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Abstract: Face detection in the classroom environment is the basis for student face recognition, sensor-
less attendance, and concentration analysis. Due to equipment, lighting, and the uncontrollability of
students in an unconstrained environment, images include many moving faces, occluded faces, and
extremely small faces in a classroom environment. Since the image sent to the detector will be resized
to a smaller size, the face information extracted by the detector is very limited. This seriously affects
the accuracy of face detection. Therefore, this paper proposes an adaptive fusion-based YOLOv5
method for face detection in classroom environments. First, a very small face detection layer in
YOLOv5 is added to enhance the YOLOv5 baseline, and an adaptive fusion backbone network based
on multi-scale features is proposed, which has the ability to feature fusion and rich feature informa-
tion. Second, the adaptive spatial feature fusion strategy is applied to the network, considering the
face location information and semantic information. Finally, a face dataset Classroom-Face in the
classroom environment is creatively proposed, and it is verified with our method. The experimental
results show that, compared with YOLOv5 or other traditional algorithms, our algorithm portrays
better performance in WIDER-FACE Dataset and Classroom-Face dataset.

Keywords: face detection; adaptive fusion; Classroom-Face

1. Introduction

Face detection is a major research project in the field of image processing. Generally,
face position localization is the first step of face recognition, face attribute analysis, and
human-computer interaction; thus, the accuracy of face detection directly affects the per-
formance of face-related systems. Face detection in a classroom environment is the basis
of face recognition and student attention detection. Effectively detecting students’ facial
information in the classroom environment helps to analyze students’ attendance and the
efficiency of listening accurately and quickly.

The human face is a special object, and to better solve the problems in face detection,
convolutional neural networks (CNNs) have grown in popularity in recent years. Further,
scholars applied object detection algorithms [1–4] to detect faces and made progress. Mean-
while, the birth of FDDB [5], VOC FACE, and WIDER-FACE [6] benchmark datasets, which
provide face location information in real-world scenes with high variability in terms of scale,
pose, and occlusion, makes face detection ever more widely applied in real complex scenes.

In recent years, face detection has attracted the attention of many scholars as well
as industries. Thanks to the use of deep learning, face detection accuracy has risen over
time, and significant technological advancements have been achieved. However, there
are still many challenges in the technique of accurately locating the face position due to
different shooting angles, differences in lighting conditions, background noise interference,
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crowding of people, and changes in the expressions of people’s postures. The classroom
environment is a type of unconstrained environment. In the classroom, there necessitates
the ability to detect multiple faces in an image. The image has the following characteristics:
faces of different sizes and postures, small-scale faces far away from the camera, and
moving and occluded faces that occupy fewer pixels. The features are not obvious, and
the recall rate is low compared to the large-scale face detection that is closer to the camera.
Therefore, one of the most important problems in face detection technology is how to
increase the accuracy of tiny face detection with several faces in the classroom.

Although the accuracy of face detection algorithms on large public datasets has been
refreshed to over 90%, most of the public datasets are celebrity images or crawled from
the internet. There are fewer face datasets and less related research in unconstrained
environments. Currently, face detection algorithms are primarily applied in non-specific
environments. However, in classroom settings, face detection faces several challenges,
including low resolution, variation in scale, crowding, severe occlusion, and motion blur.
The existing face detection algorithms cannot effectively extract features from small faces,
cannot detect faces of different scales well in a single image, rely on keypoint detection,
creating relevant datasets is a complex task, and the algorithm may not generalize well
to complex real-world scenarios. YOLOv5 has good detection accuracy on VOC [7] and
COCO [8] datasets; therefore, we propose an improved YOLOV5 architecture for detect-
ing tiny faces in classroom environments. The emphasis of this research is to propose
a new face detection algorithm based on the adaptive fusion of multi-scale features in
classroom environments, which is related to face detection methods in non-specific envi-
ronments as well as face detection algorithms in classroom environments. These are the
primary contributions:

(1) A small-scale face detection layer is added to address the problem that it is difficult to
detect small-scale student faces that are far from the camera.

(2) To address the issue of changeable scale and inadequate identification of fuzzy faces,
a multi-scale adaptive backbone network is presented. Firstly, the feature map is
convolutionally concatenated at different scales to generate a new multi-scale feature
map; secondly, the attention weights of different channels of the multi-scale feature
map are extracted by SENet and rescaled by softmax to obtain an adaptive multi-scale
fusion feature map. Finally, the original feature map is concatenated with the adaptive
multi-scale fusion feature map to ensure the new features are obtained based on the
original features.

(3) To address the problem of denser concentrations of students in the classroom environ-
ment and the mismatch between location information and semantic information, the
pyramid feature fusion strategy is applied to the network detection in part to reduce
the missed detection rate of students’ faces in the classroom environment through
adaptive fusion between different scales of detection layers.

(4) This paper establishes a publicly available face dataset in the classroom environment
(Classroom-Face) and divides it into three subsets for testing.

2. Related Work
2.1. Face Detection

Since 1990, face detection has become increasingly important as the first step in face
analysis tasks. Currently, CNNs have been most wildly applied for face detection, face
recognition, expression analysis, and other face feature extraction-related fields. According
to the network architecture and training strategy, face detection algorithms can be classified
into cascade detection algorithms, one-stage detection algorithms, two-stage detection
algorithms, and feature pyramid-based algorithms.

H. Li et al. [9] were the first to propose a CNN combined with a V-J cascade structure
for face detection, which contains six subnetworks, three of which are used to determine
whether a face is a face and the other three are used for face rectangle frame correction.
Zhang et al. [10] detected faces and face alignment by a third-order cascaded CNN, with
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each order of the network containing three tasks: face determination, border regression,
and localization of facial feature points. In addition, the works of Yang, Zhang, and
Tomar [11–13] also rely on cascaded convolutional networks for face detection.

Wang et al. [14] combined multi-task loss function and multi-scale training with R-
CNN to improve the speed and accuracy of face detection. To better use Faster R-CNN for
face detection tasks, CMS-RCNN [15] fused contextual information and proposed multi-
scale suggestions to fuse features after RoI Pooling on a multilayer feature map. Wu, Zhang,
and Cakiroglu [16–18] performed face detection based on Fast R-CNN, Faster RCNN, and
Mask RCN.

Face detection is a specific object detection task and thus, is usually derived and extended
from generic object detection algorithms. Single-stage object detection algorithms [19,20] have
emerged as a new and important study area as object detection algorithms have gotten
faster and more accurate as deep learning becomes more common. The algorithm did
not rely on FCN but detected faces at different scales simultaneously in the network and
achieved the advancement results in [5,6] and VOC face datasets. Faceboxes [21] proposed
“Rapidly Digested Convolutional Layers (RDCL)” and the “Multiple Scale Convolutional
Layers (MSCL)”, which can combine both detection speed and accuracy of face detection at
different scales. Hu [22] solved the accuracy of small face detection by investigating three
aspects of scale invariance, image resolution, and contextual inference in combination with
a single-stage detector. Deng et al. [23] designed a more accurate face detector, RetinaFace,
based on RetinaNet [24], manually labeling five feature points in the WIDER-FACE dataset
and introducing a self-supervised network to predict three-dimensional facial information
with the supervised network.

Tang et al. [25] proposed the addition of feature fusion in a regional full convolutional
network R-FCN for detecting small-scale faces. PyramidBox [26] proposed to use the
contextual anchor to detect occluded faces by learning contextual information about the
human head and body, combining low-level and high-level semantic information to detect
faces of various scales. Saha et al. [27] introduced recurrent neural networks into computer
vision tasks to efficiently aggregate feature information and rapidly reduce activation map
sampling, experimentally demonstrating that the RNNPool layer could effectively replace
feature extraction sub-networks such as MobileNets [28].

2.2. Face Detection in Classroom

In recent years, face detection has developed by leaps and bounds; advanced al-
gorithms have achieved more than 90% accuracy on all face benchmark datasets. Face
detection algorithms in unrestricted situations are less reliable because of factors like a
paucity of real-world datasets and their inconsistent quality. The classroom environment
is one of the unconstrained environments; lighting conditions, face pose, motion, and the
relative distance between the face and the camera are all difficult issues for face detection
in the classroom. With the promotion of smart education, face detection in the classroom
helps the subsequent research of face recognition, sensorless attendance, and student con-
centration detection. Increasingly greater numbers of scholars have started to study face
detection in classroom environments.

Phakjira [29] combined generic instance segmentation with a robust face detection
algorithm to detect faces and segment students as objects. Karnalim [30] proposed a
publicly available dataset for face detection in classroom environments and quantified
the dataset using four pre-trained models, but the dataset had clear and scattered faces,
which were not suitable for student face detection with more than ten faces. Hu [31]
proposed a non-public classroom environment face detection dataset of 0–15 students and
detected student faces by MTCNN combined with the HOG algorithm. Gu [32] achieved
the detection of student faces in a real classroom environment by simplifying MTCNN
and introducing a residual generation feature module [33–36], first by implementing face
detection in the classroom environment using face detection algorithms and then using the
detected face feature information for student classroom concentration analysis.
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3. Methods

In this section, we instantiate the face detection algorithm based on feature fusion to
show how it works on YOLOv5. First, we add a small face detection layer to introduce a
stronger baseline than the original YOLOv5. Then, we propose a new backbone network
for small face detection, drawing from the pyramid fusion algorithm. Finally, we show the
details of training, testing, and modeling. The overall framework of our proposed network
is shown in Figure 1.
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of the new backbone network part AMFN and the adaptive pyramid fusion strategy in the output.
AMFN is in Section 3.2.1, and the adaptive pyramid fusion strategy is in Section 3.2.2. SPP is spatial
pyramid pooling, CSP is used for feature extraction, CBL is a component module of resnet, and Focus
is an image slice operation).

3.1. Strong Baseline

The face detection dataset collected from the real classroom environment has different
sizes of students’ faces due to their different distances from the camera. In the dataset,
the faces of students in the front row are clearer and occupy more pixels, while the faces
of students in the back row are smaller. The initial YOLOv5 algorithm cannot solve the
problem of detecting smaller faces due to the varying face size caused by the shooting
distance. To make our face detection algorithm more generalizable, we added a new
detection layer to the original YOLOv5 algorithm framework based on the respective data
characteristics of the classroom environment face detection dataset and the large public
face dataset–-WIDER-FACE dataset.

The output part of the YOLOv5 detector uses PANet. PANet is based on FPN with the
addition of a bottom-up feature pyramid and fused with the features in FPN. In YOLOV5,
PANet has three output layers; each layer detects different scales, corresponding to 80 × 80,
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40 × 40, and 20 × 20, which are used to detect 8 × 8, 16 × 16, and 32 × 32 objects,
respectively. However, in the public dataset WIDERFACE and the face images in the real
classroom environment crawled through the web, some face images are smaller than 8 × 8,
so the existing anchor boxes cannot effectively detect smaller faces. In this paper, we add
an output layer with a 160 × 160 feature map, which helps to detect small faces above
4 × 4. Larger faces are easier to detect in various face detection tasks, but the detection of
very small faces is a persistent issue in face detection. We solve this problem by increasing
the detection layer.

3.2. The Two-Stage Spatial Feature Fusion

To effectively detect small faces as well as blurred faces in images, a new backbone
network architecture is designed. In this section, we illustrate our adaptive multi-scale
feature fusion network (AMFN), showing how it makes YOLOv5 more powerful in face
detection. Our method is based on the YOLOv5 framework but employs feature fusion
techniques in the backbone network as well as in the head prediction part. In the dataset,
faces appear at different scales due to their different distances from the camera, so we have
designed a new backbone network for generalizing face detection at various scales using a
multi-scale fusion technique.

3.2.1. Adaptive Muti-Scale Fusion Network

The mechanism of this work is to build a backbone network with different channels of
adaptive multi-scale convolution. As shown in Figure 2, it is implemented by the following
steps: firstly, the parameters are reduced by 1 × 1 convolution, and secondly, the feature
maps are passed through convolution kernels of different scales to obtain multi-scale
feature maps and are re-concatenated. Then, the multi-scale feature maps are concatenated
by extracting the attention weight vectors of feature information at different scales through
the SE attention mechanism module, and the attention vectors in the channel direction are
calibrated with the softmax function to obtain the new weights. Finally, the new weights
are matched with the multi-scale feature maps to obtain feature maps with more refined
multi-scale feature information.
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According to Figure 2, it can be seen that we recalibrate the attention weights of the
extracted feature information on different channels using the softmax function to obtain
feature maps with richer multi-scale information expressiveness. The spatial information of
the features is extracted by separating the channels, and the multi-scale features are obtained
by different convolutions. This operation allows us to obtain the tensor information of
different channels as well as the possibility of parallelizing the processing of multi-scale
features. Firstly, 1 × 1 convolution is used to reduce the number of parameters, and then
the convolved feature map channels are divided into four groups, and the feature maps
of different channels are convolved by using 3 × 3, 5 × 5, 7 × 7, and 9 × 9 multi-scale
convolution kernels.

Cout = Cin/4 (1)

Four different sets of spatial features with different convolution kernels can learn
spatial information at different scales and achieve cross-channel fusion. Different spatial
multi-scale features F′ ∈ RCin×W×H are obtained by concatenation.

F′ = Concat(F1, F2, F3, F4) (2)

Attention weight vectors for each scale of multi-scale features are extracted using SEWeight:

Zi = SEWeight(Fi), i = 0, 1, 2, 3 (3)

where Zi ∈ RCout×1×1 are the attention weights extracted by the SE module in the feature
maps at different scales, and the multi-scale attention weights are fused to obtain the overall
attention vector.

Z = Concat(Z0, Z1, Z2, Z3) (4)

To establish long-term channel attention dependence and to enable information in-
teraction before multi-scale attention in different spaces, the channel weights are rescaled
using softmax.

z′i = so f tmax(Zi) =
exp(Zi)

∑3
i=0 exp(Zi)

, i = 0, 1, 2, 3 (5)

The rescaled feature vectors are multiplied with the multi-scale feature maps of the
corresponding channels to obtain the weighted feature maps.

Yi = Fi·z′i, i = 0, 1, 2, 3 (6)

The dimensionality of the weighted feature maps in different channels is concatenated
together to obtain a richer feature map in multi-scale information as well as more refined.

Out = shorcut(F, Concat(Y0, Y1, Y2, Y3)) (7)

The parameters are reduced by 1 × 1 convolution, and the initial features are further
concatenated with the weighted features in dimension, thus ensuring that the original
feature information is not lost while having more refined features.

Out′ = Conv(Concat(out, conv(in))) (8)

3.2.2. f-Adaptive Spatial Future Fusion

Normally, stacking CNNs is used to extract the features in the object detection methods.
This operation is easy to cause the object-semantic information in the shallow features to be
weak but has rich position information, and the object-semantic information in the deep
features is strong, though the position information is weak, as shown in Figure 3. PANet
mainly solves the problem of target scale variation. PANet outputs different scales to detect
objects of various sizes, but when PANet outputs a feature map to match a certain object,
the feature information of other layers will be disregarded. There is a problem of feature
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inconsistency between different scales. In the face dataset, all the objects to be detected
are faces. When the feature maps between different scales match the face information,
the face information on the feature maps of other layers is ignored, which easily leads to
the problem of face misdetection. In this paper, we combine the pyramid fusion strategy
to YOLOv5 with PANet, which makes the feature size uniform and the features between
different scales fused.
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Since the four layers of PANet have different sizes and a different number of channels,
the first step is to modify the feature maps that need to be fused to a uniform size by
up-sampling and down-sampling algorithms. For example, if the feature maps of layers
1, 3, and 4 need to be fused with the layer 2 feature maps, the size of the layer 1, 3, and 4
feature maps and the number of channels need to be modified accordingly to be consistent
with the features of the layer 2 feature maps, as in Equation (9), where xn

i,j denotes the nth

layer feature:
F2 = Upsample(F3)&Upsample(F4)&Downsample(F1) (9)

By setting α, β, γ, and ϕ to represent different weights in the fused feature maps.
xn→l

i,j denotes the feature mapping vector of the n-layer adjusted to the (i, j) position on

the l-layer feature map. yl
i,j denotes the feature vector of the (i, j) position of the n-layer

weighted fusion with the l-layer.

yl
i,j = αl

i,jx
1→l
i,j + βl

i,jx
2→l
i,j + γl

i,jx
3→l
i,j + ϕl

i,jx
4→l
i,j (10)

αl
i,j, βl

i,j, γl
i,j, and ϕl

i,j are the weights of each of the four different layers of the network
fused to the l-layer by softmax adaptive learning.

αl
ij =

e
λl

αij

e
λl

αij + e
λl

βij + e
λl

γij + e
λl

ϕij

(11)
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λl
αij

is the control parameter that makes the features at (i, j) position of each n→l layer
calculated by 1 × 1 convolution. The above equation satisfies.

αl
ij + βl

ij + γl
ij + ρl

ij = 1, αl
ij, βl

ij, γl
ij, ρl

ij ∈ [0, 1] (12)

4. Experiment and Analysis

In this part, we assess the AMFN-YOLOv5 algorithm’s performance using both a
large public dataset and a private dataset. The datasets used in the experiment are the
WIDER-FACE and Classroon-Face datasets. The training dataset is a mixture of the WIDER-
FACE dataset and the Classroom-Face dataset. To verify the model’s efficacy and resilience,
extensive face-testing experiments are conducted using the large publicly face dataset
WIDER-FACE; student face detection in a classroom environment is conducted by the
self-built dataset Classroom-Face dataset.

The most popular face detection dataset currently created by the Chinese University
of Hong Kong is WIDER-FACE. The dataset contains 32,203 images with 393,703 face data
labeled, which are divided into 61 scenes according to image types, but not including
classroom scenes. The mAP(mean Average Precision) is calculated separately by WIDER-
FACE evaluation following the VOC dataset evaluation method, which is divided into
Hard/Medium/Easy.

4.1. Classroom-Face Dataset

As the accuracy of face detection algorithms is improving, there are more and more
challenging face datasets. At present, only Oscar [30] has proposed a public face dataset in a
classroom environment, but it is a constrained environment with dispersed personnel, clear
and unobstructed faces, and no moving faces. The dataset includes 90 students participating
with only 194 images in a computer lab environment, which does not correspond to a non-
constrained classroom environment close enough to a real classroom. We propose the
Classroom-Face dataset, which will be used by scholars around the world for research
related to the face tasks of the classroom environment, such as sensorless attendance of
students in classroom environments and concentration detection. To maximize the use
of the dataset, we have asked for consent from participating students in the dataset and
made the dataset publicly accessible on GitHub. We plan to expand and update our dataset
by continuously collecting suggestions from scholars and face data from real classroom
environments. Figure 4 illustrates our dataset production process.
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The images in the Classroom-Face dataset were obtained by the following steps:
(1) web crawling using an engine search images, which have clear faces and high resolution,
roughly 1000 images; and (2) video of real classroom environments. Using a tripod to
place a high-definition camera in front of the classroom, we shot videos of students in real
classrooms, taking a 1 s time interval for one frame to intercept the image. We chose five
different classrooms containing 120 students and took a total of 13 videos under night
lighting and natural daytime light, obtaining 6900 images. This part of the dataset is
characterized by low resolution and moving faces, which makes detection difficult.

Data annotation: due to a large amount of image data, we use a semi-automated
annotation method to mark the boundaries of the faces in all images using rectangular
boxes to save labor and time. In order for researchers to better use our data set to detect
faces and apply them to face recognition or student attention detection, we use the PASCAL
VOC data set cleaning method to organize our dataset. We remove faces that are difficult
for the human eye to recognize and to maintain the format consistent with the PASCAL
VOC dataset.

We use the re-trained model from the open-source project MTCNN to perform pre-
liminary face detection on the original images in the classroom environment and save the
results in XML format, which is convenient for workers to adjust using LableImage and
obtain the final face detection dataset in the classroom environment.

To the best of our knowledge, Classroom-Face is the most realistic and unconstrained
face dataset in the classroom environment. We divide the datasets for training and testing
in an 8:2 ratio. The test set contains 1582 images in the classroom environment and is
divided into three subsets: Easy\Medium\Hard, each of which contains natural light
and dim light (daylight/dimlight). Among them, the easy subset contains 1–20 students;
the Medium subset is a crowded classroom environment containing 20–30 students; and
the Hard subset has several students, ranging from 30–50, with more crowded seats and
poor pixels. The specific values are shown in Table 1. We name each part of the dataset
based on the above characteristics as shown in Figure 5: Easy-daylight, Easy-dimlight,
Medium-daylight. Medium-dimlight, Hard-daylight, Hard-dimlight.

Table 1. Classroom-Face.

Train Test

7910

Easy (1–20) Medium (20–30) Hard (30–50)

daylight dimlight daylight dimlight dimlight daylight
462 109 388 169 168 286

Some subsets of the dataset are shown in Figure 5:
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and daylight.

4.2. Train Details

During training, we used the bounding box regression loss combined with the face
loss as our final loss. The loss function is as follows:

Lossbox = LGIoU = 1−
∣∣B ∩ Bgt

∣∣
|B ∪ Bgt|

+

∣∣C− B ∪ Bgt
∣∣

|C| (13)

In Equation (13), we choose the GIoU loss function as the bounding box regression loss
function, where C represents the smallest rectangle containing B and Bgt. B is the prediction
box. Bgt refers to the ground-truth box.

Loss f ace =
1
N ∑N

n −[yn ∗ logxn + (1− yn) ∗ log(1− xn)] (14)

In Equation (14), the face prediction loss is the BCE loss, yn is the true label, and xn is
whether the model predicts a face or not. Equation (15) represents the overall loss value of
the model.

Loss = Lossbox + Lossobj (15)

During AMFN-YOLOv5 training, to make the model perform at its optimum, we set
the epochs to 500, the weight decay coefficient to 0.001, the learning rate momentum to 0.94,
and the learning rate to 0.01 to prevent overfitting. The batch_size is set to 16. To avoid
the disappearance of features caused by reducing the image size and the training difficulty,
the image’s size is set to 800 × 800. Figure 6 shows the change process of each loss and the
change curve of Precision, recall, and mAP in training and verification. The loss tends to be
flat at about 400 epochs, and the map is optimal.

4.3. Comparison with Analysis on WIDER-FACE Dataset
4.3.1. Comparison with SOTA Algorithms

For fairness, many face detection algorithms are not open-sourced on GitHub and
cannot be compared individually. Therefore, we compare our algorithm with the SOTA
methods on the WIDER-FACE dataset. The face detection algorithms of the WIDER-FACE
dataset are categorized into keypoint-based training and rectangle-box-based training
methods. In this paper, considering the manpower and time issues for subsequent self-
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built datasets, the face key points are not annotated in the dataset. Consequently, the face
detector proposed in this paper is compared with other classical face detector algorithms
based on rectangular boxes on the WIDER-FACE dataset, and the results are shown in
Table 2.
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Table 2. Comparison with the typical method based on the rectangle box.

Methods Easy Medium Hard

Multi-scale Cascade
CNN 69.1 66.4 42.4

LDCF+ 79.0 76.9 52.2
ScaleFace 86.8 86.7 77.2

CMS-RCNN 89.9 87.4 62.4
Chaowei Tang 91.3 89.6 79.4

YOLOv5 95.4 93.7 84.5
Our Method 95.6 94.7 89.1

The PR curves for our algorithm and other SOTA methods on the WIDER-FACE
dataset are displayed in Figure 7. According to the figure, our face detector achieves 95.6%,
94.7%, and 89.1% on the Easy, Medium, and Hard subsets, respectively. Although, our
method falls short of the Retinaface, which completes face detection through key points.
Our method is slightly lower than Retinaface on the Easy, Medium, and Hard subsets of
the WIDER-FACE dataset without training with the keypoint annotation dataset, but from
Figure 7, the accuracy of our algorithm in face detection is still higher than most of the
classical algorithms at this stage.

4.3.2. Comparison with YOLOv5

We select images from the WIDER-FACE dataset with the same characteristics as
the classroom environment and compare our algorithm with YOLOv5. In Figure 8, the
green rectangle is the result of YOLOv5, and the red rectangle represents the result of
AMFN-YOLOv5. The figure demonstrates that YOLOv5 has a higher missed detection
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rate when the faces are denser, and AMFN-YOLOv5 is effective for small face detection in
dense scenes.
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4.4. Experiment and Analysis on Classroom-Face Dataset
4.4.1. Comparison with YOLOv5

The previous sections demonstrate that our algorithm has good performance. In
this summary, we experimentally test the performance of the original YOLOV5 and our
AMFN-YOLOV5 on the Classroom-Face dataset. As shown in Table 3, our algorithm shows
excellent performance regardless of Recall, Precision, and mAP. Among them, the mAP of
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our model increased by 1.7% and 1.69% in natural light and dim light in the easy dataset.
In the medium dataset, the mAP increased by 0.64% and 1.67% in natural light and dim
light, respectively. In the hard dataset, mAP increased by 1.08% and 4.5%, respectively.
This shows that our algorithm is better at detecting small faces in the dimly lit classrooms.

Table 3. Comparison YOLOV5 with AMFN-YOLOv5.

Ours(AMFN-YOLOv5)(%)

Easy Medium Hard

Daylight Dimlight Daylight Dimlight Daylight Dimlight

Precision 86.40 93.72 87.87 88.66 90.34 89.07
Recall 98.90 96.46 96.53 99.16 96.36 73.99
mAP 96.8 96.28 95.42 98.10 95.36 72.8

YOLOv5

Easy Medium Hard

Daylight Dimlight Daylight Dimlight Daylight Dimlight

Precision 84.52 89.41 84.63 86.36 83.70 95.92
Recall 97.20 94.77 95.97 97.43 94.48 68.67
mAP 95.10 94.59 94.78 96.43 93.28 68.30

4.4.2. Fusion Experiment

Figure 9 is the feature map extracted by the original backbone network CSP network
of YOLOv5 and the improved AMFN network. The feature extraction ability of the person
in AMFN is obviously stronger than that inCSP, especially the head feature. The figure
demonstrates that the features extracted by AMFN are more abundant and important,
which greatly avoids the interference of the background. A cleaner environment is created
for subsequent feature fusion, making face detection more robust.
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Figure 9. Comparison of feature extraction between old and new backbone networks. Under the
feature extraction of the same layer, obviously, the features extracted by AMFN are more clear than
those extracted by CSP (CSP_feature refers to the features extracted from CSP network, and AMFN
_feature refers to the features extracted from AMFN network).

The results of ablation tests between AMFN-YOLOv5 and YOLOv5 are shown in
Table 4. It clearly illustrates that increasing the detection layer can effectively improve
the detection accuracy of small faces far away from the camera. Difficult faces in the
classroom environment improved accuracy by 1.5% in dim light and 0.75% in natural light.
By constructing the AMFN backbone network, the detection accuracy in the dim light
environment of the hard subset in the classroom environment is improved by 1.97% based
on adding anchors, and the mAP of face detection in natural light is improved by 0.96%.
The reason is that through different scales of convolution operations and multi-channel
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adaptive fusion, the backbone network can more effectively extract smaller facial feature
information. After adding the adaptive pyramid feature fusion strategy, compared with
adding the anchor detection layer and optimizing the backbone network, the mAP of each
subset is significantly improved. This shows that the network after the fusion of location
information and deep feature information is more effective in detecting crowded faces in
an unconstrained environment.

Table 4. Comparison with the fusion experiment.

Add_Anchor (%)

Easy Medium Hard

Daylight Dimlight Daylight Dimlight Daylight Dimlight

Precision 86.55 92.43 89.48 89.34 91.20 94.47
Recall 97.28 95.26 95.92 97.60 95.03 70.39
mAP 95.29 95.0 94.85 96.80 94.03 69.8

Add_Anchor+AMFN (%)

Easy Medium Hard

Daylight Dimlight Daylight Dimlight daylight Dimlight

Precision 86.71 92.68 87.25 87.36 90.07 93.45
Recall 98.84 96.03 96.55 87.22 95.88 72.49
mAP 96.6 95.57 95.25 97.41 94.99 71.77

Add_Anchor+AMFN+f-ASFF(AMFN-YOLOv5) (%)

Easy Medium Hard

Daylight Dimlight Daylight Dimlight Daylight Dimlight

Precision 86.40 93.72 87.87 88.66 90.34 89.07
Recall 98.90 96.46 96.53 99.16 96.36 73.99
mAP 96.8 96.28 95.42 98.10 95.36 72.8

4.4.3. Comparison with Open-Source Algorithms

This paper compares our algorithm with the existing open-source algorithms Pymid-
box and Facebox for frame-based face detection on GitHub. For fairness, the confidence
is set at 0.6 and the IoU threshold at 0.5. Table 5 shows that our algorithm achieves better
performance on the three subsets of Easy/Medium/Hard.

Table 5. Comparison with open-source algorithms.

Method
Easy (%) Medium (%) Hard (%)

Daylight Dimlight Daylight Dimlight Daylight Dimlight

Ours 96.8 96.28 95.42 98.10 95.36 72.8
Pyramidbox [26] 95.78 94.71 95.19 98.19 91.99 61.44

Facebox [21] 82.74 66.32 81.87 82.64 55.49 32.8
Centerface 94.39 95.6 87.71 95.63 89.94 11.8

S3FD 95.24 94.0 93.48 97.83 90.42 55.91
MTCNN 85.76 77.57 79.85 86.98 58.21 10.95

Retinaface 95.01 95.16 94.19 98.08 92.49 58.81

Figure 10 is the result of AMFN-YOLOv5 on the Classroom-Face dataset. Our al-
gorithm can accurately locate and identify students’ faces in the classroom environment
regardless of whether there is sufficient light in the classroom or whether the scales of
students’ faces are consistent.
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man head pose, etc. To address the issue of tiny face detection in low light in the classroom,
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frame for small face detection is added. Second, the AMFN backbone network is proposed
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of small faces. Finally, a four-layer adaptive spatial feature fusion technique is suggested
to increase the detection rate of small faces by considering both the semantic content of
deep features and the position information of shallow features. According to experimental
results, our method performs better in tiny face detection on the WIDER-FACE dataset and
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Compared with the existing face detection-related research, our work makes up for
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and proposes an adaptive fusion face feature for the classroom environment. This work
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