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Abstract: The increasing popularity of Industry 4.0 has led to more and more security risks, and
malware adversarial attacks emerge in an endless stream, posing great challenges to user data
security and privacy protection. In this paper, we investigate the stateful detection method for
artificial intelligence deep learning-based malware black-box attacks, i.e., determining the presence
of adversarial attacks rather than detecting whether the input samples are malicious or not. To
this end, we propose the MalDBA method for experiments on the VirusShare dataset. We find that
query-based black-box attacks produce a series of highly similar historical query results (also known
as intermediate samples). By comparing the similarity among these intermediate samples and the
trend of prediction scores returned by the detector, we can detect the presence of adversarial samples
in indexed samples and thus determine whether an adversarial attack has occurred, and then protect
user data security and privacy. The experimental results show that the attack detection rate can
reach 100%. Compared to similar studies, our method does not require heavy feature extraction
tasks or image conversion and can be operated on complete PE files without requiring a strong
hardware platform.

Keywords: stateful detection; adversarial defence; artificial intelligence security; privacy protection

1. Introduction

With the advent of the Industry 4.0 era, security threats have increased dramatically,
and the number of malware introduced by attackers is rising every year. The volume of
malware threats observed by McAfee Labs averaged 688 threats per minute, an increase of
40 threats per minute (3%) in the first quarter of 2021 [1]. VirusTotal’s database had more
than one million signed samples that were considered suspicious (with more than 15%
anti-viruses detecting them as malicious) from January 2021 to April 2022 [2]. Researchers
are constantly looking for effective malware detection and classification methods, and with
the popularity of artificial intelligence (AI), they find that deep learning-based malware
detection and classification methods work well [3–5]. However, deep learning (DL) models
are highly vulnerable to adversarial examples [6,7]. Therefore, analyzing and detecting DL-
based malware black-box adversarial attacks is a difficult task for anti-malware researchers.
The existing optimal defense methods are stateless detection methods such as adversarial
retraining and distillation, which detect whether the input sample is benign or malicious
without judging whether there is an adversarial attack [8,9]. Existing malware stateful
detection methods are implemented in the feature space, which requires data preprocessing
and feature extraction [10,11]. At present, there is no malware stateful detection strategy
implemented in the problem space.

Driven by this, we propose the MalDBA(Detection for Query-based Malware Black-
box adversarial Attacks) to defend against malware black-box adversarial attacks. The
process of MalDBA is as follows: First, malicious datasets are obtained from the VirusShare
website [12], benign datasets are collected through crawling, and a malware detection
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model MalConv is pretrained [13]. Then, two different black-box adversarial attacks are
reconstructed [14,15], and the history of query results (also known as the intermediate
samples) of these attacks are saved. We can find that the prediction scores of these interme-
diate samples under MalConv model detection are gradually decreasing (meaning that the
original malware tends to become a benign-looking sample after adding perturbations).
After that, the similarities of the sample sets saved in the query process are compared using
the similarity comparator [16]. We find that these intermediate samples are highly similar
to each other and the original malicious file, but not similar to other samples. Thus, we
can perform the stateful detection of query-based malware black-box adversarial attacks.
When it is found that the samples input to the detector model for querying are similar and
the predicted scores returned by these similar samples gradually decrease (from malicious
to benign), it is judged that the detector is experiencing adversarial attacks.

We evaluated MalDBA on the downloaded dataset and achieved satisfactory results.
In summary, the main contributions in this paper are as follows:

(1) We propose MalDBA to defend against query-based malware black-box attacks,
which can help analysts effectively detect the existence of adversarial attacks.

(2) We propose a stateful detection method for black-box adversarial attacks. Most
of the previous detection methods for adversarial examples (AEs) are stateless, and the
method proposed by us can precisely carry out a supplementary defense. The existing
stateful detection methods of malware black-box attacks are based on the feature space
level, while our method is based on the complete malicious file (i.e., problem space).

(3) We propose a novel similarity comparator based on the MinHash algorithm to
analyze the history of queries (i.e., intermediate samples) received by the malware detector.

(4) MalDBA can be run on ordinary personal workstations and does not require high-
performance hardware resources, so it meets the needs of ordinary researchers to deal with
a large number of malicious codes.

The structure of the article is as follows: In Section 2, we first introduce the necessary
background knowledge and the summary of the related work. Section 3 describes the
overall framework of the MalDBA. The experimental details are presented in Section 4.
Then evaluate it in Section 5. Section 6 discusses some issues. Finally, we conclude in
Section 7.

2. Background and Related Work

The adversarial attack and defense of malware is an iterative and complementary
process. In recent years, the research of malware black-box attack and detection has
emerged [17–19]. To better introduce the content of this paper, we first outline the research
background and related work.

2.1. Background
2.1.1. Query-Based Black-Box Attack

Currently, the black-box adversarial attack can be divided into transfer-based attacks
and query-based attacks. Transfer-based attacks generate adversarial examples on local sur-
rogate models and directly use the generated adversarial examples to attack the black-box
model. However, the attack performance of transfer-based attacks is usually unsatisfactory
due to overfitting the local surrogate models. Query-based attacks approximate the gradi-
ent information by queries to the target model to craft adversarial examples. Query-based
black-box attack is generally divided into decision-based black-box attack and score-based
black-box attacks [20]. The decision-based black-box attack, also known as hard-label
black-box adversarial attack, iteratively perturbs the original sample by estimating the
gradient or boundary proximity and generating AEs according to some strategies [21].
The score-based black-box attack estimates the gradient of the target model loss function
according to the output of the target model for the input samples (i.e., the probability scores
of each category), and generates the corresponding adversarial samples [22]. Query-based
black-box attack often requires multiple queries to generate a successful AE to achieve
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optimal attack performance. In this paper, the attack we use is a score-based black-box
attack, and the attack scenario is shown in Figure 1.

Figure 1. Scenario for score-based malware black-box attacks.

2.1.2. Stateful Detection Method

Stateful detection examines a series of queries submitted by each user to decide
whether the user is an attacker [10,23,24]. Given user A and the set of queries he submits,
stateful detection checks if an adversarial attack occurred in these queries. Specifically,
stateful detection calculates the similarity between queries q1, q2, ..., qn from A. If the simi-
larity exceeds a threshold and the prediction scores returned by the malware detector range
from malicious to benign, stateful detection marks A as an adversarial attacker. To calculate
the similarity between samples, a similarity comparator is proposed for comparison. In
general, the stateful detection method judges whether an adversarial attack has occurred,
rather than detecting whether the input samples are malicious.

2.2. Related Work

Research on the detection of adversarial attacks was first proposed in the field of
computer vision, including detection methods for model stealing attacks, surrogate model
attacks, and evasion attacks [23–27]. Chen et al. [23] proposed a new adversarial sample
defense method – stateful detection defense for image black-box attacks. Moreover, they
proposed a similarity encoder based on the Euclidean distance metric. Then, they introduce
a novel type of attack, query blinding, which is designed to bypass the stateful detection
defense. This paper is evaluated using the CIFAR-10 dataset, and the experiments work
well. However, this study applies well to image adversarial samples, but is limited to video
classification, and does not involve malware detection.

Li et al. [24] designed Blacklight, a defense framework against query-based black-
box adversarial attacks. The method uses probabilistic content fingerprint-based query
matching to mitigate individual attack queries. They experimentally evaluated Blacklight
on multiple datasets and image classification models for eight SOTA black-box attacks, and
the experimental results were not only high in detection rate but also fast. Nevertheless,
this method cannot defend against surrogate model attacks. If there are not highly similar
adversarial examples, Blacklight can be evaded.

For deep neural network models (DNNs), Cohen et al. [26] put forward using Nearest-
Neighbours and Influence Functions to detect adversarial samples. The core idea of this
algorithm is that there should be a correspondence between the training data and the
network classification. That is, for normal images, there is a strong correlation between
their nearest neighbors in the DNN embedding space and their most helpful training
examples, while adversarial examples are the opposite. They tested the performance of
detection in both black-box and white-box attacks. However, this study uses the L2 distance
metric, which is computationally time-consuming and needs to be further improved in the
future.

In order to quickly infer the intent of black-box attackers, Pang et al. [27] proposed a
new estimation model, AdvMind. This model can reliably identify the query of interest
(QOI) and accurately detect the target category of the attack at an early stage for timely
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remediation. The authors used four datasets and DNNs to perform experiments on the
detection of three black-box attacks. However, AdvMind focuses on query-based attacks
and is not effective for substitute model attacks.

With the increasing threat of black-box adversarial attacks in the industrial Internet
of Things (IIOT), Esmaeili et al. [10] proposed a stateful query analysis strategy for the
detection of adversarial scenarios. Their method includes two CNN-based components,
namely similarity encoder, and classifier. Moreover, they introduced the Mahalanobis
distance metric for the loss function of the detection model, which improved the detection
rate. However, their architecture is to process the malware opcode features into greyscale
images and use methods in the field of computer vision to classify and generate adversarial
images, without generating malicious files. Future research on other distance indicators
and data types should also be further developed.

As previous defense methods are static and cannot dynamically adapt to adversarial
attacks, Li et al. [11] proposed the first instance-based online machine learning dynamic
defense method against black-box attacks. Extensive experiments are conducted on image
and malware datasets, and effects significantly outperform existing SOTA defense methods.
Nevertheless, DyAdvDefender may need a manual inspection of samples to achieve optimal
performance in the real world, and incorrect selection of malware feature sets may lead to
defense failure.

Regarding a Windows adversarial attack, Fang et al. [8] proposed an automatic adver-
sarial sample generation model based on reinforcement learning called RLAttackNet, which
can successfully bypass the DeepDetectNet malware detection model. They proposed a
new method for extracting features of PE files, including the Import Function Feature,
General Information Feature, and Bytes Entropy Feature. Retraining the detection model
by drawing on the idea of GAN revealed a significant decrease in the success rate of the
attack. More attention needs to be paid to hyper-parameter optimization methods in deep
learning models in the future.

In addition, unlike previous work, Maiorca et al. [9] presented a survey of PDF malware
detection in an adversarial environment. They provide a comprehensive study on PDF pre-
processing. Furthermore, they outline adversarial attacks against PDF malware detectors.
They have discussed existing mitigating strategies as well as future research directions.

In summary, we can find that there are shortcomings in the existing research results
in detecting malware black-box attacks: (1) Most researchers are devoted to the detection
of image and PDF adversarial attacks, and the research on stateful detection of malware
adversarial attacks is insufficient; (2) The existing stateful detection methods of malware
black-box attacks need to extract features from original samples or convert them into
images for further processing. Based on this, we propose the MalDBA method for stateful
detection research on complete sample files.

3. Overview
3.1. Motivation

Machine learning has great potential in malware analysis, and DL-based malware
detectors have been extensively studied, yet the problem remains unsolved. One of the key
challenges currently facing malware detection and classification research is the adversarial
examples [28]. Without addressing adversarial attacks, proposing malware detectors or
classifiers is an endless and unfruitful task lacking substantial scientific advancement. For
instance, the DL-based static malware detector proposed in another paper worked well in
the evaluation, but malware adversarial samples still sneak through the model [13–15,29].
That is probably why the malware never stops despite the hundreds of detectors being
proposed. It is urgent to detect black-box attacks based on the DL malware detector. The
stateful detection method has been used in computer vision [11,23,24,27], but it has not
been attempted in malware black-box attacks which generate real adversarial samples.
Therefore, we designed the MalDBA framework to detect query-based black-box attacks.
This article aims to detect the generation of adversarial samples, not to try to detect whether
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the input files are malicious or benign. When generating an adversarial sample, existing
query-based black-box attacks produce a series of highly similar queries (i.e., each query in
the set is similar to the previous queries), and the scores returned by the detector gradually
change from malicious to benign. Based on this, we propose a defense approach that uses
a similarity comparison algorithm to identify such queries and detects black-box attacks
against malware detectors through this strategy.

3.2. Overall Framework

MalDBA mainly consists of four steps, namely training the malware detection model,
simulating the black-box attack, saving the intermediate samples and prediction scores,
and performing adversarial attack detection, as shown in Figure 2.

Figure 2. The process of MalDBA.

4. Our Scheme
4.1. Training Malware Detector

The function of this step is to train a mature malware detection model. For the
DL-based static malware detector, we choose the MalConv model(as shown in Figure 3),
which is not only the current popular malware detection model, but also the target model
selected by many malware adversarial attacks [14,15,30–35]. By training the MalConv
model, a binary classifier that can distinguish benign samples from malicious samples can
be obtained.

Figure 3. The architecture of MalConv model.

MalConv model is the first convolutional neural network architecture (CNN) address-
ing the classification problem of extremely long sequences, proposed by Raff et al. [13]. Its
input is a PE file and returns a score to judge whether this file is malware or not. The model
distinguishes programs based on the byte representation of the input, without extracting
any features. If the input file length exceeds 2MB, the file will be truncated to the specified
size; otherwise, the file will be padded with the value 0.

4.2. Reproduce Black-Box Attacks

Our work is dedicated to detecting query-based black-box attacks and the function
of this module is to reproduce typical query-based black-box attacks. Since malware
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adversarial attacks were investigated later than image adversarial attacks and most of
the AEs are generated on feature vectors or substitute models [28,36–40], there are not
many query-based black-box attack methods that can generate real AE files and publish
open source codes [14,15,41,42]. We choose two advanced score-based black-box attack
frameworks [14,15]. The target detectors of these two attacks are both MalConv models,
we reproduce them through open-source code and compare the attack success rate. The
process of generating adversarial samples is roughly illustrated in Figure 4.

Figure 4. The process of generating adversarial examples.

4.3. Save the Intermediate Samples

Figure 5 shows the process of saving the historical query results of the black-box attack.
The historical queries (i.e., intermediate samples), as well as the prediction scores returned
from the detector in the process of generating adversarial sample queries, are saved in
preparation for the next step.

Figure 5. The process of saving the history queries.

4.4. Detect the Adversarial Attacks

Algorithm 1 sketches the procedure of MalDBA. Different numbers of benign and
malicious samples are randomly selected with the intermediate samples saved above to
form the indexed sample sets of different sizes. Then use the similarity comparator based
on the Minhash algorithm to compare the similarity and judge whether the scores returned
by MalConv gradually decrease, so as to determine whether there is an adversarial attack
and achieve the purpose of defense. The process of detection is shown in Figure 6.

Algorithm 1: The procedure of MalDBA
Initialization: indexed samples set K, query_set (q1, . . . , qn), predict_score S,

similarity comparator H. (qi ∈ K)
Output: Whether adversarial attacks exist in the K (Ture or False)
for c in K do

Lc = new List ()
Lc ← Obtain the index set o f samples similar to c through H

end for
if (q1, . . . , qn) in the same L and (Sq1 , . . . , Sqn ) decline then
return True
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Figure 6. The process of detection.

5. Evaluation
5.1. Experimental Setup

We implemented MalDBA in Python. The experimental environment is configured as
follows: (1) Lenovo ThinkStation, Intel®Core TM i7-6700U CPU @3.40GHz × 16.0 GB RAM,
and an Nvidia GeForce GTX 1070 (2) 64bit Windows 10 operation system, (3) Pycharm
Professional Edition with Anaconda plugin 2020.

5.1.1. Dataset

The experimental data in this paper includes malware samples and benign files, among
which malicious samples are from VirusShare corpus [12], and benign PE files are extracted
from Windows 10 system files and different software companies. Since the input file size of
the GAMMA model cannot exceed 1MB, we filtered the dataset (samples larger than 1MB
are only a minority). Table 1 and Figure 7 illustrates the distribution of the dataset.

Table 1. The Dataset.

Dataset Benign Files Malicious Files Total

Num 5309 3720 9029

Figure 7. The distribution of a dataset.

5.1.2. Black-Box Attack Methods

Two typical query-based malware black-box attacks are selected for experimentation
during our evaluation (as shown in Table 2).
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Table 2. Query-based malware black-box attacks.

Black-Box Attack Method

MalRNN [14]

MalRNN automatically generates adversarial examples to attack DL-based
static malware detectors in the way of language modeling. Using the Seq2Seq
RNN Language Model to generate benign looking byte sequences successfully
eludes anti-malware engines.

GAMMA [15]

GAMMA is a malware adversarial attack method based on optimized genetic
algorithm. It extracts benign contents which are easy to evade the DL-based
static malware detector and injects them into the end of malicious samples or
the newly-created sections (i.e., Padding and Section-Injection attacks)

5.2. Experimental Results and Discussion

In this section, we experimentally evaluate the detection effectiveness of MalDBA.
Firstly, we evaluate the MalConv malware detector model selected using the original
dataset. Secondly, the selected black-box attack algorithm is applied to the dataset and
target detector, and then our proposed MalDBA method is used to detect the black-box
attacks and evaluate the attack success rate of the attacks without and with the defense.
After that, the relationship between the average response time (ART) and attack detection
rate (ADR) with the number of indexed samples (K) on attacks is discussed. Finally, we
compare the MalDBA with similar studies.

5.2.1. The Experimental Results of Malware Detector

We chose MalConv, a popular DL-based static malware detection model, which is used
as the target model for many malware adversarial attacks [14,15,30–35]. We reproduced
the model using the Python programming language. The dataset is divided according to
the ratio of training set: validation set: test set = 6:2:2. We conduct the experiments on
randomly partitioned datasets and the results are shown in Table 3. The accuracy of the
test set is 95.03%, which is not far from the experimental results of the original paper [13].

Table 3. Performance of MalConv model.

Detector
Metrics Test_Loss Test_Accuracy Train_Loss Train_Accuracy

MalConv 0.1380 95.03% 0.0862 96.32%

5.2.2. The Detection Results with Different Black-Box Attack Methods

In this section, we replicate the MalRNN and GAMMA black-box attack frameworks,
using Attack Success Rate (ASR) as an evaluation metric. Each experiment is performed
three times, and the results are averaged as the final experimental results. As shown in
Table 4, the effectiveness of two black-box attacks with no defense and defense with the
MalDBA detection method is presented. It can be seen from Table 4 that our defense
method can reduce the success rate of the attacks to 0%.

Table 4. Attack success rate (ASR) of attacks.

Attack Defence ASR

MalRNN No defence 88.6%
MalDBA 0%

GAMMA No defence 86.3%
MalDBA 0%

5.2.3. The Relation between the ART and ADR with K on Attacks

We randomly save 20 historical query results of malware and randomly select different
numbers of benign and malicious files respectively to form the indexed sample set K. The
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sizes of K are taken as 30, 70, 320, 520, 770, and 1020, respectively. The relationship between
the average response time (ART) and the number of indexed samples (K) for MalRNN and
GAMMA attacks are shown in Table 5. The relationship between the ART, attack detection
rate (ADR) with K for these two attacks are depicted in Figures 8 and 9 respectively. From
the figures, it can be found that the ADR of MalDBA for these two black-box attacks is
100%, and the ADR is independent of K. With increasing K, the ART fluctuates to a certain
extent and then gradually stabilizes around 23 s.

Table 5. The relationship between the average response time (ART) and the number of indexed
samples (K) on MalRNN and GAMMA.

Attack

ART(s) K
30 70 320 520 770 1020

MalRNN 7.11 6.71 18.41 23.20 23.10 22.67
GAMMA 7.20 6.62 18.50 23.11 23.22 22.72

Figure 8. The relation between the attack detection rate (ADR) and average response time (AST) with
the number of indexed samples (K) on MalRNN attack.

Figure 9. The relation between the attack detection rate (ADR) and average response time (AST) with
the number of indexed samples (K) on GAMMA attack.

5.2.4. Comparison with Similar Studies

In this section, we compare MalDBA with similar studies in terms of datasets, target
models, experimental setup, the accuracy of the target model, and attack detection rate
(ADR). The results of the comparison are shown in Table 6.
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Table 6. Comparison with similar studies.

MalDBA Esmaeili et al. [10] Miles Q. Li et al. [11] Steven Chen
et al. [23] Ren Pang et al. [27] Huiying Li et al. [24]

Datasets PE 2-digit hexadecimal
bytecode vectors CIFAR-10, MNIST, PE CIFAR-10 CIFAR-10, CIFAR-100,

ISIC, Mini-VGGface2
MNIST, GTSRB,

CIFAR10, ImageNet
Target
models Malconv CNN CNN, FNN ResNet DNNs DNN

Experimental
setup

A desktop with one
Intel®Core TM

i7-6700U CPU, 16.0 GB
RAM , and an Nvidia

GeForce GTX 1070

-

A server with one
Intel®Core TM

i9-9980XE CPU, 128
GB memory, and an
Nvidia GeForce RTX

2080 Ti Graphics Card

- - Nvidia Titan RTX

Accuracy of
target
model

95.03% 98% - 92% 92.44%, 70.47%,
88.17%, 96.17% -

ADR 100% 93.1% Extract PE Strings
feature: 94.7% 100% Can reach to 100% Can reach to 100%

Compared with similar studies, MalDBA has the following advantages: (1) MalDBA
references the idea of image stateful detection, but does not need to convert PE files into
images (which will lose some important features). (2) MalDBA can directly detect complete
malware, skipping the dataset preprocessing, feature extraction, feature selection, and
feature fusion stages, saving a lot of time. (3) MalDBA requires a moderate-performance
hardware platform, so it has good universality and a high detection rate.

6. Discussion

Our proposed detection method operates on complete files, which inevitably takes
some time. Therefore, we put forward an idea: drawing on the knowledge of computer
vision, extracting the features of the deep neural network model’s middle layer for sample
similarity comparisons in order to detect adversarial attacks [43,44]. We adopted three
methods to carry out experiments with different numbers of indexed samples (K). The
MalConv was chosen for the deep neural network model and the MalRNN framework was
selected as the black-box attack model. After extracting the features of the neural network
model’s middle layer, we adopted L2 distance, K-means, and Minhash methods to measure
the similarity among the indexed samples. Experimental results of different methods with
different numbers of index samples are shown in Table 7. From the table, it can be seen that
the features of the neural network model’s middle layer are not effective for the similarity
measure among the samples. The existence of an adversarial attack could not be detected.
The reason for this may be that PE samples and images are fundamentally different: The
middle layer features of an image under a deep neural network model is an image whose
general outline can still be seen, whereas the middle layer features of a malicious or benign
sample is a multidimensional array of tensors.

Table 7. The effects of different methods with the number of indexed samples (K) under MalRNN.

Methods
K

30 200 400

L2 × × ×
K-means × × ×
Minhash × × ×

‘×’ denotes the features of the neural network model’s middle layer are ineffective for the similarity measure
among the samples.

7. Limitations and Conclusions

Limitations of MalDBA: (1) The false positive rate of the MalDBA will rise if highly
similar malicious samples are fed into the detector for querying (as if there is a similarity
among malicious samples of the same family). (2) MalDBA detects historical query se-
quences generated during the iteration of query-based black-box attacks and cannot defend
against non-query-based attacks (e.g., substitute model attacks).
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Malware black-box attacks cause security risks to AI and pose a threat to data security
as well as privacy, and their defense is a complex issue [18,19]. In this paper, we manage to
solve the problem of stateful detection for malware score-based black-box attacks. First, the
set of historical query samples generated during the attack is saved. Afterward, similarity
comparison is performed on different numbers of indexed samples by a similarity com-
parator. Finally, the presence or absence of an adversarial attack is detected according to
the trend of scores returned by the malware detector. The results show that the detection
rate of MalDBA against score-based black-box attacks is 100%, and the detection rate is
independent of the number of indexed samples.

In the future, we plan to investigate the following research directions: (1) Study of a
general attack strategy for stateful detection defense. (2) Drawing on the similarity encoder
proposed in computer vision, consider whether it can be studied by extracting the function
call graph or control flow graph of malware and combining it with graph neural networks.
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