, AdaBoost, and ANN were used, respectively (Figure 4).
We obtained such a high performance ratio with the DL model over traditional machine
learning algorithms because the DL model identifies high-level features from data level by
level in hidden layers. Some features can be observed in both benign and malware samples,
which results in misclassification in traditional machine learning algorithms. Those features
can be reduced with hidden layers in DL by generating high-level features. In this case,
most of the time, DL can discover hidden patterns in data more than ANN and other ML
algorithms. When we increased the number of hidden layers, such as four, five, or more,
the performance did not increase much. Thus, to keep the model simple as well as obtain
optimal solutions, we have selected three hidden layers in which neurons are decreasing in
the subsequent layers.

To accurately assess the proposed feature generation method with appropriate DL
model performances, the obtained results were compared with well-known machine learn-
ing algorithms and various deep learning architecture results in the literature. Most of the
studies that were analyzed in the paper used Microsoft BIG 2015, Malimg, Malevis, or their
own datasets. Several studies focused on the classification of malware families, while a few
studies distinguished malware from benign samples. The obtained experimental results
were considerably better than other methods in the literature (Table 9). For instance, the
accuracy was measured as 99.8% for the proposed method while 98.6% [26], 97.7% [30],
96.3% [33], 94.5% [34], 90.4% [35], 95% [36], 89.6% [37], 65.4% [38], 87.4% [39] for stud-
ies from the literature, respectively (Table 9). Similar performance values were gathered
when precision, recall, f-measure, false positive, and false negative measures were used.
It can also clearly be observed from Table 8 that, most of the time, deep-learning-based
models produce a higher accuracy rate than traditional machine learning methods (NB,
SVM, XGBoost, etc.). The distribution of the data as well as the quality of the data have a
major effect on DL model performance. Generally, the datasets used for literature studies
have redundant features and are not up to date. Further, there are no benign samples
in some of these datasets, and there are not enough balanced samples for each malware
category. These deficiencies in data reduce the model performances. On the other hand,
our dataset is new, has a balance on the distribution of samples (malware category and
benign), and is pre-processed well before being provided to the DL model. Additionally,
the different hyperparameter settings as well as hidden layers with a different number of
neurons increased DL model performances for our test case as well.

Electronics 2023, 12, 1861 19 of 21

Table 9. Comparing the proposed method results with other existing literature studies that use deep
learning and machine.

Paper Year Dataset Model
Performance

Based on
Accuracy

(%)

Kumar [26] 2021 Malimg and Microsoft
BIG 2015 Deep transfer learning 98.63

Aslan and Yilmaz [30] 2021 Malimg, Microsoft BIG
2015, and Malevis

Hybrid deep learning
architecture 97.78

Kim et al. [33] 2017 Microsoft BIG 2015 Transferred generative
adversarial network 96.36

Cui et al. [34] 2018 Malimg Deep learning using
CNN 94.5

Vinayakumar et al. [35] 2019 Malimg Deep neural networks 90.4

Saxe and Berlin [36] 2015 Their own dataset Deep neural network 95

Santos et al. [37] 2013 Their own dataset Machine learning using
SVM 89.6

Firdausi et al. [38] 2010 Their own dataset Machine learning using
NB 65.4

Bozkir et al. [39] 2021 Their own dataset Machine learning using
XGBoost 87.45%

Proposed Model 2022 Our own dataset Deep learning 99.80

5. Limitations and Future Works

Although the proposed deep-learning-based malware detection system can effectively
detect several malware samples within the different families, there are a few limitations
in the paper that need to be mentioned. In this study, the program samples are detected
as malware or benign. Further classification has not been performed to show the types of
malware. In the next study, we aim to specify the types of malware samples as well as test
our proposed architecture on other malware datasets, including Malimg and Microsoft BIG
2015. The proposed model can detect new malware variants, but we did not test our model
with crafted input for adversary attacks. In the future, it will be tested for evasion attacks
as well. Moreover, we can analyze more malware and benign samples for future work. The
training time of the model was in an acceptable time interval. In this study, we utilized a
deep learning method for classification; in the future, we would like to combine various
deep learning architectures with reinforcement learning to build a more resistant system.
In the future, we aim to use new technologies with deep learning, including blockchain,
cloud computing, and big data, to increase the model performances as well as provide
more computational power and resources.

6. Conclusions

The paper suggested a new malware detection system that consists of three modules:
program sample collection, feature extraction, and classification. In the sample collection
module, several malwares, as well as benign samples, are collected from different sources
and labeled by using VirusTotal and desktop marking. Some basic features that are gathered
during the malware analysis process are taken into consideration during the labeling stage.
In some cases, it is difficult to label the malware samples by using an antivirus scanner; for
those cases, extra features are used. In the feature generation module, malware and benign
samples are analyzed under dynamic analysis tools and system calls execution traces are
collected. In this module, system calls are divided into five categories including process,
file, registry, memory, and network. By using these categories, first behaviors are created,
and then features are generated from the behaviors. In this phase, behaviors themselves,
the locations in which they are executed, as well as some of the other parameters, including
PID, parent PID, results, time, event class, and sequence, are considered. At the end of
this module, feature frequency and row feature vector are generated. In the classification
module, the novel deep learning methodology is proposed to recognize the different

Electronics 2023, 12, 1861 20 of 21

malware and benign samples. The methodology consists of one input, three hidden, and
one output layer. In hidden layers, fully connected 500, 64, and 32 neurons are used in the
first, second, and third layers, respectively. To increase the model performance and use
more significant features, various activation functions in order of Sigmoid, ReLU, Sigmoid,
and Softmax are used.

The experiment test results showed that the proposed model that uses a different deep
learning methodology performed well on our created malware dataset. Even though using
different hyperparameters and performance metrics, most of the time, the obtained DR and
accuracy were measured as 99% and 99.80%, respectively. This shows that combining the
appropriate malware analyzing method with an appropriate DL architecture can efficiently
separate different malware samples from the benign ones. The proposed model can
efficiently detect various malwares, including both traditional as well as new variants
from the benign files. When different machine learning algorithms were used for the same
dataset, the obtained performance values were decreased. Even ANN performed poorly
when compared with the proposed DL methodology. The proposed model has also been
compared with the leading methods in the literature. According to the comparison, the
proposed model performed better than well-known state-of-the-art studies based on the
DR, precision, recall, f-measure, and accuracy metrics.

Funding: This research received no external funding.

Data Availability Statement: The data used to support the findings of this study are available from
the author upon the proper request.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Li, Y.; Liu, Q. A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments.

Energy Rep. 2021, 7, 8176–8186. [CrossRef]
2. Aslan, Ö. Ransomware Detection in Cyber Security Domain. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2022, 11, 509–519.

[CrossRef]
3. Wang, Z.; Zhu, H.; Sun, L. Social Engineering in Cybersecurity: Effect Mechanisms, Human Vulnerabilities and Attack Methods.

IEEE Access 2021, 9, 11895–11910. [CrossRef]
4. Aslan, Ö. A Methodology to Detect Distributed Denial of Service Attacks. Bilişim Teknolojileri Dergisi 2022, 15, 149–158. [CrossRef]
5. Morgan, S. Cybercrime to Cost the World $10.5 Trillion Annually by 2025. Cybercrime Magazine, 13 November 2020.
6. Aslan, Ö.; Ozkan-Okay, M.; Gupta, D. Intelligent Behavior-Based Malware Detection System on Cloud Computing Environment.

IEEE Access 2021, 9, 83252–83271. [CrossRef]
7. Pears, M.; Konstantinidis, S.T. Cybersecurity Training in the Healthcare Workforce—Utilization of the ADDIE Model. In

Proceedings of the 2021 IEEE Global Engineering Education Conference (EDUCON), Online, 21–23 April 2021; pp. 1674–1681.
[CrossRef]

8. Aslan, Ö.; Samet, R. Investigation of possibilities to detect malware using existing tools. In Proceedings of the 2017 IEEE/ACS
14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November
2017; pp. 1277–1284.

9. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123–147.
[CrossRef]

10. Aslan, Ö.; Samet, R. A Comprehensive Review on Malware Detection Approaches. IEEE Access 2020, 8, 6249–6271. [CrossRef]
11. Ahn, S. Deep learning architectures and applications. J. Intell. Inf. Syst. 2016, 22, 127–142.
12. Yuxin, D.; Siyi, Z. Malware detection based on deep learning algorithm. Neural Comput. Appl. 2019, 31, 461–472. [CrossRef]
13. Hosseini, M.P.; Lu, S.; Kamaraj, K.; Slowikowski, A.; Venkatesh, H.C. Deep learning architectures. In Deep Learning: Concepts and

Architectures; Springer: Cham, Switzerland, 2020; pp. 1–24.
14. Griffin, K.; Schneider, S.; Hu, X.; Chiueh, T.-C. Automatic Generation of String Signatures for Malware Detection. In Proceedings of

the International Workshop Recent Advances in Intrusion Detection; Springer: Berlin, Germany, 2009; pp. 101–120. [CrossRef]
15. Savenko, O.; Nicheporuk, A.; Hurman, I.; Lysenko, S. Dynamic Signature-based Malware Detection Technique Based on API Call

Tracing. In Proceedings of the ICTERI Workshops, Kherson, Ukraine, 12–15 June 2019; pp. 633–643.
16. Sahoo, A.K.; Sahoo, K.S.; Tiwary, M. Signature based malware detection for unstructured data in Hadoop. In Proceedings of the

2014 International Conference on Advances in Electronics Computers and Communications, Bangalore, India, 10–11 October
2014; pp. 1–6.

https://doi.org/10.1016/j.egyr.2021.08.126
https://doi.org/10.17798/bitlisfen.1038966
https://doi.org/10.1109/ACCESS.2021.3051633
https://doi.org/10.17671/gazibtd.1002178
https://doi.org/10.1109/ACCESS.2021.3087316
https://doi.org/10.1109/educon46332.2021.9454062
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1007/s00521-017-3077-6
https://doi.org/10.1007/978-3-642-04342-0_6

Electronics 2023, 12, 1861 21 of 21

17. Bazrafshan, Z.; Hashemi, H.; Fard, S.M.H.; Hamzeh, A. A survey on heuristic malware detection techniques. In Proceedings of
the 5th Conference on Information and Knowledge Technology, Shiraz, Iran, 28–30 May 2013; pp. 113–120. [CrossRef]

18. Ye, Y.; Wang, D.; Li, T.; Ye, D. IMDS: Intelligent malware detection system. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), San Jose, CA, USA, 12–15 August 2007; pp. 1043–1047.

19. Bilar, D. Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensics 2007, 1, 156–168. [CrossRef]
20. Lanzi, A.; Balzarotti, D.; Kruegel, C.; Christodorescu, M.; Kirda, E. Accessminer: Using system-centric models for malware

protection. In Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 4–8
October 2010; pp. 399–412.

21. Galal, H.S.; Mahdy, Y.B.; Atiea, M.A. Behavior-based features model for malware detection. J. Comput. Virol. Hacking Tech. 2016,
12, 59–67. [CrossRef]

22. Ding, Y.; Xia, X.; Chen, S.; Li, Y. A malware detection method based on family behavior graph. Comput. Secur. 2018, 73, 73–86.
[CrossRef]

23. Markel, Z.A. Machine Learning Based Malware Detection; Naval Academy: Annapolis, MD, USA, 2015.
24. Sethi, K.; Kumar, R.; Sethi, L.; Bera, P.; Patra, P.K. A novel machine learning based malware detection and classification framework.

In Proceedings of the 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Oxford,
UK, 3–4 June 2019; pp. 1–4.

25. Singh, J.; Singh, J. A survey on machine learning-based malware detection in executable files. J. Syst. Archit. 2021, 112, 101861.
[CrossRef]

26. Sudhakar; Kumar, S. MCFT-CNN: Malware classification with fine-tune convolution neural networks using traditional and
transfer learning in Internet of Things. Future Gener. Comput. Syst. 2021, 125, 334–351. [CrossRef]

27. Ring, M.; Schlör, D.; Wunderlich, S.; Landes, D.; Hotho, A. Malware detection on windows audit logs using LSTMs. Comput.
Secur. 2021, 109, 102389. [CrossRef]

28. Jian, Y.; Kuang, H.; Ren, C.; Ma, Z.; Wang, H. A novel framework for image-based malware detection with a deep neural network.
Comput. Secur. 2021, 109, 102400. [CrossRef]

29. Baek, S.; Jeon, J.; Jeong, B.; Jeong, Y.S. Two-stage hybrid malware detection using deep learning. Hum.-Cent. Comput. Inf. Sci. 2021,
11, 10-22967.

30. Aslan, Ö.; Yilmaz, A.A. A New Malware Classification Framework Based on Deep Learning Algorithms. IEEE Access 2021, 9,
87936–87951. [CrossRef]

31. Awan, M.J.; Masood, O.A.; Mohammed, M.A.; Yasin, A.; Zain, A.M.; Damaševičius, R.; Abdulkareem, K.H. Image-Based Malware
Classification Using VGG19 Network and Spatial Convolutional Attention. Electronics 2021, 10, 2444. [CrossRef]

32. Azeez, N.A.; Odufuwa, O.E.; Misra, S.; Oluranti, J.; Damaševičius, R. Windows PE Malware Detection Using Ensemble Learning.
Informatics 2021, 8, 10. [CrossRef]

33. Kim, J.-Y.; Bu, S.-J.; Cho, S.-B. Malware Detection Using Deep Transferred Generative Adversarial Networks. In Proceedings of the
International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2017; pp. 556–564. [CrossRef]

34. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.-G.; Chen, J. Detection of Malicious Code Variants Based on Deep Learning. IEEE Trans.
Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

35. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Venkatraman, S. Robust Intelligent Malware Detection Using
Deep Learning. IEEE Access 2019, 7, 46717–46738. [CrossRef]

36. Saxe, J.; Berlin, K. Deep neural network based malware detection using two dimensional binary program features. In Proceedings
of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October
2015; pp. 11–20.

37. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

38. Firdausi, I.; Lim, C.; Erwin, A.; Nugroho, A.S. Analysis of Machine learning Techniques Used in Behavior-Based Malware Detec-
tion. In Proceedings of the 2010 Second International Conference on Advances in Computing, Control, and Telecommunication
Technologies, Jakarta, Indonesia, 2–3 December 2010; pp. 201–203. [CrossRef]

39. Bozkir, A.S.; Tahillioglu, E.; Aydos, M.; Kara, I. Catch them alive: A malware detection approach through memory forensics,
manifold learning and computer vision. Comput. Secur. 2021, 103, 102166. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ikt.2013.6620049
https://doi.org/10.1504/IJESDF.2007.016865
https://doi.org/10.1007/s11416-015-0244-0
https://doi.org/10.1016/j.cose.2017.10.007
https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.1016/j.future.2021.06.029
https://doi.org/10.1016/j.cose.2021.102389
https://doi.org/10.1016/j.cose.2021.102400
https://doi.org/10.1109/ACCESS.2021.3089586
https://doi.org/10.3390/electronics10192444
https://doi.org/10.3390/informatics8010010
https://doi.org/10.1007/978-3-319-70087-8_58
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1016/j.ins.2011.08.020
https://doi.org/10.1109/act.2010.33
https://doi.org/10.1016/j.cose.2020.102166

	Introduction
	Related Work
	Signature-Based Detection
	Heuristic-Based Detection
	Behavioral-Based Detection
	Machine-Learning-Based Detection
	Deep-Learning-Based Detection
	Evaluation of Related Works on Malware Detection Approaches

	Materials and Methods
	Dataset Creation and Representation Method
	Classification Model
	Using the Proposed Deep Learning Methodology to Detect Malware
	Using Machine Learning Algorithms to Detect Malware

	Case Study
	Model Performance and Evaluation

	Experimental Results and Discussion
	Limitations and Future Works
	Conclusions
	References

