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Abstract: The increasing use of electronic health records (EHRs) generates a vast amount of data,
which can be leveraged for predictive modeling and improving patient outcomes. However, EHR
data are typically mixtures of structured and unstructured data, which presents two major challenges.
While several studies have focused on using machine learning models to predict patient outcomes,
these models often require data to be in a structured format, which may lead to the loss of important
information. On the other hand, unstructured data, such as narrative reports, can be noisy and
challenging for natural language processing applications and interoperability. Therefore, there is
a need to bridge the gap between structured EHR data and NLP-based predictive models. In this
paper, we propose a fuzzy-logic-based pipeline that generates medical narratives from structured
EHR data and evaluates its performance in predicting patient outcomes. The pipeline includes a
feature selection operation and a reasoning and inference function that generates medical narratives.
We then extensively evaluate the generated narratives using transformer-based NLP models for a
patient-outcome-prediction task. We furthermore assess the interpretability of the generated text
using Shapley values. Our approach has demonstrated comparable performance to the benchmark
baseline models with an F1-score of 93.7%, while exhibiting slightly improved results in terms of
recall. The model demonstrated proficiency in the preservation of information and interpretability
inherited from nuanced and structured narratives. To the best of our knowledge, this is the first study
to demonstrate the ability to transform tabular data into text to apply NLP for a prediction task.

Keywords: fuzzy logic systems; defuzzification; medical data; NLP; outcome prediction;
transformer-based model

1. Introduction

In recent years, medical data have been increasingly being generated at an unprece-
dented rate, leading to a vast amount of information that can be utilized to improve
healthcare outcomes. Electronic health records (EHRs) have been identified as one of the
most promising sources of data in healthcare for research and clinical practice [1]. However,
EHR data are often heterogeneous. These well-documented structured data (demographic
information, diagnosis, laboratory test results, monitoring data) and unstructured data
(clinical notes) are stored in various formats [2]. The large amount of data in EHRs makes
manual analysis and interpretation a challenging and time-consuming task, leading to
automated methods for processing these data.

Machine learning algorithms have been proposed as a powerful tool for process-
ing EHR data for various tasks, including outcome prediction, patient-risk stratification,
and disease diagnosis [3]. However, using machine learning models to perform these tasks
has two significant challenges. On the one hand, the characteristics of structured data
may vary from one patient to another depending on their diseases and periods of stay.
Additionally, structured medical data require feature selection as a data regularization

Electronics 2023, 12, 1848. https://doi.org/10.3390/electronics12081848 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12081848
https://doi.org/10.3390/electronics12081848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0674-7370
https://doi.org/10.3390/electronics12081848
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12081848?type=check_update&version=1


Electronics 2023, 12, 1848 2 of 16

mechanism for standard models, such as neural networks, tree-based models, and other
mainstream modeling methods [4]. This normalization process cuts out various features
and drastically reduces the data samples. On the other hand, unstructured data, such as
narrative reports, can be noisy and challenging for natural language processing (NLP)
applications and interpretability. On the other hand, although NLP models have shown
impressive performance in information extraction and data representation, EHR clinical
narratives and reports are particularly challenging for NLP applications such as outcome
prediction and interpretability. This is partly because applying NLP to such data requires
specific standards, since document representation relies on dictionaries and vocabularies
from common natural languages [5].

To address these challenges, we propose a fuzzy logic (FL) based pipeline that gen-
erates medical narratives from structured data. This approach bridges the gap between
the diverse and predominant medical tabular data and NLP predictive models, enabling
the processing of rich structured data with the power of NLP models. Through this re-
search, we propose a rule-based pipeline to describe a patient using structured data by
generating a text document and evaluating the usefulness of the synthetic summary by
transformer-based models to predict a patient’s outcome.

The first step consists of feature selection inspired by a baseline study from the lit-
erature review [6], then from the selected features. We divide the data extraction task
into small clinical-services-related data clusters. We then textualize the features using
preconceived prompts according to the availability of the feature values. Finally, we evalu-
ated the effectiveness of the generated text in a downstream text classification task using
several transformer-based NLP models, including an optimized RoBERTa-based model [7],
BERT [8], and a pre-trained biomedical language representation model (BioBERT) [9].

The contribution of this research is summarized as follows:

• We are proposing an approach to generating clean and comprehensive medical narra-
tives to describe a patient through a textualization process of the medical tabular data.

• A superficial application of fuzzy theory through defuzzification to create a syntax
dictionary for substituting the numerical values of medical parameters. This textual-
ization preserves the uncertainty and vagueness inherent in medical data while still
allowing for the application of NLP methods.

• A comprehensive study utilizing the data generated to solve a patient-outcome-
prediction problem based on NLP classifier models with respect to their ability to
“explain” their predictions.

To the best of our knowledge, no prior research has been conducted using an FL-
based textualization approach to bridge the gap between medical tabular data and natural
language processing (NLP).

The rest of the manuscript is organized as follows. Section 2 highlights related pub-
lications and preliminary concepts. Section 3 presents our methods and approach for
data transformation and modeling. Section 4 presents the evaluation of our results in a
prediction task. Section 5 concludes the paper and outlines the limitations of our methods,
and suggests future work.

2. Background

Biomedical data mining aims to extract knowledge from large amounts of biomedical
data. The goal of this process is to identify and understand patterns and relationships
within the data that can be exploited later to improve healthcare and understand outcomes.
With machine learning, biomedical data mining requires a data transformation that involves
converting raw data into a format that can be easily manipulated with the available tools
for better performance [10]. Various normalization techniques include:

• Standardization, which scales data to a common range.
• Normalization, which scales data to a common distribution.
• Discretization, which converts continuous data into discrete data.
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Data discretization can be performed by binning, which groups data into a specified
number of bins, or by clustering data based on similarity. Discretization strives to improve
the interpretability of biomedical data. For EHR data, these methods can be computationally
expensive but can also lead to a massive loss of information.

In recent years, many studies have proposed various techniques to process and ana-
lyze medical data. For instance, deep learning models have been used to predict clinical
outcomes, such as patient mortality, length of stay, and readmission rates, using electronic
health records (EHRs) [11,12]. A study by Choi et al. [3] proposed a recurrent neural net-
work (RNN) model that uses clinical notes to predict hospital readmission. Their approach
proposes an interpretable predictive model for healthcare that uses a reverse time attention
mechanism to capture relevant information from the patient’s historical medical records.
Similarly, a study by Purushotham et al. (2018) proposed a deep learning model that incor-
porates both structured and unstructured data from EHRs to predict patient mortality [12].
In data transformation, several works have been presented. For instance, Arnaud et al. [13]
proposed a distillation method to extract structured data from unstructured text.

However, few studies have suggested transforming structured data into unstructured
free text. Structured data naturally encourage accuracy among machine learning models,
and interoperability, but NLPs are still black boxes. However, processing unstructured
data, such as clinical notes, can be challenging due to the variability and complexity of
clinical language [14].

In their book, Jang et al. [15] proposed a comprehensive theory on applying fuzzy
logic and machine learning to address the uncertainty in a data transformation while
emphasizing the interpretability of the result. This work inspireed us to solve the vagueness
inherent in medical data.

2.1. Fuzzy Theory

Traditionally, FL is a science that makes machines think and understand how humans
do by proposing fuzzy sets to manage imprecise and vague knowledge [16,17]. As com-
putational intelligence techniques, fuzzy methods are used for effective decision making
to bridge the gap between human and machine intelligence by resolving the ambiguity of
terms. The paradigm of computing with words was a rational consequence of fuzzy theory
reasoning for computers [18]. However, FL, with its concept of the linguistic variable and
application to approximate reasoning, is a method of computing with words [19]. While
today’s technologies can only simulate that computation, we still cannot compute with
words as long as the encoding process transforms words back into numbers. Therefore,
this approach can be assimilated into a rule-based algorithm to define numerical vari-
ables with words. While numbers are used in statistical and machine learning models,
humans understand better in natural language. Therefore, using NLP should require a data
transformation of the numerical values into more meaningful terms for such models.

2.2. Hybrid Fuzzy-Based Models for Text Generation

Hybrid modeling integrating deep neural networks (DNN) and fuzzy systems has
been defined in various ways for diverse reasons [20,21]. One of the main motivations for
that symbiosis is DNN optimization [22,23]. As an illustration of how FL is used in NLP is
in natural language understanding (NLU). Fuzzy logic can be used to interpret the meaning
of a natural language input by taking into account the context and the degree of uncertainty
of the input [24]. For example, a statement such as “The patient has a high blood pressure...”
could be interpreted differently. FL can be used to determine the degrees of membership of
the input to different categories, such as “normal”, “elevated”, “High”, or “Hypertensive”,
to allow a more accurate interpretation of the input based on that information.

Another example of the use of FL in NLP is in natural language generation (NLG).
FL can be used to generate natural language output that is more human-like and less
rigid than traditional rule-based systems by taking into account context and degree of
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certainty [18,25]. Let us assume a set of linguistic variables that represent different features
or attributes of the text:

X = x1, x2, ..., xn (1)

and a set of fuzzy sets that represent the values of the linguistic variables.

A = A1, A2, ..., An (2)

The membership functions of the fuzzy sets are used to represent the degree of
membership of each value in a linguistic variable.

FL can be utilized to generate text by using a fuzzy inference system, which consists
of a set of rules that define the relationships between the linguistic variables. The rules
can be defined as IF x1 is A1 AND x2 is A2 THEN x3 is A3. The rules are used to emanate
a set of fuzzy output variables that are fused, and a reverse engineering mechanism
(defuzzification) is applied to generate the final text. This fuzzy text generation can be
expressed as:

y =
n

∑
i=1

(wi ∗ µA(xi)) (3)

where y is the output text, w is the weight of each rule, and µA(x) is the membership
function of the fuzzy set for each linguistic variable.

2.3. Defuzzification

The fuzzy membership degrees are used to define a crisp output or a single, definite-
meaning representation of the input [26,27]. This reverse engineering mechanism has three
main methods:

• Centroid method: It calculates the center of mass of the fuzzy set, which describes the
average value of the set.

xcentroid =
∑n

i=1 xi ∗ µA(xi)

∑n
i=1 µA(xi)

(4)

where xcentroid is the crisp value resulting from defuzzification, xi is a sample value,
and µA(xi) is the membership degree of xi in fuzzy set A.

• Maximum membership degree method: This method specifies the value with the
highest membership degree as the crisp output.

xmax = arg max
x

µA(x) (5)

where xmax is the crisp value resulting from defuzzification and arg maxx is the argu-
ment that maximizes the membership function.

• Mean of maximum (MOM) method: The MOM method calculates the average value
of the values that have maximum membership degrees.

xMOM =
∑n

i=1 xi ∗ [µA(xi) = µmax]

∑n
i=1[µA(xi) = µmax]

(6)

where xMOM is the crisp value resulting from defuzzification, xi is a sample value, µA(xi)
is the membership degree of xi in fuzzy set A, µmax is the maximum membership degree in
fuzzy set A, and [µA(xi) = µmax] is a binary variable equal to one if µA(xi) = µmax, and it
is equal to zero otherwise.

With this research, we converge on this traditional use of fuzzy logic theory in NLU
and NLG. We propose a way of using balanced linguistic theory and clinical features
occurring in a tabular format to build comprehensive patient descriptive documents us-
ing defuzzification methods. In the following section, we describe our approach to the
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construction of the fuzzy set and how our evaluation yielded the best performance in a
patient-outcome-prediction task.

3. Materials and Methods
3.1. Introduction

The ultimate goal of textualizing tabular data is to propose a predictive model based
on a general understanding of a patient’s status. The best part of this is the use of as much
information as available from the EHR, without compromising on using certain parameters
in the process of handling missing data and outlier values. Numerical models require the
regularity of the input features. However, medical data are full of such irregularities that
an extensive data processing step is needed, including sample selection, data balancing,
and normalization. Ideally, a patient’s complete medical description should:

• Include the patient’s name, a unique identifier, and the location of his or her hospital-
ization.

• Reflect the continuum of patient care in a chronological order.
• Contain data recorded on admission, handover, and discharge.
• Be dated and signed by their author.

In most of the publicly available medical datasets, these important data are missing
due to the de-identification process. This will not make any exceptions for the synthetic
data when describing a patient.

In EHR, an equivalent description can mostly be found in clinical reports, which
usually use natural language to describe a patient. However, free narratives are irregular
and hard to process due to conventional writing, which can vary from one health center
to another. Our objective is to describe a patient in a natural way using medical data,
mimicking real-world datasets. Moreover, we want to bring the benefits of NLP and
transformers to more use cases in medical predictive models while avoiding the pre-
processing step required by the EHR narratives and comparing our results with the existing
tabular-based models.

3.2. Data Acquisition and Mining

Medical Information Mart for Intensive Care-III (MIMIC-III) is a publicly available
dataset with real medical data from over 38,597 distinct patients admitted to an intensive
care unit (ICU) [28]. The data are distributed as CSV files that can be imported and mapped
to a relational database such as MySQL. Using SQL queries, datasets were extracted and
processed in a Python notebook. In order to benchmark the effectiveness of our proposed
method later, we utilized the same data-inclusion criteria as our baseline model from the
literature [6]. We selected patients admitted or transferred to the Cardiac Surgery Recovery
Unit (CSRU), Medical ICU (MICU), and Surgical ICU (SICU), and used "emergency or
Urgent" as ADMISSION_TYPE. Please refer to the mentioned paper for details on the
inclusion criteria and statistics. To keep the relations between entities for the next step, we
queried the database in five distinct dataset clusters containing administrative information,
diagnosis related information, laboratory tests, vital signs, and procedures. Figure 1 shows
a summary of the process from the data extraction down to the next generation.

A common problem for any medical-outcome-prediction study is class imbalance.
Within our dataset, few patients died during their ICU hospitalization—a minority of 5058
among 37,111 unique admissions. This shows a fatality rate of 13.62% in our population.
Different techniques for handling imbalanced data exist; for our case, in order to keep the
integrity of the data, downsampling the majority class by random selection was utilized.
However, this technique has the consequence of cutting out some potential knowledge
from the majority class. To limit this information loss, we sampled the new dataset to 40%
for the fatality class and 60% for the discharged class.
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Figure 1. Summary of the data extraction and synthetic narratives of the generation pipeline.

3.3. Proposed Model: Data Textualization

The literature has shown the most relevant features to predicting a patient’s outcome
in an ICU [6,11]. However, most of the authors were also limited by constant missing
data through the population sets and the targeted case of study. In our case, our limit
could be determined by the NLP model itself for not performing well with numerical
data. As described in the following section, a rule-based algorithm based on FL theory can
be used to map numerical values with classes that can be understood by a modern LM.
Generating synthetic text data with fewer numbers and more key terms allows us to build
a more comprehensive NLP model to accomplish a task such as classification.

To describe a patient inherently, we conducted the generation of narratives with
the help of key phrases. These key phrases connect medical parameters extracted from
different EHR tables to ensure the semantic and syntactic integrity and the relevance of the
generated text.

3.4. Feature Engineering

One of the most typically used methods in FL is the membership function, which
assigns a degree of membership to each element of the input set, based on its resemblance
to the set or category in question.

The MIMIC-III dataset uses the International Classification of Diseases in its ninth
version (ICD9) to encode and classify diagnoses. These codes are the primary sources
of information related to each patient’s main complaint, comorbidities, and phenotypes.
For our text generation process, we extracted all the codes related to each patient of our
population found in the ADMISSIONS and DIAGNOSES_ICD tables. To map the codes
with their label, we used a python library “icd9cms” that takes the ICD9 codes as an
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input, and we specifically output the most granular label from the hierarchy of the ICD9
nomenclature tree [29]. This step provided us with the clinical name associated with each
ICD9 code, which we appended to other prompts and text related to patient identification,
procedures, vitals, and laboratory tests and results.

In the following section, we describe our methods of transforming all those numerical
data into text using a defuzzification system.

3.5. Defuzzification System Architecture

Our ultimate goal is to evaluate our approach with a language model. However,
language models understand better textual context than numerical context. For instance,
a patient’s blood pressure being annotated as “140/101 mmHg” may not provide much
meaning for a language model. Therefore, its interpretation in medical terms (hypertension,
specifically, stage 2 hypertension) has more potential to be well understood by a LM.

The fuzzy theory defines the linguistic variable by:

(X, T(x), U, G, M) (7)

X is the variable, T(x) is the set of terms, U is the universe of discourse, G represents
the syntax rules, and M defines the semantic rules. For our case, X represents the medical
variables, T(x) are the clinical interpretations, and U groups the values of each medical
parameter [19].

A defuzzification dictionary for blood pressure readings could be mapped to categories
such as “Low”, “Normal”, and “High”. In our algorithm, instead of computing the centroid
of the fuzzy output, we simply compute the maximum degree of membership among all
categories using a binary rule approach. This approach can be more efficient and easier to
implement, but it may not be as accurate as the centroid approach in certain cases.

In Algorithm 1, the membership function µNormal(x) returns a value of one if the blood
pressure reading x falls within the range of 90 to 139 mmHg, indicating that the reading
is “Normal”. The value of µNormal(x) is 0 for readings outside of this range. Similarly,
membership functions can be defined for each of the other categories which we intend to
substitute with words in the textualization process. However, the encoding part of the logic
can be handled by a multidimensional LM to vectorize these entities of words. As in fuzzy
theory, where each linguistic variable is described by a “set of terms”, to textualize our
medical features, each feature’s value is represented by a term instead of a number. Our
approach utilizes binary discrimination to allocate a category to each value [30]. Table 1
reports the set of terms with the range and source of reference for each parameter.

Algorithm 1. Defuzzification for blood-pressure categories.

Fuzzy blood pressure reading x Blood pressure category Compute the degree of membership
of x in each category using fuzzy sets or rules, such as:

• Low: µLow(x) =

{
1, if x ≤ 90 mmHg
0, otherwise

• Normal: µNormal(x) =

{
1, if 90 mmHg < x ≤ 139 mmHg
0, otherwise

• High: µHigh(x) =

{
1, if x > 139 mmHg
0, otherwise

Compute the maximum degree of membership among all categories, such that:
µmax = max µLow(x), µNormal(x), µHigh(x)

If µmax = µLow(x), return “Low” as the blood pressure category.
If µmax = µNormal(x), return “Normal” as the blood pressure category.
If µmax = µHigh(x), return “High” as the blood pressure category.
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Table 1. Medical parameters, set of category terms, and their ranges.

Parameter Range Category Reference

Age

15–40 Young adult

[31]41–60 Middle-aged adult
61–89 Old-aged adult
90+ Very old-aged adult

Arterial Sys <90 mmHg Low
[32]Blood Sys 90–139 mmHg Normal

Pressure Sys >139 mmHg High

Heart
rate(HR)

<60 BPM Low
[32]60–100 BPM Normal

>100 BPM High

SpO2 <92% BPM Low [33]
>92% BPM Normal

Heart
Rate
(HR)

<60 BPM Low
[32]60–100 BPM Normal

>100 BPM High

Respiratory
Rate

<12 BPM Low
[32]12–25 BPM Normal

>25 BPM High

3.6. Machine Learning Models

In NLP, transformer-based models [34] have become a reference as the state-of-the-
art in several natural language understanding tasks. In this research, we decided to use
this representation over the fuzzification, since it captures relations between neighboring
and distant words, whereas the Fuzzy encoder only considers one single word as an
independent entity.

3.6.1. BERT

The bidirectional encoder representations from transformers (BERT) model is a highly
bidirectional, unsupervised language representation method pre-trained on an unlabeled
plain text corpus from books and the English Wikipedia. The original model was pre-
sented in two versions, the BERTBASE with 12 encoders and 12 self-attention heads and
BERTLARGE with 24 encoders and 16 bidirectional self-attention heads. We omit more
details on the architecture, as it is well described in [8]. BERT utilizes the transformer
encoder architecture based on a self-attention mechanism to represent a sequence of words
or tokens in a higher dimensional space. We utilized the BERTBASE version, since our
inputs have an average of 353 tokens.

3.6.2. BioBERT

The biomedical language representation model for biomedical text mining (BioBERT)
is a domain-specific language model [9]. This baseline model initialized its weights from
BERT and uses PubMed abstracts and PMC full-text articles to fine-tune its understanding
of the medical domain. Please, refer to the original paper for more details on the training
process and the performance of the resulting model.

During the tokenization process, two additional tokens are used: a [CLS] token as
an input starter and [SEP] to mark the end of the input sequence. Thus, a sequence S
for these models is represented by [cls, t1, ..., tn, sep], where t is a word or a subword of
S. The maximum length of the input sequence is 512 tokens. The goal of using tokens is
to represent any words and avoid OOV words. However, BERT and BioBERT are token
based-models; thus, some words will be broken down into characters if such entities are
not present in the 30,000-token vocabulary files of those models.
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3.6.3. BioBERTa

BioBERTa is a pre-trained RoBERTa-based language model designed specifically for
the biomedical domain [7]. Like other domain-specific LMs, BioBERTa has been trained
on a diverse range of biomedical texts—mostly electronic health records and raw medical
notes—to learn the language patterns, terminology, jargon, and knowledge relevant to
the biomedical domain. BioBERTa was optimized in the pretraining process by adopting
the modifications of the source model, such as dynamic masked language modeling, no
next-sentence prediction task, and most importantly, a WordPiece tokenizer that suppresses
the out-of-vocabulary (OOV) occurrences. This model demonstrated high performance
on several named-entity recognition tasks and showed the best fertility rate for biomedi-
cal texts.

To fine-tune these three models for a classification task, we appended a classification
layer on top of the last hidden layer with a given loss function, and this can be performed
on the output of the [CLS] token alone. For our case, we utilized the [CLS] token and a
logistic regression classifier. We performed a hyperparameter search to find the best set of
training epochs, learning rate, and batch size that optimizes the result [35].

4. Results

The process of generating data begins with the extraction of features from the main
MIMIC-III dataset. The extracted features were then individually merged in a fusion
process to form a more comprehensive representation of the patient. In this operation,
the features were contextualized using key phrases to semantically link them, thereby
creating a coherent representation of a narrative. To ensure the quality of the generated
data, a grammatical assessment was carried out to eliminate any unnecessary duplication
of features or syntax errors that may have been introduced during the fusion process.
This grammatical assessment helped to improve the coherence and consistency of the
generated data and provided a better sequence of the features extracted from the main
MIMIC-III dataset.

4.1. Generated Data

In order to provide a comprehensive understanding of each patient’s hospitalization,
we generated narratives for each of the 37,110 admission IDs in the dataset. The length
of these generated texts was determined by the number of parameters each patient had,
resulting in a dataset that includes both admission IDs and labels indicating the outcome
of the patient’s hospitalization.

When preparing the generated dataset for use with classification models, it was es-
sential to ensure that it would fit within the limitations of the models. Using the BERT
tokenizer, we counted the tokens of each input sentence, and the results were 1686 and 67,
respectively, for the longest and shortest sentences. The median was 258 tokens. With this
in mind, we excluded the normal values of the parameters from the training data. The ra-
tionale for this was that the primary purpose of medical procedures is to identify or treat
abnormalities. Figure 2 shows the variation in the narrative’s lengths before and after
this step.

By keeping the normal values of the parameters, more than 2700 narratives have over
the 512-token limit of our classification, and only fewer than 1600 will hit that limit without
normal values.

4.2. Classification Results

To train and evaluate our two models, we used 10,116 input sentences and tested their
performances for 2529 narratives. To ensure compatibility, we utilized the BERT-based,
uncased tokenizer as BERT and BioBERT’s tokenizer and the vocabulary that came with
the pre-trained BioBERT files. BioBERTa has a custom byte-pair encoding (BPE) tokenizer
of 50,265 tokens.
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(a)

(b)

(c)

Figure 2. Generated narratives’ lengths: These three graphs provide an overview of the lengths of
our synthetic texts. (a) Overview of the generated text; (b) sentences of ≤512 tokens with normal
values; (c) sentences of ≤512 tokens without normal values.



Electronics 2023, 12, 1848 11 of 16

4.2.1. Input-Length-Variation Study

To understand the behavior and determine the optimal input size for each model,
we conducted experiments using different input lengths of 512, 350, and 255 tokens. This
allowed us to determine the most effective input size to achieve the best results. Preliminary
results revealed that the best performance was achieved using a maximum input length
of our models (512 tokens). For the rest of the experiment, we used tokenized inputs of a
maximum length of 512 tokens for the three models.

4.2.2. Optimization of Hyperparameters

Hyperparameter optimization in NLP consists of selecting the optimal values for
the model’s hyperparameters to achieve the best performance in a downstream task by
effectively capturing the patterns in the data and avoiding overfitting or underfitting. These
hyperparameters define the configuration of the model, such as the learning rate, the batch
size, and the number of hidden layers. For our case, we focused our attention on the
training batch size, the learning rate, and the training epochs.

To develop an adaptive (sequential) hyperparameter search, we utilized a random
search algorithm to erratically select different combinations in the provided ranges [36]. We
focused our attention on the training batch size, the learning rate, and the training epochs.
Figure 3a shows that with a batch size of 32, four training epochs, and a learning rate of
3.86 × 10−5, can provide an F1-score of 93.47%.

(a) Hyperparameter search in a predetermined range of values.

(b) Loss for the different model configurations

Figure 3. Hyperparameter search and validation loss.
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4.2.3. Outcome-Prediction Results

Our test was to use the generated data and evaluate their importance in solving the
problem of hospitalization outcomes. Our data were labeled as “0” if the patient was
discharged and “1” if he died during his hospitalization.

We measured the efficiency of the in-hospital predictive models by the evaluation metrics,
F1-score, precision, and recall between the fatality and survivor classes. Each reported score
in Table 2 is an average of five experiments on BERT, BioBERT, or BioBERTa.

Table 2. Outcome prediction results from three different NLP models and a tabular data-based
stacking model as a baseline.

Model Input Length F1 P R

Stacking Model [6] - 0.937 0.964 0.911

BERT

L = 256 0.849 0.815 0.886
L = 360 0.848 0.825 0.873
L = 512 0.858 0.847 0.870

L = 512 (optimized) 0.897 0.887 0.895

BioBERT
L = 256 0.851 0.817 0.887
L = 360 0.860 0.865 0.855

L = 512 (optimized) 0.925 0.931 0.926

BioBERTa

L = 256 0.854 0.797 0.921
L = 360 0.860 0.845 0.875
L = 512 0.879 0.849 0.891

L = 512 (optimized) 0.937 0.94 0.931

The baseline paper [6] explored two different methods for approaching the task at hand.
The first method involves the utilization of a list of unimodal baseline classifiers, including
k-nearest neighbor (KNN), multilayer perceptron (MLP), linear discriminate analysis (LDA),
logistic regression (LR), and decision tree (DT), applied to various experimental feature sets.
The second method involves ensemble models, such as random forest, voting, bagging,
and boosting, to improve the performance of the best single models. These evaluations
were conducted both with and without a feature-selection step.

Building upon these two approaches, the paper introduced a stacking classifier algo-
rithm based on the generalization stacking ensemble model, using LR as the metaclassifier.
This stacking technique demonstrated impressive accuracy, with an F1-score, precision,
recall, and AUC of 0.937, 0.964, 0.911, and 0.933, respectively.

The results displayed in Table 2 demonstrate the highly competitive performance of
both models. BioBERTa exhibits better performance than other language models. It is evi-
dent that fine-tuning the hyperparameters plays a crucial role in the model’s performance,
as the results show a difference of up to 6.5% in the F1-score. This highlights the need for
proper tuning to achieve optimal results and underscores the significance of this aspect in
the development of language models.

Figure 4 reports different results obtained by evaluating each model in various config-
urations on the test set. We noticed high variability in performance based on the model’s hy-
perparameters.

Overall, our approach has been shown to perform comparably with the benchmark
baseline models while exhibiting slightly improved results in terms of recall. We believe that
this performance is the result of the specific data-sampling technique that we implemented
during the training phase, which aimed to balance the data’s distribution. By leveraging
this approach, we were able to address the class imbalance and improve the models’
performances effectively.
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Figure 4. Our different models’ prediction accuracies. The green, blue, and orange circles represent
BioBERTa, BioBERT, and BERT models respectively

4.3. Interpretability of the Generated Text

The interpretability of models, as illustrated in Figure 5, plays a crucial role in un-
derstanding a model’s decision-making process and predictions, especially in medical
applications [37]. Using fuzzy theory in the defuzzification processes helps to deal with
uncertain and ambiguous information. Still, this uncertainty can also impact the inter-
pretability of the models trained on such data.

(a) Narrative of a deceased patient

(b) Narrative of a discharged patient

Figure 5. Interpretability visualization using shapley additive explanations (SHAP) on the narratives
from two different classes.

The explainability of a model based on the text generated from a defuzzification
process depends on various factors, such as the choice of the defuzzification method,
the structure of the model, and the complexity of the generated text. Rule-based text
provides more nuanced data by structuring the narratives into a more comprehensive and
interpretable construction.

Figure 5 shows a visualization of BioBERTa of two generated texts using Shapley
values [38], revealing the importance of each token. Red regions correspond to parts of the
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text that increase the model’s output when they are included, pushing the model to predict
the patient as “deceased”. In contrast, blue regions decrease the output of the model to
predict a “discharged” patient.

It can be seen in Figure 5a that even if vitals and length of stay helped the model to
increase the output values, the shade of red seen on “sepsis” and “lactate” was too dark
to predict the fatal outcome. This is more understandable, as sepsis is a life-threatening
on its own; a high serum lactate level as a consequence of sepsis may predict death within
24 h [39]. Figure 5b shows a narrative where the primary diagnosis indicates a significant
contribution to the survival of the patient, despite an elevated value being given to the
patient’s coinfection with the “respiratory syncytial virus”, a less lethal infection [40].

5. Conclusions

This research aimed to analyze the impact of the generated data on the prediction
of in-hospital outcomes. The defuzzification process of generating narratives involved
extracting features from the MIMIC-III dataset and fusing them to represent the patients
exhaustively. The generated data were then subjected to a grammatical assessment to
eliminate errors and improve the quality of the generated narratives. The data were
generated for 37,110 admission IDs in the dataset, and the lengths of the narratives varied
based on the number of parameters each patient had.

To train and evaluate the models, 10,116 input sentences were used, and the perfor-
mance was tested on 2529 narratives. The BERT, BioBERT, and BioBERTa models were
trained using the BERT-based, uncased tokenizer and the BioBERT tokenizer, respectively.
The study also involved hyperparameter optimization, where a random search algorithm
was used to select the optimal values of hyperparameters, such as the batch size, learning
rate, and training epochs. The best performance was achieved with a batch size of 32,
4 training epochs, and a learning rate of 3.86 × 10−5.

The evaluation of the models was based on the prediction of the outcome of the pa-
tient’s hospitalization, where the data were labeled as zero for patients who were discharged
and one for those who died. The results were measured using the F1-score, precision, and re-
call for the fatality and survivor classes. The results demonstrated the highly competitive
performances of the BERT and BioBERT models. BioBERTa exhibited better performance
compared to the other language models. The results showed that the best performance was
achieved using a maximum input length of 512 tokens, with optimized hyperparameters.

In conclusion, this study demonstrates that FL- and rule-based approaches can play
a significant role in generating comprehensive and interpretable medical narratives to
describe a patient extensively. The results of the study show the potential of fine-tuned
language models such as BioBERTa for improving the accuracy of predictions and provide
a better understanding of the hospitalization outcomes of patients. The interpretability of
models trained on the text generated from a defuzzification process is crucial for ensuring
the transparency and reliability of the model’s predictions.

However, our approach has two significant limitations. Firstly, the accuracy of the
resulting model depends directly on the size of the universe of discourse grouping the
classes, and for some features, there is no deterministic way of establishing boundaries
between classes. Subsequently, this approach requires domain expertise to determine the
appropriate linguistic rules, and there is potential for bias in the textualization process.
Additionally, the experimental results show that the performance of LM relies heavily on
hyperparameter fine-tuning.

In future work, we plan to explore the use of neuro-fuzzy theory, in combination with
current state-of-the-art LMs, and investigate methods for reducing expert dependency by
incorporating external data sources, such as ontology. Overall, this study provides a step
toward improving healthcare outcomes through data-driven decision-making processes.
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