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Abstract: A bearing is a key component in rotating machinery. The prompt monitoring of a bearings’
condition is critical for the reduction of mechanical accidents. With the rapid development of artificial
intelligence technology in recent years, machine learning-based intelligent fault diagnosis (IFD)
methods have achieved remarkable success in the field of bearing condition monitoring. However,
most algorithms are developed based on computer platforms that focus on analyzing offline, rather
than real-time, signals. In this paper, an edge intelligence diagnosis method called S-AlexNet, which
is based on a parameter transplantation convolutional neural network (CNN), is proposed. The
method deploys the lightweight IFD method in a low-cost embedded system to monitor the bearing
status in real time. Firstly, a lightweight IFD algorithm model is designed for embedded systems.
The model is trained on a PC to obtain optimal parameters, such as the model’s weights and bias.
Finally, the optimal parameters are transplanted into the embedded system model to identify the
bearing status on the edge side. Two datasets were used to validate the performance of the proposed
method. The validation using the CWRU dataset shows that the proposed method achieves an
average prediction accuracy of 94.4% on the test set. The validation using self-built data shows that
the proposed method can identify bearing operating status in embedded systems with an average
prediction accuracy of 99.81%. The results indicate that the proposed method has the advantages of
high recognition accuracy, low model complexity, low cost, and high portability, which allow for the
simple and effective implementation of the edge IFD of bearings in embedded systems.

Keywords: edge computing; intelligent fault diagnosis; CNN; bearings; embedded systems

1. Introduction

Rolling bearings are key components in rotating machinery. According to statistics,
more than 30% of rotating machinery failures are the result of bearing failure [1]. Therefore,
detecting the bearing operating condition in real time is crucial for the reduction of potential
mechanical accidents and economic losses brought about by bearing failure, while ensuring
the safe running of machinery.

Existing fault diagnosis methods for rolling bearings can be broadly divided into two
categories: model-driven and data-driven. Prior to the 1980s, rolling bearing fault diagnosis
was implemented using knowledge models [2]. The common processing method involves
the determination of the bearing fault type by combining multiple statistical indicators or
the conversion of the time domain signal of the bearing into a frequency domain signal
in order to determine the spectral value, such as with the fast Fourier transform, wavelet
transform, etc. However, the Fourier transform is a whole transformation, which lacks the
time domain localization, and the wavelet transform requires large computations, making
it difficult to realize real-time processing.

With the rapid growth of computing power in recent years, the development of
data-driven fault diagnosis methods has also been promoted [3,4]. Data-driven methods
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construct a nonlinear mapping from the fault dimension to the feature dimension by
learning large amounts of bearing data with known faults, without relying on additional
prior knowledge and expert experience. In most cases, the verification of some machine
learning methods, such as random forest [5], support vector machines (SVM) [6], and
principal component analysis (PCA) [7], is facilitated by the possibility to feed enough
machine status data to the learning system in order for it to learn the characteristics of
the data. However, these shallow neural networks are not effective in learning complex
nonlinear mapping relations due to their limited learning capabilities. Deep learning (DL),
which automatically learns the hierarchical features and correlations between data [8,9], has
been widely used in various fields. Currently, DL is widely used in fault diagnosis due to
its powerful feature learning capability [10,11]. Numerous deep learning methods, such as
generative adversarial network (GAN) [12], convolutional neural network (CNN) [13,14],
and recurrent neural network (RNN) [15], have been applied in fault diagnosis, with CNNs
being the most widely used. Wang et al. proposed a multiscale CNN with a joint one-
dimensional (1D) and two-dimensional (2D) feature extraction function that can distinguish
correlations between adjacent and non-adjacent intervals in periodic signals [16]. Xu et al.
used CNN to extract features from the components of the variable mode decomposition
(VMD) method for bearing fault diagnosis [17]. Yang et al. performed bearing fault
diagnosis by preprocessing the original signal with three different data processing methods
and fusing the outputs of four CNNs with the use of a fuzzy fusion strategy [18]. Cheng
et al. proposed a method that used local binary convolutional layers instead of traditional
convolutional layers and combined it with the continuous wavelet transform (CWT),
which could effectively diagnose both bearing and gearbox compound faults [19]. Fang
et al. proposed a lightweight model for rotating machinery diagnosis based on dynamic
convolution and separable convolution strategies [20]. Ji et al. proposed an order-tracking
method using 1DCNN in two steps for the fault diagnosis of variable condition signals [21].
Gao et al. proposed the use of hierarchically trained CNNs to overcome the problem
of unbalanced data distribution during fault diagnosis [22]. Therefore, it is evident that
PC-based CNNs have been widely applied in fault diagnosis. For this paper, the classical
CNN network AlexNet has been selected to extract the bearing features and identify the
bearing states.

With the rapid development of the internet and the internet of things, mechanical
devices in industrial sites are continuously generating high-speed real-time data at an
unprecedented rate, such as temperature, humidity, audio, video, etc. [23,24]. Data volume
is gradually increasing, data types are more diverse, and data structures are increasingly
more complex. Meanwhile, fault diagnosis for rotating machinery involves the following
limitations. First, the scale of the data is too huge to upload to the server and be analyzed.
Second, the data often have low information density. As the mechanical equipment usually
works in normal conditions, the data generated have a great deal of redundancy, which
makes it necessary to extract useful information from the data. Third, the timeliness of the
data is extremely important. Whether it is a small machine for industrial production or an
aircraft engine, both are tightly constructed machines, and the failure of a component (such
as bearings) will quickly result in huge economic losses. Therefore, it is essential to analyze
and process the data as soon as possible in order to provide an efficient diagnosis and a
timely warning. Edge computing can analyze the real-time data directly on the edge side,
thus avoiding data congestion and a delay in diagnosis caused by the uploading of data to
the server [25,26]. For bearing fault diagnosis, IFD models deployed in embedded systems
to identify the bearing status on the edge side not only reduce the network bandwidth
pressure and energy consumption caused by the uploading of data to the server, but they
also guarantee the timeliness of the data. They can help detect the abnormal status of a
bearing in real time and prevent the loss of life and property caused by the fault.

So far, IFD technologies, based on signal analysis and machine learning, have achieved
remarkable success in the field of condition monitoring of mechanical equipment [27–29].
However, most of the research has been conducted on a PC, and it is difficult to deploy
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and execute IFD models in embedded systems due to their computational power, running
memory, and storage capacity [30]. Lu et al. implemented the inference and result display
of the fault diagnosis algorithm using a stochastic resonance-based adaptive filter with
two STM32F4 series MCUs [31]. Lu et al. used two microcontroller units to synchronously
collect the phase information and vibration signals of motor bearings in order to implement
online fault diagnosis based on order analysis in embedded systems [32]. Pham et al.
built a CNN-based MobileNet-v2 model and transplanted it to Raspberry Pi 3 to carry
out the fault classification of bearings [33]. Chen et al. proposed a lightweight fault
diagnosis system that employed the random forest algorithm and Hilbert transform on
the Xilinx PYNQ-Z2 development board [34]. Park et al. proposed LiReD, a lightweight,
single-board, computer-based, real-time fault detection system, which consisted of two
parts: a front-end for real-time monitoring based on Raspberry Pi 3 and a back-end for the
training of LSTM-based networks [35]. Most current approaches to deploying IFD models
in embedded systems are based on high-performance microcontrollers, such as Raspberry
Pi, which usually support machine learning languages, such as Python, thus facilitating the
deployment of IFD models in microcontrollers, However, the convenience also comes with
increased cost and limited applicability. Thus, deploying the IFD model on a more general
and low-cost platform is a way to make edge IFD more widely applicable.

An edge intelligence diagnosis method for bearing faults, called S-AlexNet, which
is based on a parameter transplantation CNN, is proposed in this paper [36]. This work
aims to deploy IFD models in low-cost MCUs in order to implement the monitoring and
fault diagnosis of bearing status on the edge side. This method allows for onsite and
real-time monitoring and identification of the bearing status by analyzing the obtained
bearing vibration signals on the edge. Unlike traditional PC-based CNN [37] fault diagnosis
methods, this paper uses intelligent fault diagnosis algorithms deployed in embedded
systems to achieve real-time bearing monitoring [38]. By being close to the edge, the
embedded system can greatly reduce the transfer pressure and cloud computing power
consumption for data uploads to the cloud, while improving the real-time diagnostic
performance. This method is highly applicable in electromechanical equipment fault
diagnosis, particularly where it is inconvenient to transfer data to servers or where a
real-time diagnosis is required.

The main technical contributions of this work are summarized as follows.

1. A lightweight CNN model, called S-AlexNet, which is easier to deploy in embedded
systems, is proposed in this paper.

2. The S-AlexNet-based IFD model is deployed in embedded systems to identify the
operating state of bearings on the edge side.

3. In the proposed method, model deployment does not require hardware to support
artificial intelligence languages, such as Python, which greatly reduces the hardware
cost and expands the application of the proposed method.

The rest of the paper is organized as follows: Section 2 presents the embedded system-
based CNN model. Section 3 outlines the parameter training and transplantation methods
for the embedded neural network models. Section 4 validates the effectiveness of the
proposed method through experimental data. Finally, our conclusions are summarized in
Section 5.

2. A CNN Model Based on Embedded Systems
2.1. Proposed Model

Embedded systems have some advantages, such as small size, low power consump-
tion, and low cost, which allow for the direct application of algorithms on the edge side.
However, due to small cores, insufficient memory, and limited computing power, embed-
ded systems take a lot of time when processing complex models with multiple parameters,
which makes the system response slower [39]. Therefore, designing lightweight models
is essential for embedded systems [40]. The network structure of AlexNet was deepened
based on the classic convolutional neural network LeNet5 [41]. AlexNet improved the
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competition among neurons, reduced the occurrence of overfitting, increased the model’s
ability to generalize, and more accurately identified the local characteristics of the data.
Moreover, compared to other deep learning methods, AlexNet has a simpler architecture
and requires fewer parameters. In this paper, a simplified AlexNet (S-AlexNet) model is
proposed by adjusting the number of network channels and fully connected layers. Taking a
fault prediction task with N classification as an example, the detailed structural parameters
of AlexNet and S-AlexNet are shown in Table 1. As shown in Table 1, S-AlexNet has a
more compact structure than AlexNet, with only 11 network layers and a greatly reduced
number of parameters, making it more suitable for embedded systems. The S-AlexNet
model for intelligent fault diagnosis is shown in Figure 1.

Table 1. Comparison of the structure of AlexNet and S-AlexNet.

Layer

Name AlexNet S-AlexNet

Layer Output Form Parameters Layer Output Form Parameters

1 Input 3 × 224 × 224 0 Input 1 × 32 × 32 0
2 Convolution 1 96 × 55 × 55 34,944 Convolution 1 4 × 32 × 32 404
3 Max pooling 1 96 × 27 × 27 0 Max pooling 1 4 × 15 × 15 0
4 Convolution 2 256 × 27 × 27 614,656 Convolution 2 4 × 15 × 15 404
5 Max pooling 2 256 × 13 × 13 0 Max pooling 2 4 × 7 × 7 0
6 Convolution 3 384 × 13 × 13 885,120 Convolution 3 8 × 7 × 7 296
7 Convolution 4 384 × 13 × 13 1,327,488 Convolution 4 8 × 7 × 7 584
8 Convolution 5 256 × 13 × 13 884,992 Convolution 5 8 × 7 × 7 584
9 Max pooling 3 256 × 6 × 6 0 Max pooling 3 8 × 3 × 3 0
10 Fully connected 1 1 × 1 × 4096 37,748,736 Fully connected 1 1 × 1 × 64 4672
11 Fully connected 2 1 × 1 × 4096 16,777,216 Output 1 × 1 × N 64 × N + N
12 Output 1 × 1 × N 4096 × N + N — — —

Total — — 5.8 × 107 +
4097 × N — — 6944 + 65 × N

In general, the vibration signal collected by the sensor is one-dimensional, which is not
suitable for input into the CNN and usually contains noise. Therefore, data pre-processing
of the original signal is required. Considering the excellent performance of CNN in the
field of image recognition, the strategy of converting one-dimensional vibration signals
into two-dimensional images is adopted. The vibration signal can be transformed into
many types of images, such as time–frequency plots, recurrence plots, Gramian angular
fields, etc. However, these conversion methods involve too many floating-point operations,
which will reduce the response speed of the embedded system and are not suitable for
the edge IFD scenario proposed in this paper. This study uses a method that converts
one-dimensional (1D) time-domain signals into two-dimensional (2D) grayscale images.
The method requires little floating-point operations to convert one-dimensional vibration
signals into two-dimensional images and reduces the impact of noise on model recognition
accuracy [42].

The specific process is shown in Figure 2: suppose the signal acquired by the sensor for
a segment is X (length L). X is truncated into n segments of length m and written as X = {X1,
X2, X3, . . . , Xn}, n = int (L/m). Each truncated signal is converted into a two-dimensional
grey image [43,44] in the following order:

Pr
u,v =

Xr(k× u + v)−min(Xr)

max(Xr)−min(Xr)
(1)
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where Pr
u,v represents the size of the pixel value in the row u and column v of the r-th

grayscale image, u, v = 1, 2, 3, . . . , k, k represents the length and width of the grayscale
image. As the sensitivity of the model to the aspect ratio of the image is unknown, the
image is taken to be a square as a compromise. So, k =

√
m.
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The S-AlexNet model is constructed with a comprehensive consideration of issues,
such as resource occupation and computational power, as shown in Figure 1. The model
consists of two successive sets of convolution-pooling layers, two convolutional layers, one
convolution-pooling layer, and one fully-connected layer.

The grayscale images Pr are input into the network consecutively. Firstly, it is mapped
to the input of the next layer by the convolution layer. The output of the convolution layer
is expressed as follows:

yr
i,j =

s

∑
p=1

t

∑
q=1

Wz
p,q × Pr

i−p+1,j−p+1 + bz
0 (2)

where yr
i,j is the value of the row i and column j of the output matrix, Wz

p,q ∈ Rs×t is the
weight of the row p and column q of the convolution kernel, s < k, t < k, bz

0 is generally
the bias of the convolution kernel, and z is the number of channels. The zero-padding
method is applied to all the convolutional layers in order to control the feature size. In this
method, zeros are added to the input for the corresponding number of rows or columns,
according to Equation (3). This equation for calculating the number of rows and columns
of complementary zeros can be expressed as follows:

Ph = (Gh − 1)× Sh + Wh − Fh
Pw = (Gw − 1)× Sw + Ww − Fw

}
(3)

where G is the output image, S is the step length, W is the convolution kernel, F is the input
image, and h, w represent the height and width, respectively. The Relu function enables
nonlinear transformations and is one of the most widely used activation functions in
CNNs. The output of the convolutional layer obtained by Relu activation can be expressed
as follows:
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gr
i,j = Relu(yr

i,j) = max
{

0, yr
i,j

}
(4)

where gr
i,j is the value of the row i and column j of the output matrix. The activation

layer output is sampled with the pooling layer to reduce dimensionality and complexity.
Subsequently, the max pooling method is selected, i.e., the maximum value of the image
region is chosen as the output value after region pooling:

Zr
m,n = max(gr

i,j) (5)

where Zr
m,n represents the pooled output of the region Rm,n, Rm,n ⊆ Ri,j, and gr

i,j represents
the previous activation layer output in the region Rm,n. After two convolution-pooling
mappings according to Equations (2), (4), and (5), two successive convolutional layers
are used to enhance the features. Then, the output of the previous layer is subjected to a
convolution-pooling mapping, according to Equations (2), (4), and (5). The results are then
expanded to a feature vector Or =

{
Or

1, Or
2, Or

3, . . . , Or
L
}

. Furthermore, Or goes through a
fully connected layer and a Sigmoid activation function to obtain the i-th output of the N
classification model:

Y(i) =
1

1 + e
−(

N
∑

i=1

L
∑

j=1
Wz

i,j×Or
j+bz

1(i))
(6)

where Wz
i,j is the weight of the row i and column j of the weight matrix, and bz

1(i) is the
bias of the i-th output of the fully connected layer. Finally, the Y(i) output is converted into
labels 1~N using a SoftMax layer. In a specific classification issue, N corresponds to the
number of known types of bearing states in the target data.

2.2. Model Hyper-Parameters

The model uses a large convolutional kernel of 10 × 10 × 4 between the input and
the first convolutional layer to obtain a wide perceptual field. The size of the convolution
kernel in the second convolution layer is then reduced to 5 × 5 × 4. The convolution
kernel is adjusted to 3 × 3 × 8, starting from the third convolution layer, in order to reduce
the parameter number and extract more features. The Relu function was selected as the
activation function for all the convolutional layers in the network in order to increase the
non-linear relationship between the layers. At the same time, this produces an output
of zero for some neurons, which makes the network sparse, reduces the dependency on
parameters, and alleviates the overfitting problem. Max pooling is utilized for all the
pooling layers (sized 3 × 3 with a step size of 2) to reduce the dimensions and the number
of parameters, which simplifies the network.

3. Parameter Training and Transplantation

CNN training requires significant powerful computing power and a large storage
space. While the current state-of-the-art, high-performance embedded systems can also
train the network, this capability does not improve efficiency and significantly increases
cost. On the other hand, computers are well suited for artificial intelligence computing
due to their powerful GPU computing power. Therefore, the model training in this paper
is conducted on a PC, and the optimal parameters after training are transplanted to the
network built in the embedded system. The model parameter training and transplantation
process are shown in Figure 3.
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3.1. Parameter Training

The traditional supervised learning method is utilized for parameter training. In this
paper, Adam is selected as the optimizer, and batch gradient descent (BGD) is employed as
the optimization method for parameter training. The specific training steps are as follows:

(1) The signal-to-grayscale image conversion method is used to convert the time–domain
signals in the adopted dataset into grayscale images with a size of 32 × 32, which are
randomly divided into training and test datasets with a ratio of 7:3.

(2) All weight matrices, W, and biases, b, in the network are initialized, and the most
commonly used Gaussian distribution is selected for initialization.

(3) The training samples transformed into grayscale images are input into the network,
and the output is obtained by forward network propagation.

(4) The loss value of the output layer is calculated based on the loss function.
(5) If the loss value is less than the expected value, the loop is ended, and the best model

and parameters are saved; otherwise, backpropagation is conducted.
(6) Backpropagation is used to calculate the loss value of the output layer with the loss

function, then the result is returned layer by layer, the error and gradient of each layer
are calculated, and the weights and other parameters are updated in the direction of
gradient descent, according to the set learning rate. Finally, step (3) is repeated for the
next round of the parameter adjustment process.
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Based on the above process, it is clear that three key factors must also be determined
to be able to effectively train the network: batch size, learning rate, and loss function.

3.1.1. Selection of Batch Size

It has been confirmed through engineering practice that optimizing the model conver-
gence speed is best achieved with the use of mini-batch. If the batch is set too small, each
input sample will contain too few classes, resulting in a slow model optimization process.
On the other hand, if the batch is set too large, it will lead to a local optimum. Therefore, by
comparing the training results with different batch sizes multiple times, it was found that a
batch size setting of 16 had the best convergence and the highest accuracy rate.

3.1.2. Selection of Learning Rate

The learning rate is reflected in the network training process as the step size in the
parameter adjustment path. A small learning rate may cause the model to never converge
or fall into a suboptimal solution, whereas a large learning rate may speed up the model
training in the early stage. However, the value of the loss function may continue to oscillate
and wander in the later stage, making it difficult to find the optimal region. Therefore, in
order to obtain the best training results, this paper used an automatically decaying learning
rate update method with the ReduceLROnPlateau function in Pytorch. This function allows
the learning rate to automatically decrease by 50% when the model prediction accuracy
does not improve within 10 epochs by setting the parameters.

3.1.3. Selection of Loss Function

In machine learning, we need the predicted data distribution learned by the model on
the training data to be as similar as possible to the real data distribution. Since its application
to the field of machine learning, cross-entropy can well evaluate the difference between
the probability distribution obtained from the current training and the real distribution; it
can also effectively avoid gradient disappearance. Therefore, cross-entropy was selected as
the loss function for this paper, and its function expression is shown in Equation (7) in a N
classification task. N is the total number of categories with known bearing status in the
classification task.

Loss = −
N

∑
i=1

p(xi) log q(xi) (7)

where p(xi) is the target distribution, and q(xi) is the predicted distribution.

3.2. Parameter Transplantation

The optimal parameters, corresponding to the training dataset, were obtained by
PC-based model training. These parameters were saved as text files and imported into the
embedded system for reading by the already constructed network model to fill the correct
positions of the convolutional kernels and biases in each network layer.

4. Experimental Validation
4.1. Case Study 1: CWRU Dataset

In this section, the performance of the proposed model is evaluated using the CWRU
dataset and compared with other classification methods.

4.1.1. Dataset Description

The dataset for this experiment was provided by Case Western Reserve University
(CWRU) [45]. The CWRU fault simulation test platform, as illustrated in Figure 4, was
used to collect data from an accelerometer placed at the end of the fan. The bearing
type was SKF6203-2RS. Three types of bearing faults were seeded by electrical discharge
machining (EDM): inner race faults (IF), ball faults (BF), and outer race faults (OF). Each
fault type had three different fault sizes—0.1778 mm, 0.3556 mm, and 0.5334 mm—in
addition to providing data for normal conditions, which resulted in a total of 10 types of
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motor bearing vibration data. The sampling frequency for the experiment was 12 kHz. The
data classification results are presented in Table 2.
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Table 2. CWRU dataset classification description.

File Number (.mat) Fault Location Fault Size (mm) Sample Number Label

98 Normal 0 100 0

105 Inner Race 0.1778 100 1
169 Inner Race 0.3556 100 2
209 Inner Race 0.5334 100 3

118 Ball 0.1778 100 4
185 Ball 0.3556 100 5
222 Ball 0.5334 100 6

130 Outer Race 0.1778 100 7
197 Outer Race 0.3556 100 8
234 Outer Race 0.5334 100 9

4.1.2. Image Conversion

The length of the bearing vibration signals mentioned above was 307,200, and each
bearing vibration signal type was truncated into 100 sections, each with a length of 1024.
Each truncated signal was converted into a grayscale image, according to Equation (1), as
depicted in Figure 5. In Figure 5, the corresponding relationships between the different
labels and the fault categories of the bearings are shown in Table 2. In total, 1000 grayscale
image samples were obtained for the network input, with each image having the size of
32 × 32. Therefore, the dataset contained a total of 10 types, with 100 samples of each
type. As Figure 5 shows, although there were significant differences between the grayscale
images of the different statuses, it was difficult to identify the type and size of the bearing
fault, so the model was still required to make an accurate judgment.
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4.1.3. Model Training

The experiment was constructed based on the TensorFlow framework. The detailed
training environment settings are displayed in Table 3. The ratio of the training set to the
test set is 7:3; thus 70% of the 1000 grayscale images were randomly selected for the training
set. The mini-batch size was set at 16, and the loss function was the cross-entropy. The
learning rate was set to automatic decay during training. If the accuracy did not improve
within 10 epochs, the learning rate decreased by 50%. After multiple tests, the training
epoch was set to 250, and the max function was set to automatically save the parameters at
the highest accuracy during training.

Table 3. Experimental environment configuration.

Experimental Environment Hardware Configuration

Operating system Windows 11
RAM 16 G
CPU Intel(R)Core(TM)i5-10400 CPU@2.90 GHz
GPU NVIDIA GeForce GTX970

TensorFlow 2.7.0
Python 3.8

4.1.4. CNN Structure Testing Result

To reduce the effect of randomness, a total of 10 experiments were conducted; in each
experiment, 30% of the labeled dataset was fed into the model as a test set, which was
then validated based on the results of the random division. Table 2 shows the correlation
between the predicted labels and the fault size and type. As can be seen in Table 4, the mean
accuracy of the ten experiments was 94.40%. Based on the results of one of the experiments,
shown in Figure 6, the best outcome was achieved by the model upon reaching 94.33%
accuracy for the test set after about 235 iterations. To further visualize the prediction
results of the model, the predicted labels and true labels were illustrated using a confusion
matrix [46], as seen in Figure 7. As can be seen in the Figure 7, only 17 samples could not
be correctly classified in the model test for 300 samples. All the samples labeled with 0,1,
and 7 were correctly classified, and a small number of samples labeled with 2, 3, 4, 5, 6, 8,
and 9 were incorrectly classified.
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Table 4. Results of 10 experiments.

Experiment Number 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 94.33 93.66 95.00 93.33 96.66 95.66 94.66 91.66 95.00 94.00
Mean Accuracy (%) 94.40
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4.1.5. Comparison with Other Methods

As shown in Table 5, other machine-learning-based fault diagnosis methods were
utilized for the evaluation of the performance of the proposed model; the mean prediction
accuracy was used as the index for the comparison.

Table 5. Performance comparison of the model on the CWRU dataset.

Methods Feature Extraction Methods Training Sets Testing Sets Mean Accuracy (%) Difference Rate (%)

Machine Learning (ML) Random Forest 2000 1000 75.00 +25.87
ML SVM 2000 1000 78.90 +19.65

DL [47] 1D-CNN 2000 1000 99.30 −4.93
DL [47] CNN 2000 1000 97.80 −3.48

ADCNN [48] ADCNN1 + ADCNN2 500 500 99.70 −5.32
CNN based Markov [49] CNN + HMM 9600 4800 98.13 −3.80

DBN Based HDN [50] WPT 500 500 99.03 −4.68
Ensemble CNN and

DNN [51] CNNEPDNN 2000 370 97.35 −3.03

Proposed method CNN 700 300 94.40 —

The comparison results in Table 5 show that the proposed method achieved high
accuracy just by training a few samples. The last column of Table 5 indicates the difference
rate between the proposed method and other methods in terms of prediction accuracy. The
calculation equation is as follows:

DR =
P2 − P1

P1
× 100% (8)

where P2 represents the accuracy of the proposed method, and P1 is the accuracy of the
methods used for comparison. The mean prediction accuracy of S-AlexNet is higher than
that of the machine-learning-based methods random forest and SVM by 19.4% and 15.5%,
respectively. Among the DL-based fault diagnosis methods—1D-CNN, CNN, ADCNN,
CNN based Markov, DBN Based HDN, and Ensemble CNN and DNN—the mean accuracy
reached 99.3%, 97.8%, 99.7%, 98.13%, 99.03%, and 97.35%, respectively. Although the
accuracy rate of S-AlexNet is 94.4%, which is lower than that of the DL-based method
mentioned above, the difference rate does not exceed 6%, indicating that the proposed
method can accomplish the diagnosis of bearing vibration signals and meet the monitoring
requirements of industrial sites.

4.2. Case Study 2: Self-Built Dataset

In this section, a dataset, containing seven bearing states, is first obtained using an
experimental platform that we built by ourselves, followed by the training of the proposed
model using the self-built dataset. Then, the trained model is deployed in the embedded
system for the intelligent fault diagnosis of bearings. Finally, the performance of the model
on the embedded system is compared with the results of published papers.

4.2.1. Experimental Dataset Validation

A. Experimental Testbed

The experimental system used to acquire the bearing data is shown in Figure 8. The
system consists of a data acquisition experimental bench, acceleration sensor, NI data
acquisition system, and a monitor for displaying the acquisition status. The NSK 6012
bearings were selected for the experiment and were machined to fault using the wire-cutting
method, as shown in Figure 9.
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Figure 9. Pictures of faulty bearings.

B. Experimental Work Conditions

The bearing was rotated at 800 rpm. Signal acquisition was conducted using a
PCB352C03 single-axis sensor and NI’s PXIe-4492 (Austin, TX, USA)acquisition system.
The sampling frequency was set to 20 khz. A radial load of 2462 N was applied to the
bearing during the operation.

C. Experimental Dataset Description

As shown in Table 6, the obtained data contained a total of 3500 samples of seven types
of normal bearings, inner race failures, outer race failures, and three failure levels. The time
domain and envelope spectrum images of the seven data types are sequentially shown in
Figure 10. The source code and dataset of Case Study 2 is available at open-source GitHub
([Online]. Available: https://github.com/Solitudeas/ahu_320_dataset.git (accessed on 13
March 2023)).

https://github.com/Solitudeas/ahu_320_dataset.git
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Table 6. Self-built dataset classification description.

Fault Mode Rotation Speed (rpm) Radial Load (N) Sample Number Label

Normal 800 2462 500 0
Inner Race Fault 0.5 mm 800 2462 500 1
Inner Race Fault 1.0 mm 800 2462 500 2
Inner Race Fault 2.0 mm 800 2462 500 3
Outer Race Fault 0.5 mm 800 2462 500 4
Outer Race Fault 1.0 mm 800 2462 500 5
Outer Race Fault 2.0 mm 800 2462 500 6

D. Image Conversion

Referring to the image conversion process in Case Study 1, the seven experimentally
obtained time-domain vibration signals were converted into grayscale images, according
to Equation (1). As can be seen in Figure 11, which shows the grayscale images obtained
from the conversion of the bearing signals in the seven states, each vibration signal with a
length of 1024 was converted into a grayscale image with a size of 32 × 32 as a sample of
network training. Ultimately, a total of 3500 grayscale images were obtained by conversion,
and the corresponding relationships between the label values of each grayscale image and
the bearing fault categories were shown in Table 6.
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E. Model Training and Result

To eliminate the effect of randomness on the results, 10 experiments were conducted
using the same training method as that utilized in Case Study 1, and the accuracy curve
obtained for one of them is shown in Figure 12. The model reached its optimal state at
about 125 iterations, achieving an accuracy of 99.81%. The results of the 10 experiments
were shown in Table 7, with an average prediction accuracy of 99.84%.
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Table 7. Results of 10 experiments.

Experiment Number 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 99.81 99.90 99.71 99.90 99.81 100 99.81 99.71 99.90 99.81
Mean Accuracy (%) 99.84

F. Parameter Transplantation

Through model training, a total of 7399 optimal parameters could be obtained from
the PC, as shown in Table 8, and they were transformed into a matrix of the corresponding
convolutional kernels and network biases. These matrices were then transplanted to the
embedded system in the form of arrays and were read in C to fill the correct positions of
the convolutional kernels and biases in each network layer.

Table 8. Description of optimal parameters on the self-built dataset.

Layer Convolution Kernel Size Bias Size Parameters Number
(Total of 7399)

Conv1 4 × 10 × 10 4 404
Conv2 16 × 5 × 5 4 404
Conv3 32 × 3 × 3 8 296
Conv4 64 × 3 × 3 8 584
Conv5 64 × 3 × 3 8 584

FC1 72 × 64 64 4672
FC2 64 × 7 7 455

G. Test Results in the Embedded System

Thirty percent of the labeled dataset taken for classification was imported into the
embedded system as a test set for validation. Each sample of the test set was in turn
identified by the model in the embedded system to obtain the predicted labels, which
were subsequently compared with the true labels and classified as statistically correct or
incorrect. The results of the embedded system identification for the 1050 test samples are
shown in Figure 13. For further visualization, the predicted labels and the true labels were
plotted as confusion matrices, as shown in Figure 14. As can be seen in Figure 14, the
transplanted network was tested on 1050 samples, and only two samples were not correctly
classified. Based on Equation (9) and Figure 14, the accuracy of this test is 99.81%.

Accuracy =
TS

TS + FS
× 100% (9)

where TS is the number of correctly identified samples, and FS is the number of misidenti-
fied samples. The MCU version of the embedded system used for testing was STM32H743
with 2 MB of FLASH and 1060 KB of SRAM. The average time needed to identify a sample
was measured to be 583 ms after several tests, which is very short when compared to the
time required to upload the data to the server for analysis and return the diagnostic results.

4.2.2. Offline Fault Diagnostic Test

As shown in Figure 15, the platform for conducting off-line bearing fault diagnosis
consisted of a shaft system, servo motor, speed encoder, and fault diagnosis acquisition card.
The LCD display on the fault diagnosis acquisition card showed the bearing status, the extent
of the fault, and the signal’s envelope spectrum image at the bottom of the screen in order to
present the fault frequency value as a reference. Figure 16 shows the information displayed
on the edge-side LCD when the experimental platform was loaded with bearings of different
types and degrees of failure. According to Equations (10) and (11), the theoretical inner race
fault frequency and outer race fault frequency of the experimental bearing were 91.35 hz and
68.65 hz, respectively. The experiments demonstrated that the model transplanted into the
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embedded system could correctly identify the bearing status in the offline state, which verified
the feasibility of the proposed method in the field of bearing fault diagnosis.
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fO =
n
2
(1− d

Dp
cos α) fr (10)

f I =
n
2
(1 +

d
Dp

cos α) fr (11)

where n represents the number of balls, d represents the diameter of the rolling element, Dp
represents the groove section size, α represents the contact angle, fr is the shaft frequency,
fO is the outer race fault frequency, and fI is the inner race fault frequency.

Electronics 2023, 12, x FOR PEER REVIEW  21  of  25 
 

 

4.2.2. Offline Fault Diagnostic Test 

As shown in Figure 15, the platform for conducting off‐line bearing fault diagnosis 

consisted of a shaft system, servo motor, speed encoder, and fault diagnosis acquisition 

card. The LCD display on the fault diagnosis acquisition card showed the bearing status, 

the extent of  the  fault, and  the signal’s envelope spectrum  image at  the bottom of  the 

screen in order to present the fault frequency value as a reference. Figure 16 shows the 

information displayed on the edge‐side LCD when the experimental platform was loaded 

with bearings of different types and degrees of failure. According to Equations (10) and 

(11), the theoretical inner race fault frequency and outer race fault frequency of the exper‐

imental bearing were 91.35 hz and 68.65 hz, respectively. The experiments demonstrated 

that the model transplanted into the embedded system could correctly identify the bear‐

ing status in the offline state, which verified the feasibility of the proposed method in the 

field of bearing fault diagnosis. 

(1 cos )
2O r

p

n d
f f

D
    (10) 

(1 cos )
2I r

p

n d
f f

D
    (11) 

where n represents the number of balls, d represents the diameter of the rolling element, 

Dp represents  the groove section size, α represents  the contact angle,  fr  is  the shaft  fre‐

quency, fO is the outer race fault frequency, and fI is the inner race fault frequency. 

 

Figure 15. Offline fault diagnosis experimental device. Figure 15. Offline fault diagnosis experimental device.

4.2.3. Comparative Results of IFD Performance in Embedded Systems

As shown in Table 9, the proposed method in this paper was compared with other
edge IFD methods.

Based on the results of comparison with methods 1, 2, and 3, it is clear that the proposed
method is beneficial for more practical scenarios, as it did not rely on prior knowledge of
fault diagnosis and could directly analyze the collected vibration signals to monitor the
bearing status. Compared with 41,304 parameters in method 4 and 110,400 parameters in
method 5, the proposed method only had 7399 parameters; the model size was greatly
reduced, while the prediction accuracy was also guaranteed, which made the IFD algorithm
easier to implement in the MCU of embedded portable devices. FLOPs were used to
describe the amount of computation required for a sample to pass through the model,
which could reflect the complexity of the model to some extent. Table 9 clearly shows
that the complexity of the proposed method is much lower than that of methods 4 and
5, which also used machine learning methods for IFD. The low complexity of the model
provided better timeliness for the fault diagnosis of bearings on the edge side and helped
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to achieve an earlier detection of abnormal conditions in the equipment. In comparison to
other methods, the proposed method had the lowest cost; the model was also constructed
using the C language, which is a widely used basic development language in industrial
production, especially for embedded devices. Therefore, the method showed an extremely
high potential for industrial applications.
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Table 9. Comparison of different methods.

Number Method Embedded
Platform

Prior Knowledge
Required Parameters FLOPs Cost (USD) Language Type

1 Online order analysis method [31] STM32F407 +
STM32F407 Yes — — 50.9 C

2 Stochastic-Resonance-Based
adaptive filter [32]

STM32F407 +
STM32F429 Yes — — 65.1 C

3 Hilbert + Random Forest [34] FPGA: PYNQ-Z2 Yes — 71,680 171.2 Verilog
4 MobileNet-v2 [33] Raspberry Pi 3B No 41,304 1,193,632 139.4 Python
5 LSTM-based model [35] Raspberry Pi 3B No 110,400 776,000 139.4 Python
6 Proposed method STM32H743VIT6 No 7399 589747 44.4 C

5. Conclusions and Future Research

An edge intelligent diagnosis method for bearing faults based on a parameter trans-
plantation CNN was proposed in this paper. A model that fits the small and efficient
character of embedded systems was designed and deployed in an embedded system to
monitor the bearing status in real time. The method converted the raw vibration signals into
grayscale images as model input, which was used directly for the bearing fault diagnosis
on the edge side. The model was validated using the CWRU motor bearing dataset with
an identification accuracy of 94.40%, and the dataset was collected using our self-built
experimental bed with a 99.84% identification accuracy. The comparison of the results with
those of published papers demonstrated that the proposed method has the advantages of
good real-time performance, high accuracy, portability, and low cost, which compensate for
the lack of current PC-based intelligent fault diagnosis methods and provides simple and
effective solution for implementing bearing IFD on the edge side. Therefore, the proposed
method has the potential for application in industrial production.

The limitations of this method in practical application are the following. Firstly, the
types of faults are common ones, and, if a new fault appears, it will be misclassified as
a known fault type. Secondly, it is necessary to collect sufficient tagged data each time a
new model is acquired, which can be expensive in practical engineering. Further research
could be conducted in the following areas based on these limitations. First, the mechanistic
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study of a fault should continue in order to find the unknown fault. Second, research on
migration learning theory can be conducted to reduce the amount of data that need to be
collected in order to train the model and reduce costs.

Supplementary Materials: The following supporting information can be downloaded at: https://
github.com/Solitudeas/ahu_320_dataset.git (accessed on 13 March 2023).
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