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Abstract: Post-COVID-19, there are frequent manpower shortages across industries. Many factories
pursuing future technologies are actively developing smart factories and introducing automation
equipment to improve factory manufacturing efficiency. However, the delay and unreliability of
existing wireless communication make it difficult to meet the needs of AGV navigation. Selecting
the right sensor, reliable communication, and navigation control technology remains a challenging
issue for system integrators. Most of today’s unmanned vehicles use expensive sensors or require
new infrastructure to be deployed, impeding their widespread adoption. In this paper, we have
developed a self-learning and efficient image recognition algorithm. We developed an unmanned
vehicle system that can navigate without adding any specialized infrastructure, and tested it in the
factory to verify its usability. The novelties of this system are that we have developed an unmanned
vehicle system without any additional infrastructure, and we developed a rapid image recognition
algorithm for unmanned vehicle systems to improve navigation safety. The core contribution of
this system is that the system can navigate smoothly without expensive sensors and without any
additional infrastructure. It can simultaneously support a large number of unmanned vehicle systems
in a factory.

Keywords: artificial intelligence; Internet of Things; edge computing; smart factories; image recognition;
unmanned vehicle

1. Introduction

In order to enhance competitiveness, companies seek various methods of enhancing
manufacturing efficiency, increasing flexibility, and reducing costs. In the context of In-
dustry 4.0 [1], intelligent automatic guided vehicles in factories minimize the manpower
required to conduct low-level work [2]. AGVs are commonly used in factories to move
materials. Due to their widespread use in smart manufacturing, the global AGV hardware,
software, and services market was worth around USD 4.8 billion in 2022, with a projected
revenue CAGR of around 10% [3]. In the post-pandemic era, there are frequent shortages of
manpower in various industries. Smart factories are thus being developed, and automation
equipment has been introduced to improve efficiency. However, most traditional AGV nav-
igation hardware comprises an on-board processor that has limited processing capabilities,
meaning that it may not be able to perform complex calculations, hindering the develop-
ment of related systems. With the continuous development of artificial intelligence, wireless
networks, IoT, and edge computing technologies, the connection of networked devices
enables “things” to communicate, exchange data, and improve operational efficiency [4,5].
Edge computing [6,7] is a next-generation wireless network and artificial intelligence IoT
solution that can be used as an extension of cloud computing to support the supply of
continuous services from the cloud and reduce a network’s bandwidth requirements. The
development of advanced technologies will lead to the development of new business
practices in smart factories. For smart factories, there is an additional cost to installing
additional hardware of any kind. There are aisles in the factory. Colored lines separate
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the work area, product area, and aisles. These colored lines can be used for unmanned
vehicle system navigation. This is a great solution for the factory of the future (FoF) as the
existing infrastructure of the factory can be used without installing any kind of additional
hardware infrastructure. In this paper, we try to integrate innovative vision technology, AI,
IoT, and edge computing technology to develop unmanned vehicle systems that do not
require additional hardware infrastructure. We used a real unmanned vehicle system to
validate this solution.

The remainder of this paper is organized as follows. In Section 2, the materials and
methods are introduced. Section 3 introduces our experimental results. In Section 4, our
methods and results are discussed. We conclude this paper in Section 5.

1.1. Related Work and Background Knowledge

Unmanned vehicle systems are used in factories to deliver materials. Factories con-
tain people, equipment, materials, products, etc. Most of the equipment, materials, and
products are stationary. The mobility and speed of people are low. The likelihood of an un-
manned vehicle being hit by a foreign object is low. The system design prevents unmanned
vehicles from leaving their lane and colliding with other equipment or materials. With
the in-depth development of autonomous driving, image recognition, advanced driver
assistance systems, and other technologies, more and more solutions are being proposed
for unmanned vehicle systems, such as light detection and ranging (LiDAR), radar, camera,
ultrasonic, magnetic stripe, and RFID solutions, and each has its own advantages and
disadvantages [8]. Automotive sensors are responsible for the collection and transmission
of information. Navigation controllers rely on sensors to recognize changes in the lane
environment. Most traditional AGV navigation hardware units comprise on-board pro-
cessors whose functionality may be limited. In this article, we focus on unmanned vehicle
sensing, localization, and navigation control technology under an edge–cloud architecture.
We reviewed the related literature and found that:

1. Light detection and ranging (LiDAR) systems collect reflected beams of light to create
a 3D image of an object. Although LiDAR is an efficient sensor, it is expensive [9,10].

2. A laser navigation system is suitable for AGV positioning and navigation, but in
order to ensure its safe operation, the laser AGV navigation system still needs to use
artificial landmarks for positioning and navigation [11].

3. Magnetic stripes and RFID: RFID can store the information of some unmanned vehi-
cles, but metal interferes with RFID, so the technology may fail. In order to improve
the positioning accuracy of unmanned vehicles, magnetic nails are used for position-
ing along lanes [12]. These methods also involve installing hardware (magnets or
RFID tags) on the factory floor. In smart manufacturing, installing any type of addi-
tional hardware infrastructure in a factory necessitates much follow-up housekeeping,
which may impose additional economic costs on the factory.

4. Vision guidance systems [13,14] compare the current image captured by the camera
with the stored factory map for navigation, which uses a lot of computing power.
This approach is known to cause accuracy issues due to signal reflections in industrial
environments. Some methods that use color sensing require other equipment such as
RFID tags for positioning, which increase costs [15,16].

5. Ultrasonic signals can be used for unmanned vehicle navigation [17]. However, they
are easily disturbed by metal objects in a factory.

6. Wireless networks used for unmanned vehicle localization cause uncertainty in the
position of unmanned vehicles due to multipath fading. Another disadvantage of
wireless networks is communication delays for autonomous vehicle fleet manage-
ment [18].

7. When using Wi-Fi, path loss and low available bandwidth (due to the high number
of users) cause network latencies. Therefore, it is often necessary to retransmit data
packets [19].
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8. When using IoT applications, the central computer may not be able to meet the
timing requirements, especially in a time-sensitive system. If data are sent to the
central computer but a response is not received in time, the consequences are un-
predictable [20,21]. In order to distribute the burden of the central computer, edge
computing has been developed. Edge computing can simplify hardware requirements
at the edge as vehicles can be embedded with a microcomputer to run basic tasks.
This strategy helps to reduce the AGV fleet cost [6].

1.2. Purpose

Smart factories are the largest market for smart technology, and the combination of
precise control, computer vision, and edge computing is the focus of current technological
development. This study aims to realize an unmanned vehicle system for factory material
transportation, popularize unmanned vehicle systems economically, and solve the prob-
lem of manpower shortages in factories. Enterprises pursue not only efficiency but also
economic benefits, so the system we develop must meet these needs. Usually, the produc-
tion line of a factory is reorganized from time to time, and whenever a production line is
reorganized, much housekeeping is conducted, e.g., reconfiguring the location of working
machines and planning new paths [22,23]. When the work station changes, it is necessary
to change the delivery routes and stop points of materials. If the factory uses additional
infrastructure for unmanned vehicle navigation, such as magnetic strips, wires, RFID tags,
etc., buried in the floor, the construction and maintenance costs of this infrastructure are
very high. Thus, factories should move away from these types of installations to accrue
economic benefits. As a result, here, we apply innovative methods to quickly adapt to the
restructuring needs of factories. An unmanned vehicle cannot stop halfway through the
delivery of goods, and it must be ensured that it can complete delivery work independently
with fault tolerance. The aisle space in a factory is limited, and two-way traffic is usually
present in a single lane. Collisions must be avoided when multiple vehicles are moving at
the same time [24–26]. When we integrate the aforementioned technologies for unmanned
vehicle systems, there are some main challenges.

1. The real-time image data volume of a car camera is huge (0.4–0.8 Mb/s). Our real-
time assumption for this system is that the unmanned vehicle leaves the parking lot
and starts to detect images, sends out navigation instructions after image analysis,
and then detects images again. The system repeats such work continuously until
it returns to the parking lot and waits for the next transportation task. In order for
the unmanned vehicle to navigate effectively and safely, the system must complete
the navigation operation within 50 ms in most cases. We developed a rapid image
recognition algorithm to meet the system requirements.

2. The navigation control of unmanned vehicles requires fast and immediate responses.
3. There are many light disturbances in the factory, such as fluorescent lights, LED

lights from instruments, and sunlight, and image recognition must have the ability to
eliminate light interference.

4. Image recognition must be able to quickly adapt to factory environments with different
lane line colors.

5. Unmanned vehicle systems are designed to maneuver through tight spaces and
around obstacles in a factory. They need an avoidance mechanism.

6. We should improve the efficiency of software system maintenance and management.

The system we develop must be able to solve the aforementioned problems and
improve the overall operating efficiency.

In this paper, we developed a practical unmanned vehicle system based on edge com-
puting, artificial intelligence, and vision technologies, breaking through the limitation of
onboard processors. The novelties of this system are that we have developed an unmanned
vehicle system without any additional infrastructure, and we developed a rapid image
recognition algorithm for unmanned vehicle systems to improve navigation safety. As
a result of our implementation, we found that it is possible to use unmanned vehicles
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to transport materials without using expensive sensors and without adding additional
infrastructure in the factory, solving the problem of manpower shortage and improving
efficiency. The contributions of this work are:

• The unmanned vehicle system we designed is based on the aisle sideline for navi-
gation, without any additional infrastructure, and a low construction cost and easy
maintenance. It can support a large number of unmanned vehicle systems in a fac-
tory simultaneously.

• We developed a rapid image recognition algorithm that can be used in autonomous
vehicles for improving safety.

• We developed an image recognition system with a self-learning mechanism that
can analyze parameters with similar colors, improve system analysis decisions, and
improve system performance.

2. Materials and Methods

There are many navigation solutions for unmanned vehicle systems, and they all face
different challenges. For example, light detection and ranging (LiDAR) is expensive [9,10].
Laser AGV navigation systems require the use of landmarks for positioning and naviga-
tion [11]. The introduction of such a system necessitates the addition of infrastructure. A
visual guidance system compares the current image with a pre-stored map for navigation.
In addition to the pre-built image map, these types of systems also require much computing
power. This approach can cause accuracy issues due to signal reflections in the factory
environment. A method of AGV navigation with color sensors is very useful for AGV
navigation due to its low cost, easy installation, and effectiveness during straight-line
navigation, but it should be integrated with RFID to assist with positioning [15]. Us-
ing vision-based technology for navigation and positioning requires image recognition
technology to identify the sidelines.

2.1. System Architecture

The main components of our unmanned vehicle include two front wheels. The front
wheels are driven by two stepper motors operated independently. A camera and an
ultrasonic sensor are installed on the front, and there is also a pocket microcomputer and an
Arduino module. The hardware architecture of the unmanned vehicle is shown in Figure 1.
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Figure 1. Hardware architecture of unmanned vehicle.

We have a camera on the front of the vehicle with the camera lens tilted down 5 degrees
to capture images of the floor. An ultrasonic sensor is installed on the front to sense obstacles.
The front end of the vehicle has motor-driven wheels. A microcomputer with wireless
communication capabilities is placed in the car.

Our system is activated upon receipt of a job order. After a job is assigned, the system
generates a routing path, and the navigation system uses this routing path as the skeleton
to carry out a transportation task. The vehicle-side microcomputer periodically queries the
cloud host through the wireless network whether there is an unfinished task to be executed.
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After the microcomputer obtains the list of unfinished jobs, it downloads the routing path.
The microcomputer of the vehicle uses the image for analysis and determines the position
of the sideline as the basis for navigation control.

2.2. AIoT and Edge–Cloud

In this study, we focus on networking, computing power, image recognition, nav-
igation, and security. In Section 1.1, it was pointed out that wireless networks are not
suitable for unmanned vehicle navigation due to multipath fading, communication delay,
and poor penetration. The indoor network used in this research is mainly used for a small
amount of data exchange between the vehicle and the cloud host. With the help of the
interconnectivity brought about by the Internet of Things (IoT), as well as its ability to
obtain data from equipment, cyber–physical converged systems (CPS) have been intro-
duced. Most of the data from connected devices are collected by sensors equipped with
embedded systems, and the data are uploaded over the network to the cloud for storage
and processing [27–29]. Intelligent networking involves the introduction of artificial in-
telligence systems into Internet of Things technologies (AI + IoT = AIoT). AIoT is able to
learn from data to generate predictive decisions, which may help to provide higher quality
services. Current embedded systems are gradually developing towards miniaturization
and intelligence and can integrate sensors for real-time processing. The data received by
the sensors do not have to be sent back to the cloud for computation. Instead, real-time
processing is performed at edge nodes, which can greatly shorten the time required for
data transmission back and forth. Edge computing has the following characteristics:

• It is a distributed computing architecture that transfers the computing of applications
and services from central nodes to edge nodes for processing [30].

• It has the ability to support IoT devices on the move.
• It is capable of offloading work from the fog or cloud to edge nodes to improve

computational efficiency.

Unmanned vehicles must continue to complete the delivery work as much as possible
when the network is disconnected. An edge–cloud collaborative architecture solution is
an option that can enhance the system’s fault tolerance. The architecture of an edge–cloud
system is shown in Figure 2.
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In the cloud layer, there are many server hosts connected to support the overall
business operation of the enterprise. Important business decisions can be made through
big data analysis on cloud servers. The edge host in the cloud layer can connect multiple
sensing devices to collect local data, and the sensing data are sent to the edge for analysis
and local decision making. According to the system settings, the necessary data are sent
back to the cloud for data storage or big data analysis. The device layer contains sensing
devices. These sensing devices are responsible for collecting terminal data and sending the
data to the edge for data processing. The edge and the cloud can communicate via a wireless
network. This architecture can prevent the need for large amounts of data transmission in
the network and can also distribute the workload of the cloud or the central host, improve
the overall performance of the system, and enhance the scalability of the system.
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In order to improve the service efficiency of the unmanned vehicle system, in this
paper, we propose and deploy an intelligent unmanned vehicle solution based on AIoT and
edge computing technologies. Our unmanned vehicle system uses a pocket microcomputer
to improve the execution capability of the vehicles. It has network capabilities, and it can
perform complex calculations to make local decisions quickly for navigation. The necessary
information is sent to the central system, reducing the need for network transmission. The
image data are not transmitted via the network; the network data are only 1/300,000th the
size of the images. The novelty of our unmanned vehicle system lies in its improvement of
vehicle-side execution capabilities and low network dependence, which make it possible
to deploy a large number of unmanned vehicles in factories. The network can be used to
remotely maintain and update the software system of the vehicle. We know that the power
consumption of network facilities is directly proportional to the amount of data transmitted.
The energy consumption per bit of data on the Internet is around 75 microjoules at low
access rates and decreases to around 2–4 microjoules at an access rate of 100 Mb/s [31].
For example, a 30 KB image file can save around 0.72 joules of energy consumption. The
network transmits less data, the chance of network collision or retransmission is reduced,
and the speed and performance of the network are improved. Image processing and
navigation are distributed to each vehicle for processing, greatly reducing the burden on
the central system.

Unmanned vehicles used in traditional factories are limited by the capabilities of their
onboard processors and cannot perform complex computing functions [8]. Our unmanned
vehicle system uses a pocket microcomputer that has multiple USB ports and can be used
to connect other peripheral devices. Its function is similar to that of a laptop; it uses a
Windows system, is small and cheap, and has network communication capabilities. In the
future, various software functions can be added at any time to enhance the functions of
the unmanned vehicle system. The system can be updated remotely through the network.
There is no need to burn the software into the electrically erasable programmable read-only
memory (EPROM) separately and then replace the EPROM on the vehicle to update the
system, which greatly reduces the system maintenance cost. Such a system architecture can
meet the requirements of FOF.

2.3. Image Recognition Technology

In order to avoid the extensive housekeeping work caused by the additional instal-
lation of hardware infrastructure in a factory, our system uses the factory’s existing aisle
yellow sidelines as guiding lines for unmanned vehicles without adding any additional
infrastructure. A camera in front of the unmanned vehicle captures the vehicle guidance
line on the floor and analyzes the position of the guidance line for navigation control. The
image recognition strategy of the unmanned vehicle system is based on the color recogni-
tion of each pixel. The pixels have red (R), green (G), and blue (B) values of between 0 and
255. The hue (H) value is between −180 and 180, the saturation (S) value is between 0 and
1, and the intensity (I) value is between 0 and 255 [32,33]. There is a lot of light interference
in the factory, which causes the color of the pictures taken by the camera to be distorted.
The floor color is distorted from gray to blue, as is shown in Figure 3.
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Figure 3a is a normal image of the floor, and the color of the floor in the picture is the
same as the actual color. In Figure 3b, the floor in the image changes to a blue color. If
we used a blue line as the vehicle guidance line, this may cause misjudgments. Figure 3c
shows light interference caused by fluorescent lights. The yellow line becomes very bright
due to the interference, and it cannot be correctly identified as a yellow line. In Figure 3d,
the image is disturbed by the LED light of the instrument projected onto the floor. The
color distortion causes great problems when it comes to image recognition. Using RGB
color model recognition technology, we often cannot identify the floor or the guidance line
accurately. Therefore, we used hue–saturation–intensity (HSI) color model technology [34].
HSI color model technology uses three components to represent color. The value of hue is
between −180 and 180, the value of saturation is between 0 and 1, and the value of intensity
is between 0 and 255, and this provides better distinctions between pixel colors [35–37]. In
order to adapt to different factory environments, we designed a self-learning mechanism
to analyze the required line color and obtain the parameters required by the system. This
eliminates the need for manually testing the photos one by one and recording the hue–
saturation–intensity value, reducing the required manpower and shortening the test time.
Applying AI’s powerful machine learning (ML) [38,39] capabilities to hardware devices
enables devices to perform analytics flexibly. ML can usually learn from past data and
experiences to find the rules of its operation. In this case, ML involves color pattern training
to recognize patterns using examples rather than programming with specific rules. It takes
samples from the database to learn and create a hue–saturation–intensity rule for a set of
colors and use it to make predictions. We use a full-color template image for the system to
compare with the floor image, enabling the system to learn and record the values of the
colors. The system automatically distinguishes colors and records related parameters, as
shown in Figure 4.
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Figure 4. Machine learning analysis.

The two yellow blocks in the red circle in Figure 3a are similar in color. The left
yellow block in the red circle is from the full-color template, and the right one is from
a picture of the yellow line on the floor. The HSI values of the template are: hue (0.17),
saturation (0.85), intensity (162), and the values of the floor picture are: hue (0.17), saturation
(0.47), intensity (172). This system has found the rules for identifying yellow’s hue (0.17),
saturation (0.47–0.85), and intensity (162–172) and blue’s hue (0.60), saturation (0.78–0.99),
and intensity (116–119). The system can also identify various color recognition rules. The
system saves the HSI interval values of similar colors as the basis for color judgment, which
can eliminate the color distortion caused by external light interference. The recognition
system can collect HSI interval values for different colors too, as is shown in Figure 3b for
blue. A block diagram of machine learning image recognition analysis process is shown in
Figure 5.
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In the machine learning image recognition analysis process, a full-color template
(A) is fed into the image recognition analysis function 1©, the resolution is reduced from
640 × 480 pixels to 20 × 20 pixels, and then the HSI value of each pixel is established and
stored in a two-dimensional matrix that has a total of 400 records. The floor image (B) is
read from the database using the image recognition analysis function 3©, the resolution is
reduced from 640 × 480 pixels to 20 × 20 pixels, and then the HSI value of each pixel is
measured and saved in a two-dimensional matrix that has a total of 400 records. Then, the
HSI value of every pixel in the two matrices is compared 5©; if the data are similar, it keeps
and records them 7©. These HSI data are provided to the image recognition module of the
vehicle navigation system after passing through each picture in the database 8©.

2.4. Sensing and Analysis

The unmanned vehicle system in this experiment is driven by image recognition. The
system uses a web camera as an image capture tool. Each photo captured by the camera
has a resolution of 640 × 480 pixels and a file size ranging from 20 KB to 40 KB. The amount
of image data generated per second is about 400–800 KB. In addition to image recognition,
the microcomputer of the unmanned vehicle also performs real-time navigation, and the
workload is very heavy. If image recognition and navigation tasks are completed by the
cloud host, huge amounts of real-time image data are transmitted through the network. It
is not only necessary to keep the network unblocked at all times but also to have sufficient
bandwidth, especially when multiple unmanned vehicles are running at the same time.
The cloud host may not be able to handle the navigation control of multiple unmanned
vehicles at the same time. In this case, the stability of the network becomes critical. The
excessive dependence of the system on the network may cause difficulties in the operation
of the system, for example, network failure, network congestion, network delay, etc.,
causing the system to fail. In order to solve the above problems, our system operates under
an edge–cloud architecture. After the unmanned vehicle obtains the job instruction and
routing path from the cloud host, it can run independently from the cloud host, reducing
the system’s dependence on the network and reducing the workload of the cloud host. In
order to meet the navigation control requirements of unmanned vehicles, we designed
a downsizing algorithm to solve this problem. The downsizing and image recognition
algorithm pseudo code is as follows:
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while (y < 480) // go through y dimension
while (x < 640) // go through x dimension

color = Get_pixel(x,y)
Hue = Get_Hue(color)
Saturation = Get_ Saturation (color)
Intensity = Get_ Intensity (color)
IF F(Hue, Saturation, Intensity) within margin // color is matched

save line left edge value in 2D array
save line top left edge value once
save line right edge e value in 2D array
save line length

x = x + 32 // 20 times
y = y + 24 // 20 times

A block diagram of the navigation image recognition process is shown in Figure 6.
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After the system obtains the image from the camera 1©, it converts the original
640 × 480 resolution image into a 20 × 20 resolution image 2©. In 3©, the HSI value
of each pixel is calculated; if the HSI value of the pixel meets the HSI value of the vehicle
guidance line, it records the position of the pixel in the 2D matrix. The guidance line’s
width and length are obtained from a 2D matrix 4©, and the position of the topmost left
edge of the guidance line is obtained from the 2D matrix 5©. If the leftmost edge position of
the line is less than 7, the vehicle deviates to the right and must be calibrated to the left 7©.
If the leftmost edge position of the line is greater than 13, the vehicle deviates to the left
and must be calibrated to the right 9©; otherwise, it does nothing.

We compare the color of each pixel, and if the pixel color is similar to the lane edge
color, we record the pixel position. We use a two-dimensional matrix to save the position
of each pixel of the lane edge, which converts the image into an alphanumeric structure.
The converted guideline structure is shown in Table 1.

The y column in Table 1 is the pixel vertical position, the X1 column is the guidance
line of the leftmost edge position, and the X2 column is the guidance line of the rightmost
edge position. We used the topmost X1 position “7”, from the line text structure in Table 1,
as the basis for the vehicle’s navigation control.
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Table 1. Line text structure.

Y X1 X2 Line Width

0 7 9 3

1 8 10 3

2 8 11 4

3 9 12 4

4 9 12 4

5 10 13 4

6 11 15 5

7 11 15 5

8 12 16 5

9 13 17 5

10 13 18 6

11 14 19 6

12 15 19 5

13 15 19 5

14 16 19 4

2.5. Navigation Control

The rapid response of the unmanned vehicle system is very important. It should not
rely too much on the surrounding facilities, such as the network. In order to improve the
fault tolerance of the system, shorten the system response time, and reduce the dependence
on the network, the navigation control uses an edge–cloud architecture to reduce the burden
on the cloud host. The image data of unmanned vehicles are very large (0.4–0.8 Mb/s),
even for a single vehicle. Such data volume relying on wireless network transmission
leads to unpredictable results when using multiple vehicles. In order to prevent the system
from being unable to operate due to network failure, image recognition and navigation are
performed in the unmanned vehicle (edge node). The operation of the system is shown in
Figure 7.
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Vehicle navigation begins with the user booking a car 1©. After the user completes
the reservation with the cloud system, the cloud system generates a job list and a routing
path table 2©. The vehicle system periodically checks the cloud system for unfinished
tasks 3©. If it finds any, it downloads the routing path table 4© and the vehicle system
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navigates according to the routing path table. During the navigation process 5©, the vehicle
system registers the path requirements with the cloud system first and checks whether
other vehicles are using the same path. If they are, the vehicle system will suspend and wait
for five seconds before asking again. If no other vehicles are using the path, the delivery
service is started. Navigation continues until the delivery is complete and the AGV is back
in the parking lot.

From Figure 6, we can see that there is a loose relationship between our unmanned
vehicle and the cloud host, and its time dependence is not strong. The edge microcomputer
checks the job list and downloads the route path before the vehicle starts and then registers
the required path and reports the upcoming path section or workstation location. Image
recognition and navigation control are handled by the edge microcomputer.

The most important aspect of vehicle navigation is controlling the vehicle to move
stably in the lane and not to deviate from the lane. Our unmanned vehicle navigates by
image recognition technology. A camera is installed at the front of the vehicle to capture
images of the lane. The image captured by the camera is located approximately 150 cm
in front of the wheel. There is a gap between the wheel and the image location, and the
navigation control must include a feedback compensation mechanism. Otherwise, the
vehicle is likely to deviate lanes. Let us take a corner turn for illustration purposes. When
the vehicle makes a right turn, it turns right without calibration for 3600 milliseconds.
During this period, most of the images captured by the camera are messy images at the
intersection. We follow the inertial navigation of corner turn and do not perform image
recognition during this period. After 3600 milliseconds, the system captures the image
again. If the lane image does not exist, it will continue to turn until the lane image is
captured. After completing the corner turn, when the camera captures the lane image, the
front wheels are actually over-turned, as is shown in Figure 8.
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The direction of the wheel has been over-turned, and the vehicle needs to fix the
direction. The compensation formula is as follows:

Fix_Time = N * (Σ Turning_Time)

where N = 0.25 − 0.8 and Fix_Tim is the compensation time for the wheel to be brought
back parallel to the body.

Unmanned vehicles undergo direction calibration during driving. If the direction
calibration turns too far, it will cause the vehicle to travel in an S-shape. This situation may
cause the rack to overturn, which is dangerous. We used a fuzzy control method [40] to
prevent this situation during navigation. We expanded the judgment range of straight-
line driving, narrowed the calibration range of each calibration, and performed half the
calibration operations each time. This calibration method can help avoid S-type driving.

Most of the objects in the factory are stationary, and some moving objects do not move
fast, so the chance of a vehicle colliding with a foreign object is small. The anti-collision
mechanism is mainly meant to avoid vehicle head-on collisions or deadlock. As is shown
in Figure 7, during navigation, the unmanned vehicle registers the path with the cloud
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system and reports the next path to be used. If there is a conflict, it stops and avoids it using
the conflicting path. We utilize such a mechanism to prevent two vehicles from colliding
or deadlocking. In order to prevent the unmanned vehicle from bumping into people or
objects, we use ultrasonic sensing at the front of the vehicle. When the vehicle senses that
there is an object within 60 cm in front, it will stop and emit a warning sound.

3. Results

In this section, we present three categories of results to evaluate this system: (1) eval-
uate the performance of machine learning image recognition analysis; (2) evaluate the
performance of image recognition; (3) navigation control test results.

3.1. Machine Learning Image Analysis Results

The system completes the image analysis and records relevant parameters in a few
seconds. The results are ready to use and fast. The machine learning time consumption for
each picture is shown in Table 2.

Table 2. Machine learning time.

Platform Image Size Analysis Time
(Milliseconds)

Intel Core i7-3540M
CPU: 3 GHz
RAM: 8 GB
OS: Windows 7

Picture 1 20 × 20 3411.92

Picture 2
20 × 20 3565.50

Picture 3
20 × 20 3166.70

As seen in Table 2, we tested the self-learning system with three pictures, and the time
required for each image is about four seconds. Our design can improve the execution speed
by setting the learning region externally.

3.2. Image Recognition Test Results

The images are taken with a camera that captures 640 × 480 pixels. We use raw
images for image analysis processing, which takes about 195.07 milliseconds per image.
Thus, image analysis and processing take too long. For navigational safety requirements,
the analysis time per picture must be less than 50 milliseconds according to the speed of
our unmanned vehicle. We downscaled the images to 20 × 20 pixels, which takes about
0.51 milliseconds per image. The image recognition process is shown in Figure 6; we
compared images with different resolutions, and the results are shown in Table 3.

Table 3. Image analysis time.

Platform Image Resolution Analysis Time
(Milliseconds)

Meet Requirement
(50 Milliseconds<)

Intel Core i7-3540M
CPU: 3 GHz
RAM: 8 GB
OS: Windows 7

640 × 480 ≈195.07 8

100 × 100 ≈6.35 4

20 × 20 ≈0.51 4

Our system moves about 70 centimeters per second at normal speed. In order to meet
driving safety requirements, the recognition time of each image cannot exceed 50 millisec-
onds. Table 3 shows that the image recognition time using the original image resolution
of 640 × 480 pixels is 195+ milliseconds, which is not acceptable. When resizing the res-
olution to 20 × 20 pixels, the image recognition time is 0.51 milliseconds, and the image
recognition efficiency was improved by 282 times. This system uses color as the basis for
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target recognition, and reducing the image size from 640 × 480 to 20 × 20 does not change
the pixel color. Our algorithm can clearly express the outline position of the image with
structured numbers.

3.3. Navigation Control Test Results

We tested the unmanned vehicle system in a factory smoothly. Each production line
had 15 stations within a circular area of about 180 m. It takes about 6 min for the unmanned
vehicle to circle around. The system test results can successfully prevent multi-vehicle
collision or deadlock during navigation. If there is a conflict at crossroads, the vehicle stops
and waits, just like traffic lights at crossroads.

4. Discussion

From the actual system test results, we found that our technology can be applied to
unmanned vehicles in factories to assist in the delivery of materials. Therefore, this method
is worth discussing.

1. System scalability

The system is implemented based on an edge–cloud architecture. The vehicle-side
microcomputer is responsible for image recognition and navigation control. A small
amount of data are sent to the cloud host during driving. Under this mechanism, the
system can support a large number of unmanned vehicles driving in a factory at the same
time. When an unmanned vehicle is moving, it only uploads a few bytes of data to the
cloud host, which is about 1/300,000th the size of the image data (640 × 480 image data).
The demand for network bandwidth is greatly reduced, and thus the network is able to
support multiple vehicles at the same time. Assuming that the network can only provide
one vehicle to transmit image data, and our system only transmits 1/300,000th of the
data volume, it can theoretically support 300,000 vehicles, but we know that when the
network transmission data increase, the performance decreases. Regardless, the system has
scalability. This system is suitable for the large-scale deployment of unmanned vehicles
in factories.

2. Cost effectiveness

Our system uses the factory’s existing colored aisle sidelines for navigation and
does not require any new infrastructure. Other types of navigation methods, such as
those mentioned in Section 1.1, require additional positioning facilities, increasing the
construction and maintenance costs. The installation and maintenance costs of this system
are low, and its maintenance is convenient. A comparison of our system with other systems
is shown in Table 4.

Table 4. Comparison with other systems.

Type Additional Facilities Construction Costs Maintenance Costs

System with
LiDAR sensor No High Low

System with Laser sensor Yes High High

System with magnetic
stripes and RFID Yes High High

System with vision
guidance sensor No High High

Our system with camera No Low Low

LiDAR is expensive, and the construction cost of the system using LiDAR as a naviga-
tion sensor is high [9,10]. Laser navigation systems use artificial landmarks for localization
and navigation, and magnetic pins for lane positioning [11,12]. Magnetic stripe and RFID
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methods involve mounting hardware (magnets or RFID tags) on the factory floor [13]. The
construction cost and maintenance cost of these navigation systems requiring the use of
additional positioning facilities are high. Vision guidance compares the current image
captured by the camera with the stored factory map for navigation, requiring pre-built
image maps [14,15], and most systems are costly to build and maintain. In contrast, our
system uses a standard camera, uses the factory’s existing aisle edges for navigation, and
can navigate smoothly without the need to add any infrastructure. The construction cost
and maintenance of the unmanned vehicle system are relatively low, making it a good
choice for industrial introduction.

3. IoT short message service (SMS) centralized collision avoidance

Most of the objects in the factory are stationary, and some moving objects do not move
quickly. Therefore, it is not necessary to install roadside sensing facilities. Furthermore,
installing any kind of additional hardware infrastructure in a factory leads to many subse-
quent management issues, which may impose additional economic costs on the factory. We
propose an IoT SMS centralized collision avoidance system, as is shown in Figure 7. During
navigation, the unmanned vehicle registers the path with the cloud system and reports the
next path to be used. If there is a conflict, it stops and avoids it using the conflicting path.

4. Large image to small structured text conversion

A 20–40 KB (640 × 480) image file is quickly (about 2 ms) converted into 120-byte
structured text by our algorithm to achieve navigation control.

5. System maintenance service without tears

Traditional AGV navigation hardware units have on-board processors, and their
software systems are stored on the electrically erasable programmable read-only memory
(EPROM). If the system needs to be updated, the engineers must replace the hardware
on-site, which is very time-consuming and costly. Our vehicle microcomputer connects to
the network. When the system needs to be updated, this can be achieved remotely through
the network, which is very convenient and can maintain the system in a time-efficient
manner, saving manpower, time, and money. Across regions or countries, this is important,
as it greatly reduces the system maintenance costs and helps to meet the requirements
of FOF.

Autonomous vehicles are popular products at present. Many technologies related to
autonomous vehicles are constantly being researched. The technology proposed here is a
form of underlying technology. These research results and methods may provide reference
values or can be integrated with other technologies.

5. Conclusions

In this experiment, we integrated image recognition and artificial intelligence IoT
technology under an edge–cloud architecture to realize an unmanned vehicle for use in a
factory. In addition to those discussed in Section 4, the system has the following benefits:

• The image recognition system has a self-learning mechanism that can analyze the
similar color parameters of lane lines in order to improve the system analysis and
decision-making parameters and the system performance.

• The image recognition algorithm can remove light interference.
• Our system takes about 50 milliseconds per calibration operation, and the vehicle

moves about 3.5 cm per calibration. The images are taken about 100 cm in front of the
car, and there are about 28 chances for the car to calibrate its direction before it exits
its lane.

Today, with the vigorous development of unmanned vehicles, the safety and stability
of autonomous driving are very important. The integration of various advanced sensing
devices to improve system performance is inevitable in the future.
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