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Abstract: This paper presents a comprehensive study on the utilization of machine learning and
deep learning techniques to predict the dynamic characteristics of design parameters, exemplified
by a diesel engine valve train. The research aims to address the challenging and time-consuming
analysis required to optimize the performance and durability of valve train components, which are
influenced by numerous factors. To this end, dynamic analyses data have been collected for diesel
engine specifications and used to construct a regression prediction model using a gradient boosting
regressor tree (GBRT), a deep neural network (DNN), a one-dimensional convolution neural network
(1D-CNN), and long short-term memory (LSTM). The prediction model was utilized to estimate the
force and valve seating velocity values of the valve train system. The dynamic characteristics of
the case were evaluated by comparing the actual and predicted values. The results showed that the
GBRT model had an R2 value of 0.90 for the valve train force and 0.97 for the valve seating velocity,
while the 1D-CNN model had an R2 value of 0.89 for the valve train force and 0.98 for the valve
seating velocity. The results of this study have important implications for advancing the design and
development of efficient and reliable diesel engines.
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1. Introduction

Artificial intelligence (AI) has emerged as a pivotal technology in the Fourth Industrial
Revolution, gaining prominence across several domains such as manufacturing, finance,
and healthcare. The sub-technologies of AI, namely machine learning and deep learning,
have become increasingly ubiquitous in various fields, including computer vision [1],
language models [2], speech recognition [3], and industrial fault diagnosis [4]. As a
result, AI has garnered considerable attention as a transformative force in advancing
these fields, holding immense potential for revolutionizing the industry and enhancing
human capabilities.

Due to their high performance, the dynamic characteristics of the design parameters
of valve train cases have emerged as a crucial research area. In the case study, a diesel
engine valve train was selected, because valve trains have not only directly affected the
engine performance but also caused mechanical wear and noise generation due to repeated
motion [5]. Furthermore, the acceleration of valve movement increases as the engine speed
increases. However, high acceleration leads to an increase in the inertial force of the valve
train, which can result in abnormal dynamic behaviors such as cam follower jumping, a
high valve seating speed, valve bouncing, among others, adversely impacting the dynamic
performance of the valve train [6]. To maximize engine performance while ensuring the
dynamic performance and durability of the valve train, it is imperative to select cam shapes
and components while considering the dynamic characteristics of the valve train. This
study aims to address this issue by utilizing machine learning and deep learning techniques
to predict valve train dynamics and select optimal specifications.
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The aim of this research is to investigate the feasibility of utilizing machine learning
and deep learning techniques to select the most suitable specifications that meet the required
dynamic performance and durability for designing valve train components in diesel engines.
The behavior of a valve train system is influenced by various factors, including engine
rotational speed, engine valve spring constant, cam profile, and the mass and rigidity of the
components that make up the valve train system. Analyzing the design and interpretation
of the valve train system that requires new or modified development currently takes a
considerable amount of time due to these numerous factors. Therefore, by establishing a
prediction model using machine learning and deep learning techniques, the researchers
aim to develop a tool that can swiftly assess the applicability of component specifications
by verifying the dynamic characteristics of the valve train system with simple input data.

The main contributions of this paper are as follows:

1. We compare various machine learning and deep learning models such as the gradient
boosting regressor tree (GBRT), the deep neural network (DNN), the one-dimensional
convolution neural network (1D-CNN), and the long short-term memory (LSTM) to
predict the dynamic characteristics of diesel engine valve train design parameters.

2. We present an account of the data preprocessing process, which involved import-
ing raw data, creating a dataset with speed and application columns, aligning lift
axes, removing unnecessary data, and classifying specifications for model training
and validation.

3. We demonstrate the validity and effectiveness of this study by performing a detailed
comparative analysis of models predicting valve train force and valve seating velocity
over a range of crankshaft angles and engine speeds.

The structure of this paper is outlined as follows. In Section 2, the background and
related work are reviewed. Section 3 describes the prediction model in detail. Section 4
details the data engineering and model construction, while Section 5 presents the exper-
imental analysis results. Section 6 describes the discussion and limitations of this paper,
Finally, Section 7 concludes the paper.

2. Background and Related Work
2.1. Valve Train

The internal combustion engine is an essential power source in various fields, including
transportation, industrial machinery, and power generation. In a four-stroke internal
combustion engine, the valve train plays a vital role in regulating the intake and exhaust
processes, which are essential for generating power. The valve train system is responsible
for controlling the opening and closing of the intake and exhaust valves during the suction,
compression, explosion, and exhaust processes. For diesel engines, the intake and exhaust
valves are crucial components that contribute significantly to the combustion chamber’s air
intake and exhaust gas expulsion during the suction and exhaust processes, respectively.
As illustrated in Figure 1, the valve train system includes several mechanical elements such
as a camshaft, tappet, pushrod, rocker arm, valve spring, and valve seat, which work in
coordination to ensure the proper operation of the valves in accordance with the engine’s
crankshaft rotation.

The valve train system’s performance significantly affects the engine’s performance,
making it a critical system in the internal combustion engine. The valve train can be broadly
classified into two types: overhead camshaft (OHC) and overhead valve (OHV). This study
focuses on the OHV-type valve train, which is prevalent in diesel engines. To ensure the
proper operation of the valve train system, it is essential to consider the dynamic characteris-
tics of the components. High acceleration can lead to an increase in the inertial force of the
valve train, which can result in abnormal dynamic behaviors such as cam follower jumping,
high valve seating speed, and valve bouncing, among others, adversely impacting the valve
train’s dynamic performance. Therefore, it is critical to select cam shapes and components
while considering the dynamic characteristics of the valve train to ensure maximum engine
performance and the valve train’s dynamic performance and durability.
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Figure 1. Schematic diagram of the diesel engine valve train.

This study aims to predict the dynamic characteristics of the valve train system using
machine learning and deep learning techniques to develop a tool that can swiftly assess the
applicability of component specifications with simple input data.

2.2. Dynamic Characteristics of Diesel Engine Valve Trains

The abnormal dynamic properties of the valve train significantly impact the engine’s
performance, durability, and noise. This study aims to predict the range of dynamic
characteristics of the valve train, specifically contact loss and valve velocity.

2.2.1. Contact Loss

Contact loss is a phenomenon that occurs when the valve system, including the
tappet and pushrod, deviates from the cam profile designed for the rotational motion of
the camshaft at high engine revolutions per minute (RPM). As shown in Figure 2, the
green circle indicates the point where contact loss occurs. This phenomenon generates a
significant impact force in the valve train components, leading to reduced durability [7].
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2.2.2. Valve Seating Velocity

Valve seating velocity is defined as the speed at which the valve comes to rest on the
valve seat. As depicted in Figure 3, it is necessary to confirm if the valve seating velocity, at
the moment the valve lift reaches zero, meets the target speed as indicated by the green
circle. When the target speed is exceeded, it adversely affects the valve train noise, the
occurrence of valve seat wear, and the durability of the components [7].
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2.3. Related Work

Research on valve trains has been actively conducted in recent years. Hu et al. devel-
oped a flexible dynamic model of valve trains by considering the gyroscopic effects and
valve gaps, which was achieved through theoretical-experimental analysis of the dynamic
properties of valve trains [8]. Similarly, Hu et al. constructed a flexible dynamic model of
the valve train system by considering the multi-axis flexibility of the shaft and linkage, and
the gyroscopic effect of the camshaft and rotor [9]. While numerical simulation methods
are useful for solving the complex nonlinear problems of diesel engines, they have the
disadvantage of slowing down the calculation process as the structure of diesel engines
becomes more complex. To address this limitation, Zheng et al. explored the application of
artificial intelligence algorithms, such as deep neural network-based diesel performance
modeling and prediction, combining virtual sample generation (VSG) and a deep neural
network (DNN) [10]. However, additional experimental results need to be presented to
validate the effectiveness of these approaches. Nonetheless, these studies contribute to
an advancement in the understanding of the dynamics of valve trains and can provide
insights into the optimization of valve train design and performance.

In recent years, researchers have proposed various innovative approaches for the
diagnosis of engine faults. Jiang et al. proposed a method for early warning of abnormal
valve clearance in diesel engines using a combination of multi-domain feature extraction
and an improved support vector machine (SVM) [11]. Kumar et al. proposed a method
for identifying engine faults in two-wheelers using a wavelet synchro-squeezed transform
(WSST) and a convolutional neural network (CNN), which outperformed the existing
methods [12]. Lastly, Ramteke et al. presented potential fault diagnosis techniques utilizing
vibration and acoustic emission analyses, signal processing methods, and artificial neural
network models to diagnose scuffing faults on diesel engine components [13].

Recently, many studies have been conducted on engine-related fault and anomaly
detection and diagnosis, and Table 1 summarizes the targets and methods of each study.
These studies demonstrate the potential of advanced techniques such as deep learning and
signal processing for the accurate diagnosis of engine faults.
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Table 1. The targets and methods of related works.

Reference Target Method

Hu et al. (2021) [8,9] Engine valve train Flexible Dynamic Model

Zheng et al. (2021) [10] Diesel engines simulation Virtual Sample Generation (VSG) and Deep Neural
Network (DNN)

Jiang et al. (2019) [11] Abnormal valve clearance in
diesel engines

Support Vector Machine (SVM) with multi-domain
feature extraction

Kumar et al. (2020) [12] Engine defects in two-wheelers Wavelet Synchro-Squeezed Transform (WSST) and
Convolution Neural Network (CNN)

Ramteke et al. (2022) [13] Diagnosis and classification of diesel
engine components faults

Fast Fourier Transform (FFT), Short-Time Fourier
Transform (STFT), and Artificial Neural Network (ANN)

3. Predictive Model
3.1. Gradient Boosting Regressor Tree (GBRT)

Boosting is an ensemble machine learning technique that involves combining multiple
weak learners to generate a strong learner, as shown in Figure 4. Among the various
boosting algorithms, gradient boosting is a highly popular and widely used method that
aims to improve the model’s prediction accuracy by building on the predictions made by
previous models [14].
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The gradient boosting algorithm starts by creating the first model that calculates the
average prediction value of the target variables across the entire dataset and computes the
residual. This residual is then used to train multiple decision trees that create a stronger
model. The iterative process of improving the model continues by obtaining the gradient
of the residual and using it to further reduce the residual in the next model.

Gradient boosting has been documented to be highly effective in enhancing the
accuracy of machine learning models [15–17]. It can be applied to a broad range of data
types and has been extensively used to address regression problems. Therefore, gradient
boosting is a robust and powerful ensemble technique that can significantly enhance the
prediction accuracy of machine learning models.

3.2. Deep Neural Network (DNN)

A deep neural network (DNN) is a type of artificial neural network (ANN) that com-
prises multiple hidden layers positioned between the input and output layers, as illustrated
in Figure 5. The learning process of DNNs involves a repeated error backpropagation
procedure that updates weights to minimize the loss function’s value via optimization
functions such as pure propagation and stochastic gradient descent.
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However, increasing the neural network’s depth can lead to the issue of gradient
loss, while increasing the number of neurons may result in overfitting. To prevent the
loss of inclination, an appropriate weight initialization technique based on the activation
function type can be utilized. Overfitting can be prevented by utilizing drop-out and batch
normalization techniques. Furthermore, improvements in hardware, such as enhanced
graphics processing units (GPUs), have significantly decreased the computation time of
complex matrices in deep learning. DNNs that address these limitations can perform com-
plex nonlinear modeling [18]. Therefore, these techniques are highly useful for developing
extremely accurate machine learning models that can handle complex, high-dimensional
data. In conclusion, DNNs are a powerful tool for addressing complex machine learning
problems, and their ability to learn complex non-linear mappings from high-dimensional
data makes them very effective in various fields.

3.3. One Dimension-Convolution Neural Network (1D-CNN)

Convolutional neural networks (CNNs) are widely used in image and signal process-
ing to simplify model complexity and extract essential features [19,20]. The convolutional
kernel, which multiplies the input data with a specific filter in each region and then adds
the results, is used to identify distinctive characteristics. As the number of hidden layers in-
creases, the CNN can extract more complex and meaningful features, resulting in improved
classification performance.

Although a 2D-CNN kernel is widely used in image classification, the use of a 1D-
CNN kernel, as shown in Figure 6, is gaining popularity in other areas such as natural
language processing, signal processing, and time series analysis [21,22]. 1D-CNNs can
capture important temporal features in data sequences, which makes them well suited
for processing time-series data. Additionally, they can be used for feature extraction
in natural language processing, where they help to capture local patterns and relations
between words.
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3.4. Long-Short Term Memory (LSTM)

Long-short term memory (LSTM) is a specialized form of recurrent neural network
(RNN) designed to tackle the issue of gradient loss in existing RNNs. The LSTM architecture
comprises a hidden layer node, referred to as an LSTM memory cell, which integrates three
gates: an input gate, a forget gate, and an output gate, as depicted in Figure 7. The memory
cell can erase unnecessary information, update new information, and output pertinent
information. The LSTM’s strength in retaining long-term memory is crucial in remembering
significant features for prolonged periods, which can aid in enhancing performance in
time-series-forecasting and language-modeling tasks [23].
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4. Data Engineering and Model Configuration
4.1. Data Collection and Preprocessing

As the use of artificial intelligence (AI) becomes increasingly prevalent, it is important
to ensure the reliability and accuracy of AI-based solutions. One critical factor in achieving
this goal is the accuracy of the data used to train the AI models. To address this issue,
formal techniques can be employed to verify the accuracy and consistency of the gath-
ered and processed data. These techniques offer a systematic approach to detecting and
eliminating errors in the data, thereby improving the performance of AI-based solutions.
Recent research has demonstrated the effectiveness of such techniques in checking the
correctness of AI-based solutions [24,25]. Therefore, incorporating formal techniques into
the data-gathering and -processing workflows can enhance the reliability and accuracy of
AI-based solutions.

4.1.1. Data Collection

The dataset employed in this research was obtained from AVL’s EXCITE Timing Drive
Dynamics analysis program [26], which provides dynamic characteristics of valves during
the engine development process for three different engine specifications: Base, Marine,
and CA. The dataset comprises information on valve dynamic characteristics, as shown in
Figure 8. The data are collected during the engine development process, and the program
is used to obtain the relevant information.
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The dataset utilized in this study is composed of 68,453 rows and 5 columns. A
graphical representation of the independent and dependent variables present in the entire
dataset is displayed in Figure 9. The dependent variables include time, lift, and CRS angle,
while the independent variables comprise valve train force and valve seating velocity.
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4.1.2. Data Preprocessing

The data preprocessing process utilized for model learning is presented in Figure 10.
Firstly, the valve train dynamic characteristic analysis raw data file for the three CAM
profile specifications obtained through the analysis program was imported into Python. A
dataset was then generated by adding speed and App (Application) columns to differentiate
the engine rotation speed and specifications for each CAM profile. Secondly, to align the
lift axes of the three specifications, the maximum value of the lift was examined, and the
crank shift (CRS) angle data were processed to match the maximum axes of the lift for
each specification. Thirdly, the CRS angle section (row) that is not necessary for learning
was removed, and all data were merged. Finally, the Mar and CV specification data were
categorized as model learning data, and the Base specification data were categorized as
data to be verified in the generated predictive model.
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4.2. Configuring a Predictive Model
4.2.1. GBRT Prediction Model

The dataset used for model learning comprises independent variables from the CV and
MAR specification datasets, including time, CRS angle, and valve lift, as well as dependent
variables such as valve train force and valve seating velocity. The dataset contains a total
of 25,073 data points, with a training-to-test ratio of 8:2. The training dataset consisted
of 20,059 data points, while the test dataset contained 5014 data points. The optimized
parameters, as indicated in Table 2, were set as follows: learning rate = 0.1, max depth = 21,
and min sample leaf = 5.

Table 2. Hyperparameters used in the GBRT prediction model.

Parameter Default Optimization

Learning Rate 0.1 0.1
Max Depth 3 21

Min Sample Leaf 1 5
Parameter Default Optimization

4.2.2. Deep Learning-Based Prediction Model

In this study, we employed three different deep learning-based prediction models to
analyze the data. The first model we used was a DNN, which served as a basic deep neural
network model. Additionally, we utilized an LSTM model, which is specifically designed
to overcome the performance degradation that can occur due to the loss of gradient in
recurrent neural networks (RNNs). Finally, we employed a 1D-CNN model, which has been
shown to perform well on time series-shaped data. The dataset and variables used were
the same as those used in the GBRT model. The dataset was normalized using maximum
minimum normalization, and the data format was changed from two dimensions to three
dimensions to fit the input form of the 1D-CNN and LSTM models. The dimensions were
data size, time step, and input dimension, with a time interval of 1 and an input data
dimension of 3 (the number of dependent variables). Hyperparameters were selected
through a trial-and-error method, as listed in Table 3. The validation split was set to 0.2,
and the optimizer was Adam for all models. The number of epochs was 1000 for predicting
the valve train force and 30 for predicting the valve seating velocity. The activation function
was set as the Tanh function only for the LSTM model. All deep learning-based models
had three hidden layers, with 256, 512, and 512 nodes per layer.

Table 3. Hyperparameters used in the deep learning-based prediction model.

Target Epochs Validation Split Activation Function Optimizer

Valve train force 1000 0.2 ReLU, Tanh(LSTM) Adam
Valve seating velocity 30 0.2 ReLU, Tanh(LSTM) Adam

5. Experimental Results
5.1. Performance Evaluation of Predicted Models
5.1.1. Evaluation Metrics

This study utilizes valve train system dynamics analysis data obtained during the
development of an existing engine. Machine learning techniques, including a gradient
boosting regression tree (GBRT), deep neural networks (DNN), and 1D-CNN predict, were
employed to construct the predictive model using Python, Scikit-learn and Keras libraries.
The predictive performance of the models was evaluated using a decision factor (R2), a
mean absolute error (MAE), and a root mean squared error (RMSE), while a separate
dataset was used to test and verify the selected model. The test included assessing the
performance of each prediction model on a separate dataset and generating graphs to



Electronics 2023, 12, 1806 10 of 19

compare the predicted and actual values of valve train dynamic characteristics such as
contact loss and valve seating velocity.

R2 = 1− ∑n
i=1(Xi − Yi)

2

∑n
i=1
(
Xi −Xavg

)2 (1)

MAE =
1
n∑n

i=1|Xi − Yi| (2)

RMSE =

√
1
n∑n

i=1(Xi − Yi)
2 (3)

5.1.2. GBRT Prediction Model Performance

The performance evaluation of the predictive model is presented in Table 4, where
the GBRT model exhibits R-squared values of 0.97 and 0.98, RMSE values of 8.17 and 0.98,
and MAE values of 66.84 and 0.011 when predicting the valve train force and valve seating
velocity, respectively, based on the test dataset. The prediction results of the GBRT model
for the test dataset are visualized in Figures 11 and 12.
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Table 4. The performance evaluation results of the GBRT prediction model.

Metric R2 RMSE MAE

Target Train Test Train Test Train Test

Valve train force 0.99 0.97 67.41 120.59 37.43 66.84
Valve seating velocity 0.99 0.98 0.008 0.02 0.004 0.011

5.1.3. Performance of Deep Learning-Based Predictive Models

Table 5 displays the evaluation outcomes, indicating that the LSTM model achieved
the highest performance for the training dataset, while the 1D-CNN model demonstrated
the best overall performance for the test dataset. Figure 13 depicts the prediction results of
the valve train force for the test data of the 1D-CNN model. In contrast, in the prediction of
valve seating velocity, Table 6 indicates that the 1D-CNN model demonstrated the most
favorable outcomes across all performance metrics. Furthermore, Figure 14 showcases the
prediction results of the valve seating velocity for the test data of the 1D-CNN model.
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Table 6. A performance comparison of prediction models for valve seating velocity prediction.

Metric R2 RMSE MAE

Model Train Test Train Test Train Test

DNN 0.9846 0.9839 0.0768 0.0779 0.0043 0.0112
1D-CNN 0.9923 0.9919 0.0530 0.0540 0.0028 0.0029

LSTM 0.9896 0.9893 0.0610 0.0614 0.0037 0.0038

5.2. Validate Predictive Models
5.2.1. Comparison of Model Performance with Base Specification Data

During the construction of the prediction model, a test was conducted on the base
specification data, which was excluded from the learning dataset. The actual values and
the predicted values were then compared through a performance check and a graph of the
prediction model. Among the DNN, 1D-CNN, and LSTM models, the 1D-CNN model with
the best predictive performance was selected for comparison with the GBRT model.

Table 7 presents the results of the predictive performance comparison between the
GBRT and 1D-CNN models for valve train force. The GBRT model achieved superior
performance with an R2 of 0.90, RMSE of 204.19, and MAE of 108.43, while the 1D-CNN
model demonstrated an R2 of 0.89, RMSE of 221.44, and MAE of 119.08.

Table 7. A comparison of performance for Base specification data of GRBT and 1D-CNN models
(valve train force).

Metric R2 RMSE MAE

Model Test Test Test

GBRT 0.90 204.19 108.43
1D-CNN 0.89 221.44 119.08

Furthermore, Table 8 displays the comparison results of the two models for valve
seating velocity. In this case, the 1D-CNN model outperformed the GBRT model with an
R2 of 0.98, RMSE of 0.07, and MAE of 0.05, whereas the GBRT model exhibited an R2 of
0.97, RMSE of 0.09, and MAE of 0.06.

The graphical representation of the predicted and actual values for the base specifica-
tion test data of the GBRT model and 1D-CNN model is presented in Figures 15 and 16,
respectively.
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Table 8. A comparison of performance for Base specification data of GRBT and 1D-CNN models
(valve seating velocity).

Metric R2 RMSE MAE

Model Test Test Test

GBRT 0.97 0.09 0.06
1D-CNN 0.98 0.07 0.05

5.2.2. Comparison of Valve Train Force and Valve Seating Velocity Prediction Results

Figure A1 showcases the valve train force based on the crank angle reference engine
RPM for both the GBRT and 1D-CNN models, as presented in (A) and (B), respectively.
The blue circle indicates the crucial section where the contact loss transpires, which cor-
responds to the crank angle range of roughly 130 to 180 degrees. Although both models
exhibit reasonable accuracy in predicting the valve train force, the 1D-CNN model displays
superior consistency with the contact loss interval compared to the GBRT model.

Figure A2 illustrates the valve train force for all engine revolutions as predicted by
the GBRT and 1D-CNN models, presented in (A) and (B), respectively. The red circle
highlighted in Figure A2 represents the valve train system section where contact loss
occurs, resulting in a minimum force of 0. Both predictive models demonstrate similar
levels of correspondence with the actual value across the entire range of engine revolutions
(1000–3500 RPM).

Figure A3 presents the valve seating velocity as a function of the crank angle reference
engine RPM for both the GBRT and 1D-CNN models, represented in (A) and (B), respec-
tively. The blue circle highlights the primary region of interest for the valve seating velocity
target speed, which corresponds to the crank angle range of approximately 320 degrees
to 350 degrees. Although both predictive models demonstrate good agreement with the
actual values, the GBRT model exhibits superior performance for some critical intervals at
engine RPM compared to the 1D-CNN model.

Figure A4 displays a comparison graph of the predicted and actual values of the
valve seating velocity for the entire engine revolution range (1000–3500 RPM) for both
the GBRT and 1D-CNN models, as shown in (A) and (B), respectively. The predictions
of both models for the entire engine revolution range are comparable, and fall within the
development target value, demonstrating an almost identical level of correspondence with
the actual value.
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6. Discussions and Limitations

The study presented in this paper has several limitations that could be addressed in
future research. Firstly, the focus of the study was only on the diesel engine valve train
system, and it would be beneficial to expand the research to other engine types and valve
train systems to determine if the findings can be generalized to other systems. Another
limitation is that the study only considered a limited number of design parameters to
predict the dynamic characteristics of the valve train system. Including additional design
parameters in the analysis could improve the accuracy of the prediction model.

Additionally, the study only evaluated a few machine learning and deep learning
models, and future research could investigate other models or explore ensemble techniques
to further improve the predictive performance of the model. Moreover, the study only
utilized one type of dynamic analysis data to construct the prediction model. It would
be useful to consider different types of data, such as fatigue data or noise data, to further
validate the performance and reliability of the model. Furthermore, the study only used
a specific dataset, and future research could involve collecting data from more diverse
sources to improve the generalization of the prediction model. This could include data
from different engine manufacturers, testing conditions, and valve train components.

Therefore, while this study provides a promising foundation for future research
into utilizing machine learning and deep learning techniques to predict the dynamic
characteristics of valve train systems, more research is needed to address these limitations
and validate and improve the predictive performance of the model.

7. Conclusions

In this study, the performance of the gradient boosting regressor tree (GBRT) and deep
learning models such as the deep neural network (DNN), the one dimension convolutional
neural network (1D-CNN), and long short-term memory (LSTM) was evaluated for pre-
dicting dynamic characteristics based on diesel engine valve train design parameters. The
results showed that the GBRT and deep learning models exhibited good performance in
predicting valve train force and valve seating velocity. Both models showed similar results,
with the 1D-CNN demonstrating better consistency in predicting contact loss and the GBRT
exhibiting better follow-up for valve seating velocity.

However, the deep learning models required more time to learn and most of them had
lower predictive performance than the GBRT, even when the number of epochs was set to
1000. Although the predictive performance of the deep learning models could potentially
be improved by modifying hyperparameters, it would result in increased computation time
and cost, making the GBRT the most suitable model for constructing a prediction model
with the current dataset.

In our future works, we aim to expand the dataset by collecting more data with varying
specifications, including a wider range of engine rotational speeds, valve spring constants,
cam profiles, and valve train component mass and rigidity. By doing so, we can improve
the generalization and prediction performance of the prediction model, making it more
effective in the real world. Finally, we aim to apply the prediction model to other valve
train systems and different types of engines to evaluate its applicability and robustness.
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Abbreviations

AI Artificial intelligence
VSG Virtual Sample Generation
SVM Support Vector Machine
WSST Wavelet Synchro-Squeezed Transform
FFT Fast Fourier Transform
STFT Short-Time Fourier Transform
GBRT Gradient Boosting Regressor Tree
DNN Deep Neural Network
ANN Artificial Neural Network
1D-CNN One-Dimensional Convolution Neural Network
LSTM Long Short-Term Memory
RNN Recurrent Neural Network
CNN Convolutional Neural Network
GPU Graphics Processing Unit
OHC Overhead Camshaft
OHV Overhead Valve
RPM Revolutions Per Minute
CRS Crank Shift
ReLU Rectified Linear Unit
Tanh Hyperbolic Tangent
MAE Mean Absolute Error
RMSE Root Mean Squared Error
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