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Abstract: Through the more available acoustic information or the polarization information provided,
vector sensor arrays outperform the scalar sensor arrays in accuracy of localization. However, the
cost of a vector sensor array is higher than that of a scalar sensor array. To reduce the cost of a two-
dimensional (2-D) vector sensor array, a hybrid T-shaped sensor array consisting of two orthogonal
uniform linear arrays (ULAs) is proposed, where one ULA is composed of acoustic vector sensors and
the other is composed of scalar sensors. By utilizing the cross-correlation tensor between the received
signals from the two ULAs, two virtual uniform rectangular arrays (URAs) of acoustic vector sensors
are obtained, and they can be combined into a larger URA. It is shown that a larger acoustic vector
sensor URA with M2+1 degrees of freedom (DOFs) can be obtained from the specially designed
T-shaped array with M acoustic vector sensors and 2M scalar sensors. Furthermore, by means of
the proposed tensor model for the larger URA, the inter-sensor spacing can be allowed to exceed
greatly a half-wavelength. Accordingly, the proposed method can achieve both a high DOF and a
large array aperture. Simulation results show that the proposed method has a better performance in
2-D direction-of-arrival estimation than some existing methods under the same array cost.

Keywords: hybrid T-shaped sensor array; acoustic vector sensor; 2-D direction of arrival
estimation; tensor

1. Introduction

The two-dimensional (2-D) direction-of-arrival (DOA) estimation is known to be a fun-
damental problem in many fields such as wireless communications, radar, and sonar [1–3].
It is well known that the DOA estimation performance mainly depends on the degree of
freedom (DOF) and array aperture [4,5]. Accordingly, achieving a higher DOF or/and a
larger array aperture under the same array cost has received extensive attention.

To increase the achievable DOF with a limited number of sensors, the methods re-
ported in the literature can be divided into two categories. One is to exploit new array
configurations [6–11]. An effective method for doing that is to construct a virtual array,
i.e., the difference coarray from the physical array covariance, with a higher degree of
freedom (DOF) than that of the physical array. Two of the typical schemes reported in the
literature are the nested array [6] and the coprime array [7]. In [8], a parallel coprime array
structure and a novel algorithm for 2-D DOA estimation were proposed. By vectorizing the
cross-covariance matrix of subarray data, the resulting virtual difference coarray enables
re-solving more signals than the number of antennas. In [9], a generalized coprime planar
array (GCPA) geometry for 2-D DOA estimation was proposed, where two rectangular
uniform planar subarrays are used. GCPA geometry allows a more flexible array layout
and extends the array aperture to achieve a great performance improvement. Zheng and
Mu [10] proposed a method based on an augmented covariance matrix which is constructed
using the output signals of two parallel difference coarrays. A method for two-dimensional
(2-D) direction-of-arrival (DOA) estimation using two parallel nested arrays was proposed
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in [10], which utilized an increased array aperture and an enhanced DOF by forming an
augmented covariance matrix based on the TPDC output signals. A novel sparse planar
array consisting of multiple coprime and nested subarrays is designed and a corresponding
2-D DOA estimation method is developed in [11], and by vectorizing two covariance
matrices, two virtual coprime planar subarrays made are available, which have many
more virtual elements than the physical ones. Another approach is to develop new signal
processing methods for conventional array configurations. The method in [12] utilizes the
conjugate symmetry property of the ULA manifold matrix to increase the effective array
aperture and virtual snapshots. To further increase the degree of freedom of the array,
a tensor-based approach [13] divides each ULA in the L-shaped array into the optimum
number of subarrays, and using the conjugate symmetry property of the ULA manifold
matrix, a virtual URA with a much higher DOF is constructed. To make full use of the
inherent spatial relevance among these coarray tensors, a coupled coarray tensor CPD
approach is proposed to jointly decompose them for high-accuracy DOA estimation in
a closed-form manner [14]. Although the maximum number of identifiable sources (i.e.,
DOF) for these methods can exceed the total actual number of the physical sensors, the
arrays (e.g., coarray) used directly for DOA estimation in these methods require at least
one array element spacing no larger than half a wavelength, which avoids the ambiguous
angle estimation but limits the array aperture extension.

To extend the array aperture to be much higher than a half-wavelength with a limited
number of sensors, vector sensors are widely used in sensing systems [15–23]. This is
because a complete acoustic vector sensor (AVS) consists of four components, three orthog-
onal velocity sensors and another pressure sensor, co-located in space. An acoustic vector
sensor can therefore measure all three particle-velocity field components plus the acoustic
pressure induced by any acoustic incidence [24]. An AVS is capable of acquiring both
acoustic pressure and three-dimensional particle velocities at any point in space using one
omnidirectional sensor and three orthogonally co-located directional sensors, respectively.
The 4D information obtained by a single AVS could help improve the signal processing
performance [24]. Similarly, an electromagnetic vector sensor usually consists of three
orthogonally oriented dipoles to measure the electric field, plus three orthogonally oriented
loops to measure the magnetic field of the source. It can not only provide the DOA of the
signal but also give polarization information [25]. Regarding the aforementioned vector
arrays, [15,16] are two classic studies on the use of the ESPRIT algorithm for vector sensor
URA, which also means that the two-dimensional aperture was extended. However, these
algorithms require nontrivial pair-matching computations between two independent sets of
direction estimates. To extend the array aperture, the sensor/element-spacing of methods
in [17–20] can be intentionally extended to be much higher than a half-wavelength and
hence would provide an enhanced spatial resolution. To increase the achievable DOF, the
idea of associating electromagnetic vector sensors and acoustic vector sensors with nested
arrays were proposed in [22,23]. However, they were confined to the usage of a linear
array configuration. The array aperture in another direction was limited, and therefore,
the performance of DOA estimation cannot be significantly improved. More importantly,
the elements in these arrays are all individual complete vector sensors, i.e., four or six
components. Under the condition of the same array aperture, the cost of this array is
high. In order to reduce array costs while maintaining a large aperture in two directions,
a coprime L-shaped array composed of a triangular SS-EMVS plus multiple components
of SS-EMVS was proposed in [21]. As in [15,16], the method in [21] can extend the array
aperture effectively in both directions, but its DOF is also less than the total number of
physical sensors.

To simultaneously improve DOF and array aperture under the same array cost, a
hybrid T-shaped sensor array for 2-D DOA estimation is proposed. This array configuration
is composed of acoustic vector sensors and scalar sensors. From the second-order statistics
of the received signal from the array, we can obtain two third-order data tensors. According
to the structural characteristics of the T-shaped array, we reorder the slices of these tensors,
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and then we can obtain two new third-order tensors which correspond to two virtual
uniform rectangular arrays (URAs) of acoustic vector sensors. Furthermore, we can directly
combine them into another third-order tensor which corresponds to a larger URA. To
maximize the DOF of the larger URA and simply calculate DOA, a fourth-order tensor
model for the larger URA is derived. It is shown that a larger acoustic vector sensor URA
with M2+1 DOFs can be obtained from the proposed array with M acoustic vector sensors
and 2M scalar sensors. Furthermore, the virtual URA aperture can be further enlarged by
extending the inter-sensor spacing to multiple half-wavelengths. Although cyclic ambiguity
is introduced, it can be simply resolved by the proposed tensor model. Accordingly, the
proposed method can provide not only a much higher DOF than the number of physical
array elements, but also a large array aperture. Under the same array cost, the proposed
method has a higher 2-D DOA estimation performance than the methods reported in
the literature.

(·)*, (·)T, ◦, ⊗ denote conjugate, transpose, outer product, and Kronecker
product, respectively.

2. Hybrid T-Shaped Sensor Array

As shown in Figure 1, in order to extend the same virtual array aperture in two direc-
tions, the proposed hybrid T-shaped sensor array consists of two orthogonal uniform linear
arrays (ULAs) (denoted by X-ULA and Z-ULA, respectively) in the XZ plane, where the
X-ULA has M acoustic vector sensors with spacing d, and the Z-ULA has 2M scalar sensors
with spacing d. More precisely, the element positions in the X-ULA are given by {0.5d, 1.5d,
. . . , 0.5d + (M − 1)d}, and the ones in the Z-ULA are given by {−0.5d − (M − 1)d, . . . ,
−1.5d, −0.5d, 0.5d, 1.5d, . . . , 0.5d + (M − 1)d}. The K narrow-band far-field uncorrelated
signals with the power

{
σ2

k
}K

k=1 impinge on the array. The presence of kth source sk with
elevation angle θk ∈ [0, π/2) and azimuth angle ϕk ∈ [0, π) is shown in Figure 1. Let
Θ = e−j2π cos(θk)d/λ and Φ = e−j2π cos(ϕk)d/λ, where λ denotes the wavelength of the inci-
dent signal, and then the spatial steering vectors of X-ULA and Z-ULA can be represented as
axk = [Φ0.5, . . . , ΦM−0.5]

T and azk = [Θ−M+0.5, . . . , Θ−0.5, Θ0.5, . . . , ΘM−0.5]
T , respectively.
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The received signal vector of Z-ULA and matrix of X-ULA from K sources at the nth
snapshot can be represented as

z(n) =
K

∑
k=1

azksk(n) + wz(n) ∈ C2M (1)
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X(n) =
K

∑
k=1

(axk ◦ pk)sk(n) + Wx(n) ∈ CM×4 (2)

where wz(n) and Wx(n) are temporally and spatially Gaussian white with zero-mean
additive noise vector and matrix corresponding to the Z-ULA and X-ULA, respectively,
and pk is the spatial response vector of the acoustic vector sensor located at the origin.
An acoustic vector sensor consists of an omnidirectional pressure sensor and up to three
orthogonal particle velocity sensors, which can be expressed as [26]

pk =

[
1, cos(ϕk),

√
sin2(θk)− cos2(ϕk), cos(θk)

]T
(3)

3. Tensor Model for Hybrid T-Shaped Sensor Array
3.1. Virtual URA with Acoustic Vector Sensors

We begin by constructing a virtual URA with acoustic vector sensors from the cross-
correlation tensor [27] of z(n) and X(n), i.e.,

RZX = E[z(n) ◦ X∗(n)] =
K

∑
k=1

(azk ◦ a∗xk ◦ p∗k ) =
K

∑
k=1

(azk ◦ a∗xk ◦ p∗k )σ
2
k ∈ C2M×M×4 (4)

where a∗xk = [Φ−0.5, . . . , Φ−M+0.5]
T . Since the noise is assumed to be spatially independent,

and X-ULA and Z-ULA have no common array elements, the cross-correlation tensorRZX
no longer contains the terms related to noise.

According to axk = [Φ0.5, . . . , ΦM−0.5]
T , we reverse the order of the lateral slices [27]

of the tensorRZX , and we obtain a new tensor

R1 =
K

∑
k=1

(azk ◦ axk1 ◦ pk)σ
2
k ∈ C2M×M×4 (5)

where axk1 = [Φ−M+0.5, . . . , Φ−0.5]
T . Moreover, since p∗k and pk are the same in data

Equation (3), the p∗k can be directly written as pk. Obviously,R1 can be considered as the
received data tensor of a virtual URA with acoustic vector sensors, where axk1 and azk are
the steering vectors for the kth source along the z and x axes, respectively, and pk is the
spatial response vector of the acoustic vector sensor located at the origin of the kth source.

Therefore, tensorR1 can correspond to a (virtual) URA of 2M2 acoustic vector sensors
which lies in the left half of the XZ plane, as depicted in Figure 2.
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To obtain another virtual URA, we calculate the conjugate tensor ofRZX firstly, i.e.,

R∗ZX = E[z∗(n) ◦ X(n)] =
K

∑
k=1

(a∗zk ◦ axk ◦ pk)σ
2
k ∈ C2M×M×4 (6)

According to azk = [Θ−M+0.5, . . . , Θ−0.5, Θ0.5, . . . , ΘM−0.5]
T , we reverse the order of

the horizontal slices [21] ofR∗ZX , and then we can obtain a new tensor

R2 =
K

∑
k=1

(azk ◦ axk ◦ pk)σ
2
k ∈ C2M×M×4 (7)

Similarly, R2 can be considered as the received data tensor of another virtual URA
of 2M2 acoustic vector sensors, which lies in the right half of the XZ plane, as shown in
Figure 3.
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Note thatR1 andR2 have the same dimensions (i.e., azk and pk), so we can combine
them into a larger one. Let V be the tensor of size 2M× 2M× 4, which is given by

V(:, 1 : M, :) = R1 (8)

V(:, M + 1 : 2M, :) = R2 (9)

and then the tensor V can be described as

V =
K

∑
k=1

(azk ◦ hxk ◦ pk

)
σ2

k ∈ C2M×2M×4 (10)

where azk = [Θ−M+0.5
k , . . . , Θ−0.5

k , Θ0.5
k , . . . , ΘM−0.5

k ]
T

and hxk = [axk1, axk] = [Φ−M+0.5
k , . . . , Φ−0.5

k , Φ0.5
k , . . . , ΦM−0.5

k ]
T

.
Similar to Equations (5) and (7), tensor V corresponds to a larger virtual URA, which

contains all the acoustic vector sensors in the XZ plane as depicted in Figure 4. In addition,
the element spacing of this larger virtual URA is d, which depends on the inter-sensor
spacing of the physical T-shaped array.
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3.2. Maximization of DOF

Consider V as a tensor of size 2M× 2M× 4× 1; then, V behaves like the equivalent
single-snapshot signals of the virtual URA. To increase the number of resolvable sources of
the virtual URA, i.e., the DOF of the virtual URA, we increase the number of equivalent
snapshots of V by applying the spatial smoothing method [6]. It is worth noting that each
sensor in our virtual URA is an acoustic vector sensor, while the one in [6] is a scalar sensor.
Therefore, we utilize tensor algebra to achieve spatial smoothing.

Let us divide the virtual URA into NZ NX overlapping identical subarrays of size
LZ × LX . Note that LZ + NZ = 2M + 1 and LX + NX = 2M + 1. Then, the received signal
at the (nz, nx)th (nz ∈ [1, NZ], nx ∈ [1, NX ]) subarray in the virtual URA can be given by

V(nz : nz + LZ − 1, nx : nx + LX − 1, :) =
K

∑
k=1

a(1)zk Θnz−1
k ◦ h(1)

xk Φnx−1
k ◦ pkσ2

k (11)

where a(1)zk = [Θ−M+0.5
k , Θ−M+1.5

k , . . . , Θ−M+LZ−0.5
k ]

T

and h(1)
xk = [Φ−M+0.5

k , Φ−M+1.5
k , . . . , Φ−M+LX−0.5

k ]
T

.
From Equation (11), we can see that V has a Vandermonde structure. Therefore, let Q

be the tensor of size LZ × NZ × LX × NX × 4, which is given by

Q(:, nz, :, nx, :) = V(nz : nz + LZ − 1, nx : nx + LX − 1, :) (12)

and then Q can be expressed as

Q =
K

∑
k=1

a(1)zk ◦ bzk ◦ h(1)
xk ◦ bxk ◦ pkσ2

k (13)

where bzk = [1, Θk, . . . , ΘNZ−1
k ]

T
and bxk = [1, Φk, . . . , ΦNX−1

k ]
T

.
Via Definition 1 in [13], one can combine the second and fourth dimensions of Q to

construct the dimension corresponding to equivalent snapshots, i.e.,

N = Q{1}{3}{5}{2,4} =
K

∑
k=1

a(1)zk ◦ h(1)
xk ◦ pk ◦ nkσ2

k ∈ CLZ×LX×4×NZ NX (14)
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where nk = bzk ⊗ bxk.
To further increase the DOF, we combine the first and second dimensions of N , i.e.,

N ′ = N{1,2}{3}{4} =
K

∑
k=1

fk ◦ pk ◦ nkσ2
k ∈ CLZ LX×4×NZ NX (15)

where fk = a(1)zk ⊗ h(1)
xk is the steering vector of our virtual URA.

From Equation (15), we can see that N ′ corresponds to a URA with LZLX acoustic
vector sensors and contains NZ NX equivalent snapshots.

From N ′, the 2-D DOA estimation of the URA can be accomplished by the Vander-
monde recovery of the factor matrix. Even so, the 2-D DOA estimation via a simpler method
is recommended. Therefore, once the 2-D DOA estimation is achieved by the methods
mentioned in the following text, the complex calculations of Vandermonde recovery can be
avoided. Similar to [13,28], in order to easily calculate the DOA of the incident signals, we
use the Vandermonde structure of Q to rearrange Q as a seventh-order tensor:

N ′′ =
K

∑
k=1

a(1)zk ◦ b(1)
zk ◦ ck ◦ h(1)

xk ◦ b(1)
xk ◦ ek ◦ pkσ2

k (16)

where ck = [1, Θk]
T and ek = [1, Φk]

T ; b(1)
zk = [1, Θk, . . . , ΘNZ−2

k ]
T

and

b(1)
xk = [1, Φk, . . . , ΦNX−2

k ]
T

.
We combine the dimensions of the seventh-order tensor N ′′ as follows:

T = N ′′ {1,4}{2,5}{3,6}{7} =
K

∑
k=1

fk ◦ pk ◦ rk◦n
(1)
k σ2

k (17)

where rk = ck ⊗ ek and n(1)
k = b(1)

zk ⊗ b(1)
xk .

Finally, T is the fourth-order canonical polyadic (CP) tensor model for our vir-
tual URA.

Let k(A) represent Kruskal’s rank [27] of the matrix A, and then our tensor model T
is sufficiently unique if [27]

k(F) + k(P) + k(R) + k(N(1)) ≥ 2K + 3 (18)

where F = [f1, . . . , fK], P = [p1, . . . , pK], R = [r1, . . . , rK], and N(1) = [n(1)
K , . . . , n(1)

K ].
We assume that the DOA pairs are chosen by the condition given by [6], which

guarantees k(F) = min(LZLX, K), k(P) = min(2, K), k(R) = min(4, K), and k(N(1)) =
min((NZ − 1)(NX − 1), K). Then, applying the Lagrange multiplier method to Equation
(18), we can find that when LZ = LX , the maximum number of identifiable sources for the
proposed method is obtained, i.e.,

K ≤ M2 + 1 (19)

Remark 1. For the proposed hybrid T-shaped sensor array composed of M acoustic vector sensors
and 2M scalar sensors, we have established a fourth-order tensorT to process its received signals,
which corresponds to a URA with M2 acoustic vector sensors and contains (M + 1)2 equivalent
snapshots. Thus, this virtual URA has M2 + 1 DOFs.

3.3. Two-Dimensional Angle Estimation via an Extended-Aperture Hybrid T-Shaped Sensor Array

According to the proposed tensor model T , DOA information exists in different
dimensions of the tensor. Utilizing the cp4_alsls MATLAB function [29] to carry out the CP
tensor decomposition for T , one can obtain the estimations of R and P, i.e., R̂ and P̂.
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According to rk = ck ⊗ ek, DOA estimates can be obtained from R̂ as follows:

uk = − λ
4πd

{
∠
[

R̂(2,k)
R̂(1,k)

]
+∠

[
R̂(4,k)
R̂(3,k)

]}
k = 1, 2, . . . , K (20)

vk = − λ
4πd

{
∠
[

R̂(3,k)
R̂(1,k)

]
+∠

[
R̂(4,k)
R̂(2,k)

]}
k = 1, 2, . . . , K (21)

where ∠ denotes returning the phase angle in the interval [−π,π] for each element of a
complex array z. uk = cos(ϕ̂k) and vk = cos(θ̂k) are the cosine estimations of azimuth and
elevation, respectively.

According to Equation (3), DOA estimates can also be obtained from P̂ as follows:

ũk = P̂(2, k)/P̂(1, k), k = 1, 2, . . . , K (22)

ṽk = P̂(4, k)/P̂(1, k), k = 1, 2, . . . , K (23)

On the one hand, compared with ũk and ṽk inherently extracted from information
based on a single vector hydrophone which has no effective geometric aperture, ũk and
ṽk are extracted from information that encompasses the entire virtual array aperture and
elements. Therefore, the estimates from R̂ have higher accuracy [15].

On the other hand, when the inter-sensor spacing of our array is set to be multiple
half-wavelengths, there is a set of DOA estimates with cyclic ambiguity [30]. Assume
a single source is impinging on the array from 2-D DOA (ϕ, θ). The phase differences
between the received signals at two adjacent sensors in the x-direction and z-direction are
respectively denoted as {

∆ϕx = mod( 2π
λ d cos ϕ, 2π)

∆ϕz = mod( 2π
λ d cos θ, 2π)

(24)

where the mod operation is based on the principle that the phase of a signal rotates 2π for
every λ distance the signal travels. Hence the relationship between the phase difference
and inter-element spacing is that{

∆ϕx + 2kxπ = 2π
λ d cos ϕ, 2kx ∈ [−n, n]

∆ϕz + 2kzπ = 2π
λ d cos θ, 2kz ∈ [−n, n]

(25)

Since ϕ ∈ [0, π] and θ ∈ [0, π/2], the above ranges for the two integers kx and kz are
simplistically given according to their constraints −1 ≤ cos ϕ ≤ 1 and 0 ≤ cos θ ≤ 1. For
particular phase differences ∆ϕx and ∆ϕz, there exists one or a set of angles that satisfies
Equation (25).

Specifically, when d ≤ 0.5λ, both kx and kz can only take the value 0, which means
that the azimuth angle and elevation angle have a one-to-one correspondence with cosine
values within the range of 0 to 2π. As d increases, the numbers of possible kx and kz values
increase. Thus, all possible values of kx and kz exist in two sets ui,k and vj,k in the azimuth
and elevation angles of the kth signal that satisfy Equation (25).

Compared with uk and vk, ũk and ṽk do not suffer any similar extended-aperture
ambiguity regardless of the inter-sensor spacing [15]. It should be emphasized that based
on the fourth-order model T , we can simultaneously obtain these two sets of DOA estimates
from different dimensions of the tensor. Thus, these two sets of estimates can be used for
mutual disambiguation to yield a set of fine and unambiguous estimates without additional
angle pairing, which is given by

I = min
i,j

(∣∣ui,k − ũk
∣∣+ ∣∣∣vj,k − ṽk

∣∣∣) (26)
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where ûi,k and v̂j,k are taken as the true estimates if I obtains the minimum value. From the
direction-cosine estimates derived above, the kth signal’s azimuth and elevation arrival
angles may be estimated as

ϕ̂ = cos−1(ûi,k) (27)

θ̂k = cos−1(v̂j,k) (28)

The overall procedure of the proposed algorithm is summarized in Algorithm 1.

Remark 2. As in [15,16,21], the inter-sensor spacing in our array can also be allowed to exceed a
half-wavelength greatly to extend the array aperture, while our method has a much higher DOF
than others. As in [10,12,13], the proposed method can also provide a much higher DOF than the
number of physical sensors, while only our array is able to enlarge the inter-sensor spacing to extend
the array aperture. Accordingly, the proposed method can simultaneously offer high DOF and large
array aperture.

Algorithm 1. Summary of the proposed algorithm.

Input: z and X of the Equations (1) and (2)
CalculateRZX andR∗ZX in Equations (4) and (6)
TransformRZX andR∗ZX , and buildR1 withR2
Combine theR1 withR2, and build V
Maximize DOF for V from Equations (11) to (17) and build T
Conduct CP decomposition on T and obtain two sets of DOA estimation from R̂ and P̂
Resolve cyclic ambiguity to obtain accurate estimates.
Output :

{
θ̂k
}

and {ϕ̂k}

4. Numerical Simulation

To prove that our array can achieve better performance under the same array cost,
we compare it with the vector sensor arrays of large array aperture [15,16,21]. In addition,
since our array contains scalar sensors, some scalar arrays with high DOFs [10,12,13] are
used as benchmarks. All the simulation results are obtained via 100 Monte Carlo trials. The
root mean square error (RMSE) of parameter estimation is defined as

RMSE =

√√√√ 1
KJ

J

∑
j=1

K

∑
k=1

((θ̂kj − θk)
2
+ (ϕ̂kj − ϕk)

2) (29)

where θ̂kj and ϕ̂kj are the estimations of elevation angle and azimuth angle in the jth
experiment for the kth signal and J is the number of Monte Carlo trials.

4.1. Identifiability of the Proposed Method

We consider the hybrid T-shaped sensor array with 6 acoustic vector sensors and
12 scalar sensors. The snapshot number N, and signal-to-noise ratio (SNR) are set to be
500 and 10 dB, respectively. The sensor spacing of the proposed method d = 5× (λ/2). The
36 narrow-band waves impinge on the array, whose DOAs (θk, ϕk) are chosen by 36 pairs
as {(52 + m1(74 − 52)/7, 52 + m2(74 − 52)/7), m1 = 1, . . . ,6, m2 = 1, . . . ,6} according to
the condition given by [6]. It can be seen from the estimated results shown in Figure 5
that the proposed method can effectively handle the 36 sources which are more than
18 array elements.
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4.2. RMSE vs. SNR

This example investigates the processing performance of the proposed method con-
cerning SNR. In the proposed method, we utilize 6 acoustic vector sensors (containing
24 sensor components) and 12 scalar sensors. For the purpose of comparison, we consider
scalar sensors as a component of vector sensors. Now, this proposed array contains 36 sen-
sor components. Therefore, 36 vector sensor components are used in [15,16,21], under
the same array cost. The SNR is varied from −5 dB to 20 dB. The azimuth and elevation
angles of the two sources are set to (46◦, 55◦) and (48◦, 62◦), respectively. The snapshot
number is set to 500. References [15,16,21] can allow 100× half-wavelength spacing, but
the graph is constructed setting this to only 5×, i.e., d = 5 × (λ/2). The inter-sensor spacing
of other methods is set to be (λ/2). From the results in Figure 6, we can see that [15,16,21]
have better performance than [10,12,31] due to the array aperture advantage. Note that
although the method in [13] utilizes the scalar sensor array needing at least one inter-sensor
spacing not larger than half a wavelength, it can achieve a much higher DOF than [15,16,21].
Therefore [13] also shows better performance. The proposed method can simultaneously
offer O(M2) DOF as in [13] and large array aperture as in [15,16,21]. Accordingly, the
proposed method has the smallest RMSE among all considered methods.
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4.3. RMSE vs. N

In this example, we examine the performance of the proposed method against the
number of snapshots N. N is varied from 100 to 800, and SNR is fixed at 10 dB, while the
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other parameters are the same as in the second example. From the results shown in Figure 7,
we can see that for all cases, the proposed method yields the best estimation results.
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4.4. Runtime vs. the Number of Sensor Components

In this experiment, we compared the runtime required for each algorithm to run
once in MATLAB 2022b on the same computer. The results are shown in Figure 8. For
the purpose of comparison, we consider scalar sensors as a component of vector sensors.
Other conditions are the same as Experiment 2, except that the total number of sensor
components changes from 24 to 72. From Figure 6, it can be seen that the running time of
the proposed method increases with an increase in the total number of sensor components.
This is because the larger the number of sensor components is, the larger the size of T is,
resulting in more time being needed to achieve the tensor decomposition. However, it is
important to note that the larger size of T also means a higher DOF. Compared with other
faster algorithms, although our algorithm may not be the most computationally efficient, it
nonetheless belongs to the class of algorithms with relatively low computational complexity.
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5. Conclusions

To reduce the cost of the 2-D vector sensor array, a new hybrid T-shaped sensor array
composed of acoustic vector sensors and scalar sensors has been proposed. The tensor-
based approach to this array processing with enhanced DOF and extended array aperture
has been provided. Specifically, the proposed array contains M acoustic vector sensors
and 2M scalar sensors, which are respectively placed along the x-axis and z-axis. Utilizing
the cross-correlation tensor of the array received signals, a data tensor corresponding
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to a virtual URA with acoustic vector sensors is constructed. Applying the conjugate
symmetry property of the ULA manifold matrix to the cross-correlation tensor, the data
tensor of another virtual URA with acoustic vector sensors is also constructed. The analysis
shows that these two virtual URAs can be combined into a larger virtual URA with 4M2

acoustic vector sensors. It is shown that a virtual URA with approximately M2 + 1 DOFs
can be obtained. Since all the array elements in the virtual URA are acoustic vector
sensors, the inter-sensor spacing can be extended with the help of the acoustic vector
sensor characteristics. Thus, the proposed method has both a higher DOF and a larger
array aperture. As demonstrated by simulation results, the proposed method can achieve
superior 2-D DOA estimation performance to many existing methods under the same array
cost. Additionally, 2-D DOA estimation is achieved by the CP decomposition, which means
the multidimensional search can be avoided.

The hybrid concept proposed herein may be applied to other types of sensors, such as
electromagnetic vector sensors, for highly accurate angle estimation with increased DOF
and array aperture. Naturally, it can also be applied to other types of nonuniform arrays,
such as nested arrays, coprime arrays, and minimum redundancy arrays.
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