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Abstract: It is extremely important to monitor the health status of welding robots for the safe and
stable operation of a body-in-white (BIW) welding production line. In the actual production process,
the robot degradation rate is slow and the effective data are poor, which can reflect a degradation state
in the large amount of obtained monitoring data, which causes difficulties in health status evaluation.
In order to realize the accurate evaluation of the health status of welding robots, this paper proposes
a health status evaluation method based on the evidential reasoning (ER) rule, which reflects the
health status of welding robots by using the running state data monitored in actual engineering and
through the qualitative knowledge of experts, which makes up for the lack of effective data. In the
ER rule evaluation model, the covariance matrix adaptive evolutionary strategy (CMA-ES) algorithm
is used to optimize the initial parameters of the evaluation model, which improved the accuracy of
health status evaluations. Finally, a BIW welding robot was taken as an example for verification. The
results show that the proposed model is able to accurately estimate the health status of the welding
robot by using the monitored degradation data.

Keywords: welding robot; health status evaluation; evidential reasoning rule; CMA-ES algorithm

1. Introduction

With the continuous progress of science and technology and the popularization of
the intelligent manufacturing industry, the traditional automobile manufacturing industry
is developing towards modern automation with robots as the main workforce. The auto-
mobile manufacturing industry is an important symbol of a country’s industrialization
degree and has a decisive influence on the national economy. Welding production, as one
of the four major processes of the automobile, is an important process that determines the
quality and performance of the automobile industry. The welding robot is a very important
industrial robot in body-in-white (BIW) welding production lines, so the evaluation of
its health status provides a significant guarantee for the safe and reliable operation of the
whole production line. In the automobile welding production, a large number of industrial
robots are used in a wide variety of stations. The safe and reliable operation of industrial
robots plays a decisive role in the automobile welding process. The health status and
performance of industrial robots affects the quality of welding products and can even
lead to unqualified products. Thus, more and more enterprises pay more attention to the
health management of industrial robots on the production line. For example, Xiao [1]
proposed a health evaluation and status prediction algorithm based on the hidden Markov
model (HMM) and the time convolutional network (TCN), aiming at the problems of high
labor costs, low efficiency, and the low accuracy of mechanical shaft health management
in industrial robot applications. A further study [2] used nuclear density estimation and
Kullback–Leibler distance to detect deviations in torque repeatability of industrial robot
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joints. Compared with healthy robot joints, degraded robot joints require higher torque to
complete specific tasks.

The welding robot is a very important industrial robot on the BIW welding production
line, so the evaluation of its health status provides a significant guarantee for the safe and
reliable operation of the whole production line. The presence of a welding robot ensures
the quality of welding production and, at the same time, prevents workers from directly
engaging with the complex and dangerous welding environment. However, with the
increase in usage time and the influence of various uncertainties, the degree of health and
running status of the welding robot are more or less affected. Once the health status of a
certain part of a welding robot deteriorates, the equipment can fail or even cause more
serious disasters, resulting in accidents involving human personnel. Therefore, it is of great
significance to evaluate the health status of BIW welding robots, allowing experts and
maintenance personnel to carry out timely and appropriate maintenance and repair on the
welding robots, in accordance with the evaluation results.

In order to evaluate the state of a welding robot accurately, it is necessary to establish
an effective evaluation model. At present, the mainstream health status evaluation models
of complex electromechanical systems are divided into three types:

(a) Model-based methods, which are predominantly applied in systems where the
working mechanisms and fault mechanisms can be established. Additionally, they can
better identify and evaluate the state of electromechanical equipment by constructing
mathematical expressions that describe the degradation process of the performance, such
as the Kalman filter [3], analytic hierarchy process [4], hidden Markov model [5], and
Bayesian network methods [6]. Although this kind of method has achieved good results
in engineering, it is difficult to establish an accurate model for complex electromechanical
systems with many variables and influencing factors in the operation stage.

(b) Data-driven methods, which generally use a large amount of current or historical
monitoring data to build nonlinear models of the system, such as the support vector
machine [7,8], convolutional neural network [9,10], decision-making tree [11], and random
forest methods [12]. Such methods do not need to establish accurate mathematical models
and have strong ability to simulate realistic systems but often need a large amount of
data to train models. For complex electromechanical systems such as welding robots, it
is difficult to monitor a large amount of effective data, and many data-driven methods
belong to the “black box” model, which cannot be interpreted. So, this type of method is
not suitable to evaluate the health status of complex electromechanical systems.

(c) Qualitative knowledge-based methods, which mainly use experience and domain
knowledge, such as the expert system [13], fault tree [14], and Petri net methods [15]. These
methods have the ability to deal with uncertain information, and reasoning processes
are highly explanatory and require very little data. However, due to the complexity of
complex electromechanical system and the limitation of expert knowledge, the accuracy
of evaluation is reduced. In addition, in actual production, the monitoring operation data
can most intuitively reflect the health status of the equipment at this time. Therefore, when
evaluating the health status of a complex electromechanical system, it is necessary to use
both qualitative knowledge and appropriate data to accurately evaluate the state of the
complex electromechanical system.

Although the above three mainstream evaluation methods can achieve acceptable
results, the BIW welding robot belongs to the complex production process of multi-working
procedures and multi-working conditions. As a result, it is particularly difficult to establish
an accurate mathematical analytical model, as it is an environment characterized by com-
plex structure, strong correlation, uncertainty, and high nonlinearity. Therefore, accurate
evaluation results cannot be obtained solely by relying on qualitative knowledge, and
data-driven methods lack interpretability. Moreover, the above three methods do not have
the ability to deal with uncertain information. The data-driven approach lacks interpretabil-
ity, and the above three methods lack the ability to deal with many forms of uncertain
information. However, evaluation methods based on semi-quantitative information could
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well solve the limitations of the above methods, of which the evidential reasoning (ER)
rule method proposed by Yang and Xu [16] in 2013 is able to effectively utilize quantitative
monitoring data and qualitative expert knowledge to assess the health status of complex
electromechanical systems, such as welding robots. The ER rule is a multiple criteria deci-
sion analysis (MCDA) problem proposed on the basis of D-S evidence theory and decision
theory. The ER rule method makes up for the traditional MCDA method by establishing a
unified confidence frame to describe many types of uncertainties in multi-attribute decision
making problems.

It is unique in that it fully considers the weight and reliability of each piece of evidence,
which enables it to deal with ambiguity, uncertainty, and incompleteness. Moreover,
qualitative knowledge can be effectively used in the ER rule method, which makes up for
the shortcomings of welding robots, which lack effective data. Based on this, this paper
puts forward an evaluation model of the welding robot’s health status based on the ER rule,
and its results are interpretable, which also solves the difficulties of poor evaluation results
caused by relying solely on qualitative knowledge and quantitative data. Additionally, the
ER rule assessment model has been widely used in laser gyro [17], aerospace systems [18],
and aerospace relay [19].

In the absence of a large number of effective monitoring data, in order to make better
use of qualitative knowledge to evaluate the welding robot state evaluation, this paper
proposes a welding robot health status evaluation model based on the ER rule. The rest of
this article is as follows. The Section 2 describes the health status evaluation of welding
robot. The Section 3 introduces the health status evaluation of the BIW welding robot based
on the ER rule. The Section 4 verifies the effectiveness of the ER rule evaluation model in
practical cases. The Section 5 is the discussion of this paper. The Section 6 summarizes this
paper.

2. Problem Description of the ER Rule-Based Health Assessment Model

At present, a large number of welding robots are used in the automatic welding
production lines of the automobile industry, and their health status affects the welding
quality of the automobile body, so it is of great engineering value to evaluate the health
status of welding robots.

Based on the analysis of the working mechanism and health mechanism of the BIW
welding robot, this section selects the indicators that are able to reflect the health status of
the welding robot, such as reliability indicators, failure indicators, performance indicators,
and running status indicators. Of the many indicators, the running status indicator, which
can accurately reflect the health status of the welding robot, is also a key monitoring
indicator of enterprises. Today, more and more enterprises export the internal running
status data of robots through the robot data acquisition network box to provide data
support for the health management of welding robots. In the running status data, torque,
speed, and working angle are key concerns of businesses, and the monitoring data can also
directly reflect the state of welding robots. Therefore, starting from real-world engineering
contexts, this paper takes the running status index as an example and carries out the health
status assessment of the welding robot according to the running status data of a certain
model of welding robot provided by an enterprise. Figure 1 shows the health indicator
system of this paper.

The main process of the health status evaluation of a BIW welding robot is divided
into four parts: (a) data acquisition, (b) data preprocessing, (c) the determination of health
indicators, and (d) the construction of the curve of quantitative value of health status. The
following are the specific steps for the health status evaluation of BIW welding robots:

Step 1: The dataset through the data of a certain welding robot provided by the
enterprise is obtained.

Step 2: By analyzing the health mechanism of the BIW welding robot, the index which
accurately reflects the state of the welding robot is selected as the input of the evaluation
model.
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Step 3: The data of the input of the evaluation model are pre-processed, including
noise reduction and normalization.

Step 4: In order to evaluate the performance of the evaluation model, monotonicity
index (Mon) [20] and correlation index (Corr) [21] are selected as objective functions, and
the covariance matrix adaptive evolutionary strategy (CMA-ES) algorithm is used to search
the optimal weight parameters corresponding to the global maximum of monotonicity
index and correlation index.

Step 5: The utility value of the time series is calculated by evaluating the model, so
as to obtain the quantitative value of the health status of the welding robot, and the curve
is connected according to the time series. Figure 2 is the flow chart of the health status
assessment model.
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3. Health Status Evaluation of a BIW Welding Robot Based on the ER Rule
3.1. ER Rule

The inference rule is a further inference and extension of D-S evidence theory, which
belongs to a MCDA problem. Reasoning rules use the same confidence rule framework
to solve the uncertain problems in multi-attribute decision-making problems, which is a
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further supplement to traditional MCDA methods, such as the analytic hierarchy process
(AHP), and solves its limitations and rationality when dealing with uncertain information.
In this section, the ER rule is used to construct the performance degradation evaluation
model of the BIW welding robot.

Before using the ER rule for evidence fusion, it is necessary to process the quantitative
data and convert them into the confidence distribution of the relative reference level. It is
assumed that the nth reference value of evidence (also known as attribute xi) process can be
represented as hn,i(n = 1, 2, . . . , N) and hn+1,i ≥ hn,i, where hn,i represents the maximum
reference value and hn,i(n = 1, 2, . . . , N) represents the minimum reference value. When
the initial reference value of the evidence is obtained, the quantitative data can be converted
into a confidence distribution, namely:

S(xi) = {(hn,i, βn,i), n = 1, 2, . . . , N} (1)

where βn,i =
hn+1,i − xi

hn+1,i − hn,i
; βn+1,i = 1− βn,i; hn,i ≤ xi ≤ hn+1,i; βm,i = 0, m = 1, 2, . . . , N,

m 6= n, n + 1.
The following distribution can be used to express quantitative attributes:

S(xi) = {(Hn,i, βn,i), n = 1, 2, . . . , N} (2)

where βn,i ≥ 0,
N
∑

n=1
βn,i ≤ 1, βn,i represents the confidence that the quantitative attribute

xi is evaluated as reference level Hn,i. S(xi) represents the confidence distribution of
quantitative attribute xi relative to the reference level. When attribute xi is single, it is
assumed that mn,i represents the basic reliability value that the individual is evaluated as
reference level Hn, and mH,i represents the basic reliability value that is not assigned to any
reference level Hn, namely:

mn,i = ωiβn,i, n = 1, 2, . . . , N (3)

where ωi is the weight of quantitative attribute xi and 0 ≤ ω ≤ 1,
L
∑

i=1
ωi = 1.

mH,i = 1−
N

∑
n=1

mn,i = 1−ωi

N

∑
n=1

βn,i (4)

In strict the ER rule method, mH,i can be decomposed into two parts, namely, m̃H,i and
mH,i, and:

m̃H,i = ωi

(
1−

N

∑
n=1

βn,i

)
(5)

mH,i = 1−ωi (6)

where m̃H,i indicates the incomplete degree of evaluation of attribute xi, and when the
confidence distribution is complete, that is, when the unallocated confidence is 0, m̃H,i = 0.
mH,i represents the residual basic reliability value.

If the ith attribute and the (i + 1)th attribute are aggregated using the ER rule method,
then the reliability distribution value of the evaluation level is Hn. Then, the reliability
distribution values at the evaluation level are as follows:

{Hn} : mn,I(i+1) = KI(i+1)

[
mn,I(i)mn,i+1 + mH,I(i)mn,i+1 + mH,i+1mn,I(i)

]
(7)

mH,I(i) = mH,I(i) + m̃H,I(i) (8)
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{H} : m̃H,I(i+1) = KI(i+1)

[
m̃H,I(i)m̃H,i+1 + m̃H,I(i)mH,i+1 + mH,i+1m̃H,I(i)

]
(9)

{H} : mH,I(i+1) = KI(i+1)

[
mH,I(i)mH,i+1

]
(10)

KI(i+1) =

1−
N

∑
t=1

N

∑
l = 1
l 6= t

ml,i+1mt,I(i)


−1

, (i = 1, . . . , L− 1) (11)

When all attributes are synthesized according to the iterative synthesis algorithm, the
confidence is allocated as follows, namely:

{H} : β̂n =
mn,I(L)

1−mH,I(L)
, (n = 1, . . . , N) (12)

{H} : β̂H =
m̃H,I(L)

1−mH,I(L)
(13)

In the above formula, β̂n represents the confidence that the attribute is evaluated as
the reference level Hn, and β̂H represents the confidence assigned to the global level. The
confidence range can be expressed as [βn, (βn + βH)].

The overall evaluation y can be expressed as the following confidence distribution,
which is as follows:

S(y) =
{
(Hn, β̂n), n = 1, . . . , N

}
(14)

Then, the influence degree of the input data on the performance state of the BIW
welding robot is calculated by using the following formula:

X(y) =
N

∑
n=1

Hn × β̂n (15)

Of these, N is the grade number of evaluation results and X(y) is the utility value of
individual y after the iterative fusion of L attributes.

3.2. The Objective Function of the Model

Combined with the research of relevant experts and scholars at home and abroad,
this section takes monotonicity index and correlation index as the optimization objective
function to optimize the health status evaluation model of welding robots.

(a) Monotonicity index

In actual production and life, the degradation process of each component of a welding
robot is irreversible, that is, the degradation characteristics should show a monotonic
decreasing or increasing trend, known as monotonicity. The monotonicity index formula is:

Mon(Fi) =

∣∣∣∣Num of dFi > 0
Ti − 1

− Num of dFi < 0
Ti − 1

∣∣∣∣ (16)

where dFi represents the difference of feature sequence values. Num of dFi > 0 and
Num of dFi < 0 represent the number of positive and negative values in the feature
sequence, and Ti represents the total number of features.

(b) Correlation index
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With the increase in service time, the health of a welding robot may gradually deterio-
rate, which is called correlation. The correlation index indicates the correlation between
degradation trend and time. The formula of the correlation index is:

Corr(yt) =

∣∣∣∣ Tt
∑

t=1
(yt − y)

(
lt − l

)∣∣∣∣√
Tt
∑

t=1
(yt − y)2 Tt

∑
t=1

(
lt − l

)2
(17)

where y represents the average value of the quantified values of health status, lt is the
number of the tth sampling point, and l is the average value of the number of sampling
points.

The range of Mon and Corr is 0 to 1. The higher the Mon value, the better the monotone
of the model, the faster the convergence rate, and the higher the evaluation efficiency. The
larger the Corr value, the higher the correlation degree between the model and the real
data and the more accurately the results can be reflected. Therefore, the objective function
of the parameter optimization of the ER rule model established in this paper is as follows:

max{Mon(Ω)}
max{Corr(Ω)}

s.t. 0 ≤ w̃i ≤ 1, i = 1, 2, · · · , T

Ω = {w̃1, w̃2, · · · , w̃T}

(18)

3.3. CMA-ES Optimization Algorithm

In the ER rule evaluation model, the health status is regarded as a process of dynamic
degradation, which can be described by certain characteristics. First, key characteristics
affecting health status are selected, and then expert knowledge is used to build an initial
evaluation model. The initial parameters of the ER rule evaluation model are given by
experts and may not be accurate. Therefore, the CMA-ES algorithm [22–24] is adopted
in this paper to optimize the initial parameters of the evaluation model. When solving
complex nonlinear non-convex optimization problems in a continuous domain, CMA-ES
has no gradient optimization, does not use gradient information, and can converge to the
global optimal point in a relatively short time with fewer individuals, and is thus the most
advanced algorithm in evolutionary computing. There are two objective functions of this
model, namely, the monotone coefficient index and the time correlation coefficient index.
First, all equality conditions are converted into objective functions, and it should be noted
that multiple objective functions can be established for the solutions. Then, these objective
functions are independent of each other, so the CMA-ES algorithm can be used to solve
them separately. The implementation details of CMA-ES are as follows:

(a) Set initial values:

Taking a solution in the solution space (the space formed by parameter vectors Ω0 of
the ER rule model) as the center point, the initial population is generated with a normal
distribution. The initial average m0 = Ω0, initial covariance matrix C0, initial step size σ,
and overall size λ are obtained.

(b) Generate initial population:

The Ω0 is selected as the expectation. The method of generating the population is as
follows:

Ωg+1
k ∼ mg + σgN(0, Cg), f or k = 1, . . . , λ (19)

where Ωg+1
k represents the ith solution of the generation (g + 1)th, m represents the overall

mean, σ represents the step size, N represents normal distribution, and Cg represents the
covariance matrix of generation gth.
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(c) Select operation:

This operation is used to select the top ε optimal solutions in the population based on
the value of fitness function f (Ω), and the smaller the value, the better the solution.

(d) Reorganization operation:

This operation is used to update the expectation of the population and cause it to
shift towards the optimal solution, so as to guide the evolution of the population towards
the optimal solution during the process of regenerating the population. The method of
updating the population expectation is as follows:

meang+1 =
ε

∑
i=1

γiΩ
g+1
i:λ (20)

where γi denotes the weight of the ith solution, and its sum should be equal to 1. λ

represents the number of solutions in the population. Ωg+1
i:λ represents the ith solution of

the gth generation in λ solutions.

(e) Update C operation:

The C represents the elliptic plane of equal probability density of the population dis-
tribution. The initial matrix C0 is the identity matrixI I, and the corresponding population
distribution equaling the probability density surface is the unit sphere. The C is updated
according to the following equation:

Cg+1 = (1− α1 − αε)Cg + α1qg+1(qg+1)T

+αε

ε

∑
i=1

γi


(

Ωg+1
1:λ −meang

)
ηg


(

Ωg+1
1:λ −meang

)
ηg

T
(21)

where α1 and αε denote the learning factor. q denotes the evolution path, and the initial
evolution path value is 0. The rule is updated below:

qg+1 =
(
1− αq

)
qg +

√√√√αq
(
2− αq

)( ε

∑
i=1

γi

2)−1
meang+1 −meang

ηg (22)

where αq ≤ 1 denotes the evolution path parameter. The step size η is updatedbelow:

ηg+1 = ηg exp

αη

dη


∥∥∥qg+1

η

∥∥∥
E‖N(0, I)‖ − 1

 (23)

where dη denotes the damping coefficient, E‖N(0, I)‖ denotes the expectation of Euclidean
paradigm N(0, I). I denotes the identity matrix. qη denotes the conjugate evolution path.
αη denotes the conjugate evolution path parameter. qη is updated below:

qg+1
η =

(
1− αη

)
qg

η +

√√√√αη

(
2− αη

)( ε

∑
i=1

γi

2)−1

C
(g)−

1
2 meang+1 −meang

ηg (24)

The above operation steps should be repeated until the accuracy requirements meet
output of the optimal parameter Ωbest of the ER rule model.

4. Case Studies

In order to verify the effectiveness of the above method, this section adopts the moni-
toring data of ABB welding robot irb-6700 model from the front floor working group of
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an automobile welding production line of a specific model of motor vehicle for verifica-
tion. The data are collected through the robot controller and exported by the robot data
acquisition network box installed by the business. The data are collected in as a time series,
with a sampling frequency of 50 hz and a sampling time of 640 s. A total of 32,000 data
samples were collected. Since the monitored degradation data were very slow and there
were no large fluctuations over long periods of time, this paper will process and extract the
degraded data of the collected time series, divide it into 100 groups of data on average, and
then extract the root mean square of each group of data, and finally obtain the experimental
data, as shown in Figure 3 below. These data include the torque (a), speed (b), and operating
angle (c) of the welding robot.
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The above data are input into the established optimized ER rule evaluation model,
and the results are shown in Figure 4. As can be seen from Figure 4, the health status of
welding robot slowly deteriorates with the increase in time of usage, which is consistent
with the problems in actual engineering. When the degradation reaches a certain threshold
value, the staff of the enterprise need to undertake maintenance of the robot.
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In order to verify the effectiveness of the model, we compared it with other models.
The comparison models included traditional the ER rule (parameters not optimized), BP
neural network, convolution neural network, and fuzzy C-means methods. The compar-
ative experimental results are shown in Figure 5. All methods used the same set of data
samples. See Steps 1–5 in Section 3 for the modeling process of the ER rule method. This
model provides the same initial weight parameters as the traditional ER rule model, and
these parameters are determined by expert experience.
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The results of specific performance evaluation index values are shown in Table 1 below.
It should be noted that the greater the monotonicity coefficient, the stronger the upward
or downward trend of the performance degradation curve. The larger the correlation
coefficient, the stronger the correlation between the performance degradation curve and
the real data.

Table 1. Experimental results of different methods.

Optimized ER BP CNN FCM Initial ER

Monotonicity coefficient 0.8788 0.5960 0.6566 0.1313 0.7172
Correlation coefficient 0.9584 0.8594 0.9311 0.7779 0.9393

The trend of the performance degradation curve of the model is shown in Figure 5.
With the increase in the number of samples, i.e., an increase in time, the performance
degradation curve of the welding robot decreases slightly and the value of the performance
degradation factor decreases, indicating that the robot is slowly undergoing performance
degradation. Table 1 shows the monotonicity coefficient and correlation coefficient of the
performance degradation curve, among which the two indexes of this model are closer to 1,
that is, the objective function value is the largest, indicating that the model proposed in this
paper can effectively evaluate the health status of a BIW welding robot.

It can be seen from the above results that the ER rule model proposed in this paper is
able to accurately evaluate the state of a welding robot with fewer data samples.

5. Discussion

The results show that the ER rule has obvious advantages in the health status as-
sessment of welding robots by using expert knowledge. In the health status assessment
modeling of this type of complex mechanical and electrical equipment, the degradation
process of equipment is slow and the monitoring data are relatively stable, which means
that it is difficult to sensitively reflect changes in health status due to the lack of effective
data. In the modeling process of this kind of problem, industry expert knowledge is used
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to provide correct trend information of status change in order to make up for the lack of
effective monitoring data. If the effective monitoring data are abundant, other data-driven
modeling methods will also have a good effect on the health status assessment of welding
robots.

6. Conclusions

The welding robot is one of the key pieces of equipment in the welding production line
of BIW. The stable and reliable operation of welding robots is very important for the safe
and reliable operation of the welding production line and a guarantee of the welding quality
of BIW. In order to make better use of quantitative data and expert knowledge in order to
realize the nonlinear health evaluation model of welding robots, a health evaluation model
based on the ER rule was proposed. It can be seen from the experimental results that the ER
rule evaluation model has achieved optimal results in the two objective function indicators,
indicating that the model can obtain better results under relatively small samples. In order
to obtain the optimal parameters of the ER rule model, the CMA-ES algorithm is used
for parameter optimization, and the weight corresponding to the maximum value of the
objective function is the optimal weight of the model. The experimental results show that,
with continued use, the performance of a welding robot will gradually degenerate, which
is consistent with real-world engineering contexts. In addition, the model is compared with
other models. The results show that the model is expected to provide a new method for the
health status evaluation of welding robots and has broad application prospects.

The model can also be applied to other complex electromechanical systems, such as
aircraft engines. In future studies, how to improve the accuracy of expert knowledge in
the process of ER rule modeling in combination with the characteristics of the object or
how to establish a health status assessment model that is closer to engineering practices are
problems that we should continue to study.
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