
Citation: Mao, N.; Yang, H.;

Huang, Z. An Instruction-Driven

Batch-Based High-Performance

Resource-Efficient LSTM Accelerator

on FPGA. Electronics 2023, 12, 1731.

https://doi.org/10.3390/

electronics12071731

Academic Editors: Andres Upegui,

Andrea Guerrieri and Laurent

Gantel

Received: 27 February 2023

Revised: 4 April 2023

Accepted: 4 April 2023

Published: 5 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Instruction-Driven Batch-Based High-Performance
Resource-Efficient LSTM Accelerator on FPGA
Ning Mao 1,2 , Haigang Yang 3,4,* and Zhihong Huang 1,2

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
maoning115@mails.ucas.ac.cn (N.M.); huangzhihong@mail.ie.ac.cn (Z.H.)

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 100094, China

3 School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, China
4 Shandong Industrial Institute of Integrated Circuits Technology Ltd., Jinan 250001, China
* Correspondence: yanghg@mail.ie.ac.cn

Abstract: In recent years, long short-term memory (LSTM) has been used in many speech recognition
tasks, due to its excellent performance. Due to a large amount of calculation and complex data
dependencies of LSTM, it is often not so efficient to deploy on the field-programmable gate array
(FPGA) platform. This paper proposes an LSTM accelerator, driven by a specific instruction set.
The accelerator consists of a matrix multiplication unit and a post-processing unit. The matrix
multiplication unit uses staggered timing of read data to reduce register usage. The post-processing
unit can complete various calculations with only a small amount of digital signal processing (DSP)
slices, through resource sharing, and at the same time, the memory footprint is reduced, through the
well-designed data flow design. The accelerator is batch-based and capable of computing data from
multiple users simultaneously. Since the calculation process of LSTM is divided into a sequence of
instructions, it is feasible to execute multi-layer LSTM networks as well as large-scale LSTM networks.
Experimental results show that our accelerator can achieve a performance of 2036 GOPS at 16-bit
data precision, while having higher hardware utilization compared to previous work.

Keywords: LSTM; FPGA; resource efficient; accelerator

1. Introduction

In recent years, recurrent neural nets have been widely used in tasks such as speech
recognition [1], due to their excellent performance. Long short-term memory (LSTM) is one of
the most popular recurrent neural networks. A central processing unit (CPU) and graphics
processing unit (GPU) are common LSTM hardware computing platforms. Due to a large
number of calculations and complex data dependencies in LSTM, it is often not so efficient to
calculate LSTM through CPU or GPU. When performing specific LSTM calculations, the uti-
lization of CPU and GPU is usually relatively low. Due to the aforementioned drawbacks of
CPU and GPU, some energy-efficient platforms are used as accelerators for LSTM forward
inference, such as field-programmable gate arrays (FPGAs) and application-specific integrated
circuits (ASICs). ASICs are highly energy efficient. For example, Google’s TPUv4i [2] has
a performance of up to 138 tera floating point operations per second (TFLOPS). However,
ASICs are inflexible and expensive to manufacture. Specific ASIC chips may not keep up with
the development of neural network algorithms.

FPGAs have achieved a good balance in terms of reconfigurability, flexibility, perfor-
mance, and power consumption. At present, many researchers use FPGAs to accelerate
LSTM [3–23]. Some works reduce the storage space of LSTM by compressing and quan-
tizing the weight of LSTM, and then storing all the weight on the chip [9,11]. In work [9],
the LSTM model is compressed using the block-circulant matrix technology so that the
model parameters can be stored on the on-chip block random access memory (BRAM) of

Electronics 2023, 12, 1731. https://doi.org/10.3390/electronics12071731 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071731
https://doi.org/10.3390/electronics12071731
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8460-8168
https://orcid.org/0000-0002-6471-9730
https://orcid.org/0000-0002-4235-2587
https://doi.org/10.3390/electronics12071731
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071731?type=check_update&version=2

Electronics 2023, 12, 1731 2 of 15

the FPGA. In [11], the bank-balanced sparsity method was used to reduce the number of
parameters, so that all weights were stored on-chip in the small model. Some works store
weights in off-chip memory and reduce bandwidth requirements through data reuse [16,19].
The authors of [19] split the weight matrix into multiple blocks, and each block could be
used for a batch of input data, which increased data reuse. Addressing edge computing
scenarios, the authors of [12] focused on using embedded FPGAs to accelerate lightweight
LSTM. However, most works use FPGAs to accelerate an LSTM model, which cannot effec-
tively accelerate some multi-layer LSTM. Most of them use different computing units to
calculate different matrix multiplications of an LSTM, to those used to calculate operations
such as element-wise multiplication and element-wise addition in LSTM.

In this paper, we propose an instruction-driven accelerator. For large LSTM and
multi-layer LSTM, LSTM can be decomposed into multiple groups of small calculations
through a series of instructions. Our hardware consists of matrix multiplication units
and post-processing units, that compute element-wise multiplication, element-wise addi-
tion, etc. Several optimization techniques are used to improve performance and utilize
resources efficiently.

The contributions of this work are summarized as follows.

• The matrix multiplication units in the accelerator are cascaded, to simultaneously
compute multiple user input data. The matrix multiplication units reduce register
usage through a time-staggered data readout strategy.

• In the post-processing unit, only two DSPs with resource sharing are used, to com-
plete various types of calculations such as element-wise multiplication and batch
normalization, which reduces the resource usage of the post-processing unit.

• A domain-specific instruction set is designed to compute complex operations in LSTM.
A complex LSTM is executed by splitting it into a sequence of instructions.

• For a case study, experiments have been performed on the Xilinx Alevo U50 card.
The results show that our design achieves a performance of 2036 giga operations per
second (GOPS) and the utilization of the hardware reaches 86.1%.

The rest of the paper is organized as follows. Section 2 introduces the background.
Section 3 presents the hardware architecture design. Section 4 describes the detailed
instruction design. Section 5 gives an analysis of the experimental results. Section 6
concludes the paper.

2. Background

LSTM was first proposed in 1997 [24], and there have been many variants of LSTM
since then. Google LSTM [25] is one variant that has been widely used. Therefore, with-
out loss of generality, this paper uses Google LSTM as an example. Figure 1 shows the
network structure of LSTM.

P
ro

je
c
ti
o

n
 l
a

y
e

r

g Cell h
xt

i

f

o

mt

O
u

tp
u

t
la

y
e

r

gt

it

ft

ot

yt

ct

ct-1

ct

yt-1

Figure 1. LSTM network structure.

Electronics 2023, 12, 1731 3 of 15

Compared with the standard LSTM, Google LSTM has additional peephole connec-
tions and a projection layer. This structure has a better effect on deep networks. The input
of an LSTM is a sequence X = {x1; x2; . . . ; xt}; xt represents the input vector at time t.
The output of an LSTM is a sequence Y = {y1; y2; . . . ; yt}; yt denotes the output vector at
time t. The operation of an LSTM can be expressed as:

gt = σ(Wgxxt + Wgryt−1 + bg). (1)

it = σ(Wixxt + Wiryt−1 + Wic � ct−1 + bi). (2)

ft = σ(Wf xxt + Wf ryt−1 + Wf c � ct−1 + b f). (3)

ct = ft � ct−1 + gt � it. (4)

ot = σ(Woxxt + Woryt−1 + Woc � ct + bo). (5)

mt = ot � tanh(ct). (6)

yt = Wymmt. (7)

where i, f , o, c, m represent input gate, forget gate, output gate, cell state, and cell
output, respectively. � represents element-wise multiplication. + denotes element-wise
addition. W denotes represents the weight matrix. b denotes the bias used in the matrix
multiplication operation. σ denotes the sigmoid activation function. tanh represents the
tanh activation function.

The input gate controls the proportion of input information transmitted to the cell
state at the current time step. The output gate controls the proportion of the cell state
transmitted to the output. The forget gate controls the proportion of information forgotten
and retained by the cell state. Cell state saves previous information. Because the number of
units in the projection layer is less than that of the hidden units, the projection layer can
control the total number of parameters, while allowing the number of hidden units to be
increased. The output layer calculates the final output.

LSTM will save previous information and be able to learn the relationship between data
at different times, so that LSTM can process sequential data such as voice data. Therefore,
LSTM is widely used in tasks such as speech recognition, machine translation, etc.

Next, we will introduce some principles of hardware acceleration for computing.
Common methods of hardware acceleration include pipelining, loop unrolling, loop tiling,
and loop interchange, among others. Pipelining can increase the operating frequency of
the system. Loop unrolling can improve parallelism during acceleration. In the case of
insufficient on-chip storage resources, loop tiling can process part of the data at a time.
Reasonable loop interchange can improve data reuse and optimize data movements and
memory access. In computing tasks, multiple computing units of FPGA can be used
for parallel processing. In the calculation process, improving the effective utilization of
computing resources is helpful to the final performance.

3. Hardware Architecture

Our complete design consists of a hardware accelerator and corresponding instruction
set design. Section 3 introduces the design of each module in the hardware part.

3.1. Overall Architecture

Our design consists of a host and a kernel. The host program is written in C++ and runs
on the CPU, and the kernel program is written in Verilog and runs on the FPGA. As shown

Electronics 2023, 12, 1731 4 of 15

in Figure 2, data pre-processing, including feature extraction, and post-processing, in-
cluding language models, are all calculated in the host, while LSTM computing is in the
kernel. When the system starts to work, the host pre-processes the data first and then sends
instructions, weights, parameters, the activation function table, and the pre-processed input
data to high bandwidth memory (HBM). Then, the kernel starts executing the instructions.
When the kernel finishes computing, the kernel notifies the host and puts the result on the
HBM. Then, the host will perform the remaining calculations, such as the calculation of the
language model, and notify the kernel to proceed with the next operation.

CPUCPU
FPGA

HBM

HBM

HBM

HBM

HBM

HBM

...

D

D

R

Raw data Preprocess

Computation of

Language model
OUTPUT

Programmable Logic

FPGA

Kernel

Hardware

platform
AXIXRT

PCIE

Figure 2. The overall architecture.

3.2. Kernel Architecture

The LSTM is calculated in the kernel, and the kernel in the FPGA completes most of
the calculations of the entire system. The following describes the architecture of the kernel,
as shown in Figure 3.

Instructions, weights, post-processing parameters, activation function tables, and
input and output data are stored on HBM. Instructions, post-processing parameters and
sigmoid tables each take up one HBM. The weight data takes up eight HBMs. The input and
output data share an HBM. Inside the computing kernel, each HBM has a corresponding
FIFO (first in first out). Each block of HBM uses an AXI interface for data reading and
writing. When the kernel starts working, the instruction data are transferred from the
HBM to the corresponding FIFO_S1. The state of the command FIFO_S1 is monitored.
When the command FIFO_S1 is not empty, the data in the FIFO_S1 will be read and sent
to FIFO_S2, and a signal to read data in other HBM will be pulled high. Next, the AXI1
interface to the AXI12 interface will read the data in the HBM, according to the information
in the instruction, and transfer it to the corresponding FIFO. At the same time, the data in
FIFO12 will be sent to ultra random access memory (URAM), which stores input data and
intermediate results.

The calculation of the kernel does not need to wait for all the input data to enter
the URAM, and the calculation of the kernel starts when sufficient input data is sent
to the URAM. At this time, the instruction enters the kernel from the FIFO_S2, and the
matrix multiplication unit will obtain data from the weight FIFO and URAM, according
to the information in the instruction for calculation. When the matrix multiplication is
finished, the result will be written into the BRAM, and then the post-processing unit will
start the calculation. The post-processing unit will obtain the data from FIFO or BRAM,
according to the information in the instruction, and obtain the parameters from the FIFO9,
storing the parameters for the calculation. Because the two modules write BRAM at
different times, the two modules perform calculations simultaneously. After the matrix
multiplication unit completes the first set of data calculations, the post-processing unit
performs the first set of data calculations and the second set of data enters the matrix
multiplication unit.

As shown in Figure 3, the results calculated by the post-processing unit will be
stored in different storage units. Which memory unit is written to, is determined by the
information in the instruction. Finally, the data that needs to be written into HBM will be
sent to FIFO first and then written into HBM. The proposed batch-based accelerator can

Electronics 2023, 12, 1731 5 of 15

process input data from multiple users simultaneously. The input data of multiple users
is calculated simultaneously in the kernel, and a total of 32 groups of computing units
perform calculations simultaneously. Since the 32 groups of computing units share the same
weights and post-processing parameters, the weights and post-processing parameters are
transferred between them through cascading. This calculation mode reduces the demand
for external HBM storage bandwidth, by reusing weights.

HBM INSTR

HBM WEIGHT1

HBM WEIGHT2

HBM WEIGHT3

HBM WEIGHT4

HBM WEIGHT5

HBM WEIGHT6

HBM WEIGHT7

HBM WEIGHT8

HBM PARAM

HBM LOOKUP

TABLE

HBM

INPUT/OUTPUT

INSTR STAGE2

FIFO_S2

WEIGHT

FIFO1

WEIGHT

FIFO2

WEIGHT

FIFO3

WEIGHT

FIFO4

WEIGHT

FIFO5

WEIGHT

FIFO6

WEIGHT

FIFO7

WEIGHT

FIFO8

PARAM

FIFO9

TABLE

FIFO11

IN/OUT

FIFO12

URAM 0 Matrix Multiplication

Unit 0

BRAM 0
Post-process

module 0

FIFO 0

URAM 1
Matrix Multiplication

Unit 1
BRAM 1

Post-process

module 1

FIFO 1

URAM 2 Matrix Multiplication

Unit 2

BRAM 2
Post-process

module 2

FIFO 2

URAM 31 Matrix Multiplication

Unit 31

BRAM 31
Post-process

module 31

FIFO 31

...

INSTR STAGE1

FIFO_S1

...

...

...

...

...

...

...

...

Figure 3. The architecture of the kernel (LSTM accelerator running on PL).

3.3. Design of Matrix Multiplication Unit

Most of the calculations in LSTM are matrix multiplications, and matrix multiplications
have the greatest demand for computing resources. We design a matrix multiplication
array composed of DSP to perform matrix multiplication. The detailed design of the matrix
multiplication unit is shown in Figure 4 below.

In Figure 3, we take a 3 × 3 array as an example, and the actual array size is 8 × 8.
There are 64 DSPs in total, 8 DSPs in each column as a group. Each group of DSPs calculates
the same value in the output matrix. In this calculation mode, the eight groups of DSPs
use the same input vector, so the eight groups of DSPs can share the same input vector,
through cascading among different groups. This calculation method reduces the bandwidth
requirement of the input vector to one-eighth of the calculation mode, without input data
sharing. In a matrix multiplication unit, different DSPs use different weights, without
using weight sharing. Because each group of eight DSPs computes the same output value,
the eight values computed by the eight DSPs are added, to form a partial sum. A complete
matrix multiplication operation will be performed multiple times by eight DSPs, and the
partial sums obtained from the multiple operations will be accumulated. When a new set
of data needs to be calculated, the data input port of the accumulator will be set to zero to
perform a new calculation, as shown in Figure 4.

Electronics 2023, 12, 1731 6 of 15

Since different DSPs in a group start calculations at staggered times, the value of the
input vector will be registered through registers, and different DSPs in the same group will
use different numbers of registers, as shown in Figure 4. For the reading of weight data,
in a common design, the weight is read from the FIFO and then output through a series
of registers, as shown in Figure 5. Since our design has many matrix multiplication units,
the weight readout circuit will consume a lot of registers. This may cause difficulties in
placement and routing, and result in a relatively low frequency for the final design. In order
to reduce the use of registers, we have designed a specific data read timing, as shown in
Figure 5. The read signal arrives at eight different weights, FIFO is staggered. In this mode,
each DSP reduces the corresponding 4.5 registers on average. If each data is 16 bits and a
matrix multiplication unit has 64 DSPs, then 64 × 16 × 4.5 = 4608 registers can be saved.

DSP

DSPDSP

DSPDSP

F

F

WEIGHT

FIFO_00

F

F

V

E

C

T

O

R

F

F

0 0

F

F

F

F

F

F

DSP

F

F

F

F

F

F

DSP

DSP

F

F

0

F

F

DSP

F

F

WEIGHT

FIFO_01

WEIGHT

FIFO_02

WEIGHT

FIFO_10

WEIGHT

FIFO_11

WEIGHT

FIFO_12

WEIGHT

FIFO_20

WEIGHT

FIFO_21

WEIGHT

FIFO_22

F

F

F

F

F

F

Figure 4. Design of matrix multiplication unit.

3.4. Design of Post-Processing Unit

After the matrix multiplication is completed, the result will be stored in the BRAM,
and the post-processing unit will then obtain the data from the BRAM for calculation.
The post-processing unit handles all operations except matrix multiplication, includ-
ing element-wise multiplication, element-wise addition, batch normalization, etc. Al-
though there is no batch normalization operation in LSTM, supporting batch normalization
can broaden the applicability of the architecture, so that the accelerator can perform more
types of calculations. In particular, in order to simplify the design of the matrix multi-
plication unit, the addition of bias operation in Equations (1)–(5) is also performed in
the post-processing unit. In conventional operations, these operations require separate
computing resources. Each type of calculation uses a dedicated computing resource. Since
these operations are not performed at the same time, this will lead to a waste of computing
resources. In order to improve resource utilization, we propose an architecture that utilizes
two DSPs to perform all of the above operations. This is achieved through dynamic recon-
figuration of the DSP. We make the DSP calculate different operations at different times by
changing the operation code when the DSP is running. The detailed structure diagram is
shown in Figure 6.

Electronics 2023, 12, 1731 7 of 15

WEIGHT

FIFO1

WEIGHT

FIFO2

WEIGHT

FIFO3

WEIGHT

FIFO4

WEIGHT

FIFO5

WEIGHT

FIFO6

WEIGHT

FIFO7

WEIGHT

FIFO8

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

WEIGHT

FIFO1

WEIGHT

FIFO2

WEIGHT

FIFO3

WEIGHT

FIFO4

WEIGHT

FIFO5

WEIGHT

FIFO6

WEIGHT

FIFO7

WEIGHT

FIFO8

DSP

DSP

DSP

DSP

DSP

DSP

DSP

DSP

Original Design Optimized Design

CLK
CLK

F

F

Figure 5. Optimized data read timing.

As shown in Figure 6, the post-processing parameters store the calculation type
command, some weights, such as Wic, Woc, and the command that determines where the
output is stored. Two DSPs are connected by cascading. Firstly, the type of operation
performed by the two DSPs is determined by the command word, stored in the post-
processing parameters. Different types of operations determine different operation codes.
The input data of the two DSPs will be obtained from the BRAM, FIFO, and post-processing
parameters through the multiplexer, and which data is to be selected is determined by the
operation code. The shift module and the clamp module perform shift operations and
truncate values, respectively.

DSP0 DSP1

A0

B0

A1

B1
C0

FIFO

BRAM

CMD

SHIFT CLAMP
FIFO

BRAM

URAM

PCIN
PCOUT

Post-processing param

OPMODE

0

OPMODE

1

Wic,Wfc,Woc

,scale,etc
Store

CMD

Post-processing param

Post-processing param...

Sigmgoid/tanh

look up table

Figure 6. Structure of the post-processing unit.

Electronics 2023, 12, 1731 8 of 15

Table 1 illustrates the configuration modes and opcodes of the DSP in different types
of operations. Taking the addition of bias in matrix multiplication as an example, in the
first stage, we will split the 36 bit data into two input ports A0 and B0 of DSP0, because
the output result of matrix multiplication is 36 bit. The bias is placed on the C0 port
and the operation completed by DSP0 is result1[35 : 0] = (S + C)((A0 : B0) + C0).
A colon indicates a bitwise data splicing operation. S + C represent shift and clamp,
respectively. In the second stage, we put result1[16 : 0] and result[35 : 17] on port A0 of
DSP0 and port A1 of DSP1, respectively. The quantization parameter scale, representing
the ratio between the fixed-point number and the actual floating-point number, is placed
on the B ports of the two DSPs. At this time, the operation performed by the two DSPs
is result2[15 : 0] = (S + C)(data[16 : 0]× scale + data[35 : 17]× scale << 17) =
(S + C)(data[35 : 0]× scale).

Taking batch normalization as an example, data, gamma, and beta are, respectively,
placed on ports A0, B0, and C0 of DSP0. In this mode, the operation completed by
DSP is result = (S + C)(data1 ∗ gamma + beta). For element-wise multiplication
and element-wise addition, the calculation process is similar. There are two types of
element-wise multiplication in Table 1, which correspond to the two types in the LSTM
formula. One type is data multiplied by weights, and the other is data multiplied by
data. If these operations are calculated separately, using different DSPs, eight DSPs are
required, whereas the proposed architecture reduces the number of DSPs required for these
operations to two.

Table 1. Configuration modes and opcodes of the DSP.

Operations Opmode0 Opmode1 A0 B0 C0 A1 B1

Element-wise multiplication type1 110000101 110010101 data1 weight 0 0 0

Element-wise multiplication type2 110000101 110010101 data1 data2 0 0 0

Element-wise addition 110000101 110010101 data1 scale1 data2 scale2 0

Batch normalization 110000101 110010101 data1 gamma beta 0 0

Bias adding stage1 110000011 110010011 data[35:18] data[17:0] bias 0 0

Bias adding stage2 110000101 111010101 data[16:0] scale 0 data[35:17] scale

3.5. Design of Sigmoid/Tanh Module

The sigmoid and tanh functions are implemented in our architecture via a lookup table.
The values in the lookup table are precomputed in software and loaded into the memory
storing the lookup table in advance, before the activation function operation. Using the
internal symmetry of the sigmoid function and the tanh function, we only need to store
half of the data.

In order to improve the calculation efficiency, and avoid the activation function be-
coming a bottleneck, we designed a double buffer. Figure 7 shows a structural diagram of
a double buffer that implements an activation function. A double buffer corresponds to
a ping-pong operation. One buffer consists of two URAM and the double buffer consists
of four URAM. The double buffer stores different lookup tables. For example, one buffer
stores the sigmoid table while another buffer stores the tanh table. When the calculation
in LSTM is switched from sigmoid to tanh, the data that has been loaded can be used
immediately, reducing the time required to load the lookup table.

Electronics 2023, 12, 1731 9 of 15

Read/Write

ADDRA

Din

Din

ADDRA

Din

ADDRA

Din

ADDRA

Din

ADDRA

Write_ADDR

Read_ADDR

ADDRB

ADDRB

ADDRB

ADDRB

Ping-pong

operation

control signal

ADDRB

RD/WR

Dout

Dout

Dout

Dout

Ping-pong

operation

control signal

Dout

RD/WR

RD/WR

RD/WR

Figure 7. Structural diagram of the double buffer.

4. Instruction Design

In Section 4, we introduce the design details of the instruction set and the execution
process of the instruction.

4.1. Information in the Instruction

In our design, the LSTM is split into a sequence of instructions. A matrix multiplication
unit calculates eight data at the same time, so each instruction operates on eight data. When
the eight data operations performed by one instruction are completed, the next instruction
is read in, and the eight data operations of the next instruction are performed. When all
instructions finish running, the calculation of the entire network also terminates at the same
time. The information contained in an instruction is shown in Table 2, below.

The instruction contains the following information, information related to the input
and output data, information related to the weights, information related to the post-
processing parameters, information related to the activation functions, information related
to matrix multiplication, information related to FIFO, and storage information about
the output data. The functions of the instructions are abundant, which simplifies the
design of the state machine of the control module in the hardware circuit. The hardware
circuit will read the information from the instruction and decide which data to read for
calculation and which address of the memory to store the calculated result, according to
the information.

Electronics 2023, 12, 1731 10 of 15

Table 2. Details in one instruction.

Field in the Instruction Meaning

dat_input_len length of the input data

dat_output_len length of the output data

wgt_addr address of weight

wgt_len length of weight

post-processing_para_addr address of post-processing parameter

load_sigmoid_cmd whether to write the sigmoid/tanh parameter table

sigmoid_buffer_cmd which buffer the sigmoid/tanh parameter table is written to

sigmoid_addr address of the sigmoid/tanh parameter table

loop_num_of_mmu the number of times the matrix multiplication unit calculates

vector_addr address of the input vector

ct_addr_cmd address of ct

uram_store_addr_cmd the address where the output is written to URAM

fifo2postprocess whether the data in the last FIFO enters the post-processing unit

fifo2hbm whether the data in the last FIFO is written to HBM

4.2. From LSTM to Instructions

With the network model and instruction definition, an LSTM can be split into a
sequence of instructions. The instructions and atomic operations after LSTM decomposition
are shown in Table 3. An atomic operation means an operation that can be completed by a
matrix multiplication unit or a post-processing unit at one time.

The seven equations (Equations (1)–(7)) are broken down into 24 atomic operations.
The 24 atomic operations are completed by a total of five instructions. Which atomic
operations each instruction corresponds to, is also shown in Table 3.

Because matrix multiplication occupies the main amount of the calculation, we use the
atomic operation of matrix multiplication as a separation point, to separate the data calcu-
lated by each instruction. The operations that can be completed by one instruction, include
a matrix multiplication operation and several post-processing operations. For example,
instruction 3 performs atomic operations from number 10 to number 16 while instruction
4 performs atomic operations from number 17 to number 23. When instruction 3 is executed,
the matrix multiplication unit will perform atomic operation 10. After atomic operation 3
is completed, the post-processing unit will perform the calculation of atomic operation 11
to atomic operation 16, and at the same time, the matrix multiplication unit will perform
operations on atomic operation 17. The matrix multiplication unit and the post-processing
unit perform calculations simultaneously, which can achieve high throughput and perfor-
mance. The total amount of instructions is related to the size of the matrix. If the output
dimensions of the five matrix multiplications in LSTM are all 1024, and LSTM iterates
32 times, then the total number of instructions is 32 × 1024 × 5/8 = 20,480.

4.3. Memory Reuse during Instruction Execution

During instruction execution, matrix multiplication and post-processing calculations
require frequent reading and writing to memory. In order to reduce memory usage and
maximize memory utilization, we have designed a memory reuse scheme.

For a matrix multiplication unit, it is relatively simple to read the data from the URAM
and write it into the BRAM after calculation, and there is no need to consider memory
reuse. For the post-processing unit, because the calculation it performs needs to read and
write data repeatedly, we achieve the purpose of reducing storage resources by reusing
BRAM, FIFO, and URAM.

Electronics 2023, 12, 1731 11 of 15

Table 3. Splitting the LSTM into a sequence of instructions.

Number Instruction Number Atomic Operation

1 1 gmat_mult=Wg[Xt :Yt−1]

2 1 gmat_mult=gmat_mult+bg

3 1 gt = σ(gmat_mult)

4 2 imat_mult = Wi[Xt : Yt−1]

5 2 imat_mult = imat_mult + bi

6 2 ielem_mult = Wic � ct−1

7 2 ielem_add = imat_mult + ielem_mult

8 2 it = σ(ielem_add)

9 2 gtit = gt � it

10 3 fmat_mult = Wf∗[Xt : Yt−1]

11 3 fmat_mult = fmat_mult + b f

12 3 felem_mult = Wf c � ct−1

13 3 felem_add = fmat_mult + felem_mult

14 3 ft = σ(felem_add)

15 3 ftct−1 = ft � ct−1

16 3 ct = ftct−1 + gtit

17 4 omat_mult = Wo[Xt : Yt−1]

18 4 omat_mult = Wo[Xt : Yt−1] + bo

19 4 oelem_mult = Woc � ct

20 4 oelem_add = omat_mult ∗ oelem_mult

21 4 ot = σ(oelem_add)

22 4 tanh_ct = tanh(ct)

23 4 mt = ot � tanh_ct

24 5 yt = Wymmt

Taking atomic operation 4 to atomic operation 9 in Table 3 as an example, the well-
designed data flow is shown in Table 4.

Table 4. Memory reuse scheme.

Operations Input Data1 Data1 Memory Input Data2 Data2 Memory Output Data3 Data3
Memory

Bias adding
stage1 imat_mult BRAM[35:0] bias post-processing

parameter imat_mult BRAM[35:0]

Bias adding
stage2 imat_mult BRAM[35:0] scale post-processing

parameter imat_mult BRAM[15:0]

Element-wise
multiplication Wic

post-processing
parameter ct−1 BRAM[63:48] ielem_mult BRAM[31:16]

Element-wise
addition ielem_mult BRAM[31:16] imat_mult BRAM[15:0] ielemadd BRAM[15:0]

Sigmoid ielem_add BRAM[15:0] none none it BRAM[15:0]

Element-wise
multiplication it BRAM[15:0] gt FIFO gtit FIFO

Electronics 2023, 12, 1731 12 of 15

In order to maximize the use of storage resources, we put multiple data into the
same address, by bit width division. As shown in Table 4, the result of adding bias is
placed in BRAM[15:0], ct−1 is placed in BRAM [63:48], and the result of element-wise
multiplication is placed in BRAM[31:16]. gtit is placed in the FIFO and will be read
from the FIFO to participate in the calculation when it needs to be calculated. For other
instructions, the operation is similar and will not be repeated here. Through the reuse of
storage resources, the intermediate results in all LSTM calculations can be stored on only
one BRAM, one URAM, and one FIFO.

5. Experimental Results
5.1. Experimental Setup

In our experiments, we implemented the LSTM network mentioned in Section 2.
Firstly, instructions are generated according to the network structure and hardware struc-
ture. The required information, such as data address and length, is stored in the instruction,
and the instruction is generated through a Python script. Our accelerator is implemented
using Verilog code. Vivado 2020.1 and Vitis 2020.1 are our design development tools.

There are two SLRs (super logic region) on the Xilinx Alevo U50 accelerator card,
and we deploy one kernel on each SLR. A kernel is composed of 32 cascaded computing
units. Each computing unit consists of a matrix multiplication unit containing 64 DSPs and
a post-processing unit containing 2 DSPs. So in our design, there are 64 computing units
distributed on two SLRs, which means that the input data of 64 users can be calculated at
the same time.

5.2. Resource Utilization

After placing and routing, the resources occupied by the accelerator are shown in
Table 5. The resources used by the platform in Table 5, are the resources needed by Xilinx
FPGA to communicate between the kernel and the host. Through the platform in the FPGA
and the Xilinx Runtime (XRT) in the CPU, the host and the kernel can easily transmit
data. It can be seen from Table 5 that 4224 DSPs are used, which is consistent with the
result calculated according to the hardware structure. In order to store input data and
intermediate results, the usage of URAM and BRAM in our design is within an acceptable
range. The usage of BRAM is 282 through our resource reuse, otherwise more BRAM would
be used. The kernel uses 122,935 lookup tables (LUTs), mainly because the instruction-
driven design reduces the complexity of the hardware design. If the control module is
not implemented by instructions, more LUTs will be required than in the current design.
The usage of registers is slightly larger, mainly due to the cascaded design, which needs to
register a lot of data.

Table 5. Resource usage and utilization.

Resource LUT LUT As
MEM Register BRAM URAM DSP

Total 870,016 402,016 1,740,032 1344 640 5940

Used by platform 145,219 25,745 253,970 180 0 4

Used by kernel 122,935 5536 407,690 282 384 4224

Utilization (platform + kernel) 30.8% 7.8% 38.0% 34.4% 60.0% 71.2%

5.3. Performance Comparison

We compared our results with those of others. Since we have not seen work imple-
menting LSTM using the same Alevo U50 card, we compare it with work using FPGAs
with a similar amount of computational resources. The comparison results are in Table 6.

In our design, the overall circuit runs at 280 MHz. Our accelerator achieves a perfor-
mance of 2036 GOPS at a 16-bit data bit width. The power consumption of our design,

Electronics 2023, 12, 1731 13 of 15

in Table 6, is obtained through Xilinx’s power analysis tool. Compared with the work
in [9], our design has higher performance and resource utilization, while using the same
16 bit data precision. Compared with the work in [16,18], our performance is lower but
the data bit width used in [16,18] is 8 bit. Because there are rich int8 multipliers in Stratix
10 GX2800, int8 performance will be relatively high in Stratix 10 GX2800. Our design has
higher resource utilization compared to [16,18]. Compared with [6,22], we obtain higher
performance with higher data precision. Due to the simultaneous computation of data
for 64 users, our design occupies a relatively large on-chip storage space (14.74 MB) and
has a higher latency than other works. On the one hand, because the instructions in our
design are executed continuously, the DSP in the matrix multiplication unit has almost no
idle time and operates continuously. On the other hand, because the DSP of the matrix
multiplication unit and the DSP of the post-processing unit work in parallel, and the DSP
of the post-processing unit realizes different operations by configuring different modes,
the hardware utilization of our work reached 86.1%, which exceeds the current designs.

Table 6. Comparison with previous work.

C-LSTM [9] FCCM2020 [18] Remarn [16] SIBBS [22] FDTT-
LSTM [6] Our Work

Year 2018 2020 2022 2022 2023

FPGA Vertex-7 Stratix 10 GX
2800

Stratix 10 GX
2800 Kintex KU115 XCKU060 Alevo U50

Network LSTM LSTM LSTM LSTM LSTM LSTM

Frequency 200 MHz 260 MHz 260 MHz 200 MHz 200 MHz 280 MHz

Precision 16 bit 8 bit 8 bit
8 bit (weight)

12 bit
(activation)

12 bit 16 bit

DSP used 2676 (74.3%) 4368 (76%) 4368 (76%) 4224 (76.52%) 972 (53%) 4224 (71%)

On-chip
memory used

(MB)
4.24 24.56 24.80 2.40 1.01 14.74

Performance
(GOPS) 131.1 4790 6965 712.6 273.5 2036

Latency (ms) 0.0167 0.033 N/A 0.00104 N/A 9.786

Power 22 W 125 W 125 W 12.0 W 18.6 W 32.3 W

Power
efficiency

(GOPS/W)
6.0 38.32 55.72 59.3 14.7 62.84

LSTM
hardware
utilization

12.2% 56.1% 81.6% 42.2% 70.3% 86.1%

6. Conclusions

This paper presents an instruction-driven LSTM accelerator. The hardware part of the
accelerator consists of a matrix multiplication unit and a post-processing unit. The matrix
multiplication unit adopts a staggered reading scheme in the weight reading stage, to reduce
the consumption of register resources. The post-processing unit completes operations such
as element-wise multiplication, element-wise addition, batch normalization, and bias
addition, by using only two DSPs, through resource sharing. Multi-layer LSTM and
large LSTM can be decomposed into a series of instructions for execution, each of which
executes a certain amount of data. Our design is implemented on the Xilinx Alevo U50 card,
and the experimental results show that our design can achieve 2036 GOPS performance,

Electronics 2023, 12, 1731 14 of 15

and the resource utilization of hardware exceeds the existing designs. Our design currently
uses 16-bit data and will support optimization of low-bit precision data in future work.
Using low-bit data, such as 8-bit data, can further enhance the overall performance. Our
research can be used in scenarios such as speech recognition and machine translation, in
the data center.

Author Contributions: Conceptualization, N.M., H.Y. and Z.H.; methodology, N.M., H.Y. and
Z.H.; software, N.M.; validation, N.M.; investigation, N.M., H.Y. and Z.H.; writing—original draft
preparation, N.M.; writing—review and editing, N.M., H.Y. and Z.H.; supervision, H.Y.; project
administration, H.Y.; funding acquisition, H.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China, under
grant 61876172.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Cheng, Q.; Chen,

G.; et al. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. In Proceedings of the 33rd International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 173–182.

2. Jouppi, N.P.; Hyun Yoon, D.; Ashcraft, M.; Gottscho, M.; Jablin, T.B.; Kurian, G.; Laudon, J.; Li, S.; Ma, P.; Ma, X.; et al. Ten
Lessons From Three Generations Shaped Google’s TPUv4i: Industrial Product. In Proceedings of the 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain, 14–18 June 2021; pp. 1–14.

3. Rybalkin, V.; Sudarshan, C.; Weis, C.; Lappas, J.; Wehn, N.; Cheng, L. Efficient Hardware Architectures for 1D- and MD-LSTM
Networks. J. Signal Process. Syst. 2020, 92, 1219–1245. [CrossRef]

4. Que, Z.; Zhu, Y.; Fan, H.; Meng, J.; Niu, X.; Luk, W. Mapping Large LSTMs to FPGAs with Weight Reuse. J. Signal Process. Syst.
2020, 92, 965–979. [CrossRef]

5. Azari, E.; Vrudhula, S. An Energy-Efficient Reconfigurable LSTM Accelerator for Natural Language Processing. In Proceedings of
the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4450–4459.

6. Liu, M.; Yin, M.; Han, K.; DeMara, R.F.; Yuan, B.; Bai, Y. Algorithm and hardware co-design co-optimization framework for LSTM
accelerator using quantized fully decomposed tensor train. Internet Things 2023, 22, 100680. [CrossRef]

7. Que, Z.; Nakahara, H.; Nurvitadhi, E.; Boutros, A.; Fan, H.; Zeng, C.; Meng, J.; Tsoi, K.H.; Niu, X.; Luk, W. Recurrent Neural
Networks With Column-Wise Matrix–Vector Multiplication on FPGAs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30,
227–237. [CrossRef]

8. Que, Z.; Wang, E.; Marikar, U.; Moreno, E.; Ngadiuba, J.; Javed, H.; Borzyszkowski, B.; Aarrestad, T.; Loncar, V.; Summers,
S.; et al. Accelerating Recurrent Neural Networks for Gravitational Wave Experiments. In Proceedings of the 2021 IEEE 32nd
International Conference on Application-specific Systems, Architectures and Processors (ASAP), Piscataway, NJ, USA, 7–9 July
2021; pp. 117–124.

9. Wang, S.; Li, Z.; Ding, C.; Yuan, B.; Qiu, Q.; Wang, Y.; Liang, Y. C-LSTM: Enabling Efficient LSTM using Structured Compression
Techniques on FPGAs. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, 25–27 February 2018; pp. 11–20.

10. Azari, E.; Vrudhula, S. ELSA: A Throughput-Optimized Design of an LSTM Accelerator for Energy-Constrained Devices. ACM
Trans. Embed. Comput. Syst. 2020, 19, 3.

11. Cao, S.; Zhang, C.; Yao, Z.; Xiao, W.; Nie, L.; Zhan, D.; Liu, Y.; Wu, M.; Zhang, L. Efficient and Effective Sparse LSTM on FPGA
with Bank-Balanced Sparsity. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Seaside, CA, USA, 24–26 February 2019; pp. 63–72.

12. Chen, J.; Hong, S.; He, W.; Moon, J.; Jun, S.-W. Eciton: Very Low-Power LSTM Neural Network Accelerator for Predictive
Maintenance at the Edge. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and Applications
(FPL), Dresden, Germany, 30 August–3 September 2021; pp. 1–8.

13. Ioannou, L.; Fahmy, S.A. Streaming Overlay Architecture for Lightweight LSTM Computation on FPGA SoCs. ACM Trans.
Reconfigurable Technol. Syst. 2022, 16, 8. [CrossRef]

14. Kim, T.; Ahn, D.; Lee, D.; Kim, J.-J. V-LSTM: An Efficient LSTM Accelerator using Fixed Nonzero-Ratio Viterbi-Based Pruning.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 1. [CrossRef]

15. Nurvitadhi, E.; Kwon, D.; Jafari, A.; Boutros, A.; Sim, J.; Tomson, P.; Sumbul, H.; Chen, G.; Knag, P.; Kumar, R.; et al. Why
Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs. In Proceedings of the 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA, USA,
28 April–1 May 2019; pp. 199–207.

http://doi.org/10.1007/s11265-020-01554-x
http://dx.doi.org/10.1007/s11265-020-01549-8
http://dx.doi.org/10.1016/j.iot.2023.100680
http://dx.doi.org/10.1109/TVLSI.2021.3135353
http://dx.doi.org/10.1145/3543069
http://dx.doi.org/10.1109/TCAD.2023.3243879

Electronics 2023, 12, 1731 15 of 15

16. Que, Z.; Nakahara, H.; Fan, H.; Li, H.; Meng, J.; Tsoi, K.H.; Niu, X.; Nurvitadhi, E.; Luk, W. Remarn: A Reconfigurable
Multi-threaded Multi-core Accelerator for Recurrent Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 2022, 16, 4.
[CrossRef]

17. Que, Z.; Nakahara, H.; Fan, H.; Meng, J.; Tsoi, K.H.; Niu, X.; Nurvitadhi, E.; Luk, W. A Reconfigurable Multithreaded Accelerator
for Recurrent Neural Networks. In Proceedings of the 2020 International Conference on Field-Programmable Technology (ICFPT),
Maui, HI, USA, 9–11 December 2020; pp. 20–28.

18. Que, Z.; Nakahara, H.; Nurvitadhi, E.; Fan, H.; Zeng, C.; Meng, J.; Niu, X.; Luk, W. Optimizing Reconfigurable Recurrent Neural
Networks. In Proceedings of the 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), Fayetteville, AR, USA, 3–6 May 2020; pp. 10–18.

19. Que, Z.; Nugent, T.; Liu, S.; Tian, L.; Niu, X.; Zhu, Y.; Luk, W. Efficient Weight Reuse for Large LSTMs. In Proceedings of the 2019
IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP), New York, NY, USA,
15–17 July 2019; pp. 17–24.

20. Rybalkin, V.; Ney, J.; Tekleyohannes, M.K.; Wehn, N. When Massive GPU Parallelism Ain’t Enough: A Novel Hardware
Architecture of 2D-LSTM Neural Network. ACM Trans. Reconfigurable Technol. Syst. 2021, 15, 2.

21. Rybalkin, V.; Pappalardo, A.; Ghaffar, M.M.; Gambardella, G.; Wehn, N.; Blott, M. FINN-L: Library Extensions and Design
Trade-Off Analysis for Variable Precision LSTM Networks on FPGAs. In Proceedings of the 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018; pp. 89–96.

22. Jiang, J.; Xiao, T.; Xu, J.; Wen, D.; Gao, L.; Dou, Y. A low-latency LSTM accelerator using balanced sparsity based on FPGA.
Microprocess. Microsystems 2022, 89, 104417. [CrossRef]

23. He, D.; He, J.; Liu, J.; Yang, J.; Yan, Q.; Yang, Y. An FPGA-Based LSTM Acceleration Engine for Deep Learning Frameworks.
Electronics 2021, 10, 681. [CrossRef]

24. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
25. Sak, H.; Senior, A.; Françoise, B. Long short-term memory recurrent neural network architectures for large scale acoustic

modeling. In Proceedings of the 15th Annual Conference of the International Speech Communication Association, Singapore,
14–18 September 2014; pp. 338–342.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3534969
http://dx.doi.org/10.1016/j.micpro.2021.104417
http://dx.doi.org/10.3390/electronics10060681
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

	Introduction
	Background
	Hardware Architecture
	Overall Architecture
	Kernel Architecture
	 Design of Matrix Multiplication Unit
	Design of Post-Processing Unit
	Design of Sigmoid/Tanh Module

	Instruction Design
	Information in the Instruction
	From LSTM to Instructions
	Memory Reuse during Instruction Execution

	 Experimental Results
	Experimental Setup
	Resource Utilization
	Performance Comparison

	Conclusions
	References

