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Abstract: Aiming at the problems of the dynamic increase in data in real life and that the naive
Bayes (NB) classifier only accepts or rejects the sample processing results, resulting in a high error
rate when dealing with uncertain data, this paper combines three-way decision and incremental
learning, and a new three-way incremental naive Bayes classifier (3WD-INB) is proposed. First, the
NB classifier is established, and the distribution fitting is carried out according to the minimum
residual sum of squares (RSS) for continuous data, so that 3WD-INB can process both discrete data
and continuous data, then carry out an incremental learning operation, select the samples with higher
data quality according to the confidence of the samples in the incremental training set for incremental
learning, solve the problem of data dynamics and filter the poor samples. Then we construct the
3WD-INB classifier and determine the classification rules of the positive, negative and boundary
domains of the 3WD-INB classifier, so that the three-way classification of samples can be realized and
better decisions can be made when dealing with uncertain data. Finally, five discrete data and five
continuous data are selected for comparative experimental analysis with traditional classification
methods. The results show that 3WD-INB has high accuracy and recall rate on different types of
datasets, and the classification performance is also relatively stable.

Keywords: naive Bayes; three-way decision; incremental learning; 3WD-INB; distribution fitting

1. Introduction

The classification problem is a foundation in the field of data mining, but it is also a
very important means. Common traditional classifiers include naive Bayes (NB), random
forest (RF), support vector Mac (SVM), K-nearest neighbors (KNN), multilayer perceptron
classifier (MLP), etc. In recent years, many scholars have made great progress in the
research of new classifiers and created many new classifiers [1–4].

The naive Bayes classifier (NB) was first proposed by Duda and Hart in 1973. Its core
idea is to calculate the probability that the sample belongs to each category given the char-
acteristic value of the sample and assign it to the category with the highest probability. This
algorithm does not require a large amount of training data and has good interpretability, so
it has attracted the attention and use of more and more researchers. In summary, the naive
Bayes classifier has the following advantages:
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1. It performs well on small-scale data and can not only handle binary classification
tasks but also multi-classification tasks.

2. The algorithm is simple to establish and less sensitive to missing datasets.
3. It has high speed for large-scale training and query and is suitable for large-scale datasets.

Therefore, naive Bayes is widely used and has achieved good results in text classi-
fication, spam email filtering, medical diagnosis, and other fields. To eliminate the zero
probability and over-fitting problems in naive Bayes classification, Xu et al. [5] designed two
smoothing strategies, M-estimation and Laplace estimation, which effectively improved
the classification performance. Li et al. [6] used Pearson and Kendall coefficients to screen
out new attribute sets based on principal component analysis to make them meet the condi-
tional independence assumption as much as possible and constructed NB-IPCA classifiers
to improve the classification accuracy. Farid et al. [7] proposed a hybrid decision tree and
a hybrid naive Bayes classification algorithm and solved the multi-classification problem.
For text classification problems, Zhang et al. [8] created a two-layer Bayes model: random
forest naive Bayes (RFNB); the first layer is a random forest model, and the second layer is
a Bernoulli naive Bayes model. Gama et al. [9] proposed an adaptive Bayes model, which
is an incremental learning algorithm that can work online, and has improved performance
compared with nonadaptive algorithms. Li et al. [10] used the weighted K-nearest neighbor
algorithm to calculate the membership degree of unlabeled samples and improved the
structure of the naive Bayes classifier through the membership degree to optimize its classi-
fication effect. Qiu et al. [11] combined the particle swarm optimization algorithm with
naive Bayes, which effectively reduced redundant attributes and improved the classifica-
tion ability. Ramoni et al. [12] constructed a robust Bayes classifier (RBC) for datasets with
missing values, which can handle incomplete databases without assuming missing data
patterns. Zhang et al. [13] proposed an attribute enhancement and weighted naive Bayes
algorithm, which can find potential attributes beyond the original attribute space and is
used to solve the attribute conditional independence assumption, and experiments have
proved that the algorithm has achieved good results. Kaur et al. [14] used the weighted
information gain method to reassign the features of the misclassified classifications and
combined it with the polynomial naive Bayes classification algorithm to provide a better
classification. For naive Bayes to be applied to continuous data, Fisher [15] assumes that
the probability distribution for each classification is Gaussian (also known as normal distri-
bution), treats multiple measurements as random variables and estimates the probability
using a Gaussian function. Fisher [16] also proposed the method of discretizing continuous
data for the first time. Since then, this method has been widely used in various fields,
including machine learning, data mining, statistics, and so on, including the naive Bayes
classifier. Fayyad et al. [17] improved the naive Bayes under interval discretization and
used the basic principles of information theory to guide the operation of the multi-interval
discretization process, and the results showed that the new method has significantly im-
proved the classification accuracy. However, the traditional Bayes classifier still belongs to
the two-way decision model; that is, there are two kinds of processing for the classification
results of samples: accepting or rejecting. When dealing with uncertainties, the inability
to make accurate decisions on samples will lead to poor classification performance. The
three-way decision has the characteristics that conform to human thinking and cognition
and can better handle the uncertainties in the actual decision-making process. Therefore,
some scholars have improved the naive Bayes algorithm with the three-way decision.
Zhang et al. [18] constructed a new three-way extended TAN Bayes classifier combining
the three-way decision thinking and considering the attribute condition independence,
which effectively improved the classification performance. Zhou et al. [19] combine three-way
decision with the naive Bayes classifier and use it to classify junk email. In addition to classifying
normal email and junk email, users are allowed to further check for uncertain email, which
has been experimentally proven to reduce the rate of misclassification. Later, Zhang et al. [20]
integrated naive Bayes, three-way decision and collaborative filtering algorithm, and proposed a
three-way decision naive Bayes collaborative filtering recommendation (3NBCFR) model,
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which was used for a movie recommendation, effectively reducing the cost of recommenda-
tion and improving the quality of the recommendation. However, the above improvements
to the Bayes classifier also have the following practical problems:

(1) Datasets in the real world are generally generated dynamically, and the amount of data
is constantly changing. It is difficult to obtain credible posterior probabilities based on
limited training sets, and it is time consuming to reuse new datasets for training.

(2) Most Bayes classifiers are generally applied to discrete data, and the scope of appli-
cation of the model is small. The traditional improvement method is to discretize
continuous data or use the Gaussian function, but the former is difficult to set the
discrete interval, and the latter has high requirements on the distribution of datasets,
neither of which can solve the classification problem of continuous data well.

To this end, this paper combines incremental learning, three-way decision and naive
Bayes classifier and proposes a new three-way decision incremental naive Bayes (3WD-INB)
classifier. The contributions of this paper are as follows:

(1) Combining three-way decision ideas with the traditional naive Bayes classifier, which
makes the decision-making mode of the classifier more in line with the human think-
ing process and improves the classification ability of uncertain data.

(2) The incremental learning method solves the problem of data dynamics, and at the
same time, it can filter the poor-quality data samples and optimize the training data
in the incremental learning stage.

(3) For continuous data, the distribution of data is fitted according to the sum of squares
of minimum residuals (RSS), and the posterior probability is estimated by the distri-
bution function, so that 3WD-INB can be applied not only to discrete data but also to
continuous data, which enhances the applicability of the classification models.

(4) Compared with the traditional Bayes model and other traditional classification models,
3WD-INB effectively improves the classification performance. Relative to the NB
classifier, F1 is increased from 0.6364 to 0.9167 in discrete data and precision from
0.7778 to 1.0000 in discrete data. Relative to the G-NB classifier, with continuous data,
F1 increased from 0.8036 to 0.9967 and precision from 0.5285 to 0.8850. The average F1
of 3WD-INB under discrete and continuous data are 0.9501 and 0.9081, respectively,
and the average precision is 0.9648 and 0.9289, respectively.

The structure of this paper is as follows. In the second section, the current naive Bayes
classifier and the relevant content of the three-way decision are introduced, and the basic
theory is explained to provide a theoretical basis for subsequent models and algorithms. In the
third section, the distribution fitting process, incremental learning process, classification rule
derivation process and overall algorithm steps of the 3WD-INB classifier are explained in detail.
In the fourth section, the parameter change analysis experiment is carried out on 3WD-INB, and
different types of datasets are selected for comparative experiments with traditional algorithms.
In the last section, the full text is summarized, and future work is proposed.

2. Related Work
2.1. Naive Bayes Classifier

The naive Bayes theory is based on the Bayes theorem and has a sufficient basis in
probability theory. It first classifies by constructing a Bayes classifier structure and then by
calculating the posterior probability of each object.

Given a training set with a sample size of N: U = {x1, x2, · · · , xN}, the training set con-
tains n attributes: A = {a1, a2, · · · , an}; the category of the data label is k: C1, C2, · · · , Ck. We
express the training sample xh as a n-dimensional feature vector xh =

{
v(h)1, v(h)2 , · · · , v(h)n

}
;

v(h)i represents the value of sample xh in attribute ai. Then according to Bayes theorem, the
posterior probability P(Cc|xh) can be obtained, as shown in Equation (1).

P(Cc|xh) =
P(Cc)P(xh|Cc)

P(xh)
(1)
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where P(Cc) is the prior probability, P(xh|Cc) is the conditional probability, and P(xh) is
a constant.

For the NB classifier, its probability estimation expression is shown in Equation (2).

P(Cc|xh) ∝ P(Cc)
n

∏
i=1

P
(

v(h)i

∣∣∣Cc

)
(2)

where n represents the number of attributes, and v(h)i represents the value of xh on the i-th
attribute ai.

In the classification process of the naive Bayes classifier, the calculation formulas of
P(Cc) and P

(
v(h)i

∣∣∣Cc

)
are shown in Equations (3) and (4).

P(Cc) =
|Cc|
|U| , c = 1, 2, 3, · · · , k (3)

P
(

v(h)i

∣∣∣Cc

)
=

∣∣∣m(ai, v(h)i

)
∩ Cc

∣∣∣
|Cc|

, c = 1, 2, 3, · · · , k (4)

where |U| is the total number of training samples, |Cc| is the number of samples of category
Cc in the training samples, and m

(
ai, v(h)i

)
∩ Cc represents the set of objects in Cc that take

the value of v(h)i on the i-th attribute.
At the same time, in the Bayes classifier, to avoid the value not appearing in the

training sample in the test sample, resulting in
∣∣∣m(ai, v(h)i

)
∩ Cc

∣∣∣ = 0, using Laplace
smoothing operation, the calculation formula of the sum after smoothing is shown in
Equations (5) and (6).

P(Cc) =
|Cc|+ 1
|U|+ k

, c = 1, 2, 3, · · · , k (5)

P
(

v(h)i

∣∣∣Cc

)
=

∣∣∣m(ai, v(h)i

)
∩ Cc

∣∣∣+ 1

|Cc|+ |ai|
, c = 1, 2, 3, · · · , k (6)

Finally, use the smoothed P(Cc) and P
(

v(h)i

∣∣∣Cc

)
to classify the samples and obtain the

classification label H(xh); the formula is Equation (7).

H(xh) = arg max P(Cc)
n

∏
i=1

P
(

v(h)i

∣∣∣Cc

)
(7)

When the data is continuous, the above method is no longer applicable to the calcula-
tion of P

(
v(h)i

∣∣∣Cc

)
, and the usual solutions are as follows:

2.1.1. Interval Continuous Data (D-NB)

Commonly used continuous data interval methods include the following:

(1) Equal width interval method: divide the data value range into several intervals
equally, and the width of each interval is equal.

(2) Equal frequency interval method: divide the data range into several intervals, and
each interval contains an equal amount of data.

(3) Clustering-based method: use a clustering algorithm to cluster continuous data into
several groups, and the data in each group are regarded as the same discrete value.

(4) Method based on information entropy: use information entropy to measure the
information gain of each division point and select the division point with the largest
information gain as the dividing point of discretization.
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These methods have their own advantages and disadvantages, and the specific choice
should be considered according to the actual situation. Here, we mainly introduce the equal
width interval method, which is also the simplest and most commonly used method. The
general idea is to divide the continuous data feature v(h)i into K intervals D = {d1, d2, · · · , dK}.
For example, suppose the original data are voriginal = {1, 2.5, 3, 4.75, 5, 6, 7, 8, 9, 9.9}.
The specified intervals are as follows: d1 = [0, 2], d2 = (2, 4], d3 = (4, 6], d4 = (6, 8],
d5 = (8, 10]; then, the internalized data are vnew = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5}. After
such processing, the continuous data are successfully transformed into discrete data, and
the calculation problem of P

(
v(h)i

∣∣∣Cc

)
is also solved. However, this method has high

requirements for the number of intervals and the division method of the intervals, and it is
difficult to determine the optimal value of the two in the actual operation process.

2.1.2. Gaussian Naive Bayes (G-NB)

Assuming that the data of each dimension satisfy the normal distribution, that is,
P
(

v(h)i

∣∣∣Cc

)
∼ N(µi, σi), where µi and σi are the mean and variance of v(h)i , respectively, then:

P
(

v(h)i

∣∣∣Cc

)
=

1√
2πσi

e
−

(v(h)i −µi)
2

2σi
2 (8)

Therefore, according to the naive Bayes classifier (NB), the final classifier formula of
G-NB is shown in Equation (9).

H(xh) = arg max P(Cc)
n

∏
i=1

1√
2πσi

e
−

(v(h)i −µi)
2

2σi
2 (9)

G-NB solves the problem of continuous data processing, but the assumption that all
dimensional data satisfy the normal distribution has high requirements for the dataset, and
the datasets in the real world are often distributed in multiple ways, so the application
effect of G-NB is not good, unstable. Therefore, this paper proposes a new method to deal
with continuous data to improve the robustness of the classifier.

2.2. Three-Way Decision

Three-way decision is a decision-making method summarized by Yao [21] in the
research process of rough set theory. The general idea is to divide the universe into
three (positive domain, negative domain and boundary domain) and adopt different
decision-making methods for different domains, as shown in Figure 1, which is more in
line with human thought and cognition. In recent years, domestic and foreign scholars
have proposed a series of three-way decision models, which have been widely used in
medical diagnosis [22], garbage mailbox prediction [23] and other disciplines and fields.

Liu et al. [24] systematically introduced the theory, method and application of the
integration of three-way decision and rough set theory from the perspective of three-way
decision. Liu et al. [25] also proposed broad and narrow theoretical models of three-way
decision from the macro and micro perspectives. The broad three-way decision focuses on
the interpretation of the connotation and extension of the concept of three-way decision,
and the narrow three-way decision focuses on the semantic interpretation of three-way
decision in practical decision-making problems. Yao et al. [26] explained and analyzed the
basic concepts and theories in formal concept analysis, rough set and granular computing
in detail and pointed out the relationship between them. Liang et al. [27–30] substituted
fuzzy concepts such as interval value, triangular fuzzy number and intuitionistic fuzzy
set for the precise conditional probability function in the three-way decision, making the
three-way decision model more widely used. Yang et al. [31] proposed a new fuzzy rough
set model based on three-way decision with optimal similarity, which makes the model
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more robust to noise and beneficial to the application of the fuzzy information systems. In
Long et al. [32], to further introduce the fuzzy set theory into the three-way decision concept
analysis, the attribute-derived fuzzy three-way decision and object-derived fuzzy three-
way decision are studied under the background of the fuzzy form. The existing classical
three-way decision is extended to the fuzzy three-way decision, which is important to
improve the three-way decision theory. Xue et al. [33] proposed a three-way decision
model based on probability graphs by constructing the Bayes network to calculate the
conditional probability distribution function. Jia et al. [34] proposed a feature fusion
method based on the three-way decision model, which combines a single feature extraction
method and multiple feature extraction methods to maximize the use of different feature
information and improve the performance of Chinese satire detection. Dai et al. [35]
proposed a new three-way decision model. Unlike the traditional three-way decision
model, this model uses intuitive fuzzy sets to describe the attributes of decision objects
and preferences of decision-makers and concept lattice theory to represent the relationship
between attributes to better deal with uncertainty and fuzziness. Many scholars have also
applied the three-way decision to the classification model. Li et al. [36] transformed the
problem of software defect prediction into three kinds of decision-making using three-
way decision methods: identifying defective software, identifying defective software and
identifying uncertain software, which have better accuracy and reliability. Chen et al. [37]
constructed an emotional analysis model based on three-way decision, which solves the
problem of “unknown” emotions by introducing an intermediate category and also uses
the flexibility of three-way decision to classify different emotional intensities, which has
higher accuracy in emotional classification. Chu et al. [38] proposed a three-component
clustering method based on neighborhood rough set to study the classification of gout
patients. This method can deal with uncertain data, which is very useful for applications
such as medical diagnosis. Wang et al. [39] proposed an adaptive weighted three-way
decision oversampling method to solve the problem of unbalanced data classification.
This method uses the idea of three-way decision, combines the oversampling technology
with clustering technology, and can more effectively identify a few classes of samples and
improve the classification accuracy when dealing with unbalanced data. Remesh et al. [40]
proposed a three-way decision technology based on variance criteria to detect COVID-19
patients. Finally, patients can be divided into three categories: confirmed, suspected and
non-COVID-19. Confirmed samples can be treated, and suspected samples can be further
detected, which has potential application value in early diagnosis and screening of COVID-19.
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At present, the three-way decision has become the focus of many scholars. They have
been widely used in information system analysis, machine learning models and artificial
intelligence decision-making and have achieved good results in theory. Nevertheless,
the three-way decision is largely limited by data quality and quantity. When processing
data, the three-way decision method needs to fully consider the limitation of data quality
and quantity. If the data quality is poor or the amount of data is small, the accuracy and
reliability of the three-way decision may be affected.

2.3. The Basic Theory of Three-Way Decision

Given an information system, S = (U, A
⋃

D, {Va|a ∈ A}, {Ia|a ∈ A}), for C ⊆ U, set
D =

{
C, C

}
to represent two states (respectively indicate whether it belongs to set C, and

C and C are complementary), and set AC = {aP, aN , aB} represents three decision-making
actions (respectively representing acceptance, rejection and delay) and decision-making
action. The cost function is shown in Table 1.

Table 1. Cost Function.

Decision Making C (Positive Example) ¯
C (Negative Example)

aP λPP λPN
aN λNP λNN
aB λBP λBN

The expected costs R(aP|xh), R(aN |xh) and R(aB|xh) of the three decisions aP, aN and
aB are shown in Equation (10).

R(aP|xh) = λPPP(C|xh) + λPN P
(
C
∣∣xh
)

R(aN |xh) = λNPP(C|xh) + λNN P
(
C
∣∣xh
)

R(aB|xh) = λBPP(C|xh) + λBN P
(
C
∣∣xh
)

(10)

where P(C|xh) represents the conditional probability that xh belongs to the set C, and
P
(
C
∣∣xh
)

represents the conditional probability that xh belongs to the set C.
According to the basic theory of three-way decision, use the expected cost R(aP|xh),

R(aN |xh) and R(aB|xh) to make an action decision on xh, and the minimum cost deci-
sion [41] rule is as follows:

(P) If R(aP|xh) ≤ R(aN |xh) and R(aP|xh) ≤ R(aB|xh), then for xh, there is xh ∈
POS(α,β)(Cc): accept the decision;

(N) If R(aN |xh) ≤ R(aP|xh) and R(aN |xh) ≤ R(aB|xh), then for xh, there is xh ∈
NEG(α,β)(Cc): reject the decision;

(B) If R(aB|xh) ≤ R(aP|xh) and R(aB|xh) ≤ R(aN |xh), then for xh, there is xh ∈
BND(α,β)(Cc): delay the decision.

In addition, because P(C|xh) + P
(
C
∣∣xh
)
= 1, λPP ≤ λBP ≤ λNP, λPN ≤ λBN ≤ λNN ,

the rules can be further simplified:
(P) If P(C|xh) ≥ a and P(C|xh) ≥ γ, then for xh, there is xh ∈ POS(α,β)(Cc): accept

the decision;
(N) If P(C|xh) ≤ β and P(C|xh) ≤ γ, then for xh, there is xh ∈ NEG(α,β)(Cc): reject

the decision;
(B) If P(C|xh) ≤ a and P(C|xh) ≥ β, then for xh, there is xh ∈ BND(α,β)(Cc): delay

the decision.
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In the rules:

a =
λPN − λBN

(λPN − λBN) + (λBP − λPP)

β =
λBN − λNN

(λBN − λNN) + (λNP − λBP)

γ =
λPN − λNN

(λPN − λNN) + (λNP − λPP)
(11)

If it is further assumed that the cost function satisfies Equation (12), it can be proved
that a > γ > β.

λNP − λBP
λBN − λNN

>
λBP − λPP
λPN − λBN

(12)

Continuing to simplify, the final three-way decision minimum cost decision rule is:
(P) If P(C|xh) ≥ a, then xh ∈ POS(α,β)(Cc): accept the decision;
(N) If P(C|xh) ≤ β, then xh ∈ NEG(α,β)(Cc): reject the decision;
(B) If β < P(C|xh) < a, then xh ∈ BND(α,β)(Cc): delay the decision.

3. Three-Way Decision Incremental Naive Bayes Classifier

In the real world, the data acquisition process is often acquired dynamically. For
the classification model, it will consume a lot of time to reuse new data for training.
Considering that the three decision-making is more in line with the human thinking
process, the incremental learning and the three-way decision are combined with the NB
classifier to build a three-way decision incremental naive Bayes classifier (3WD-INB). In
addition, considering that most of the naive Bayes classifiers are used for discrete data in
general and that the classification problem of continuous data is also very common in the
real world, the continuous data are distributed using the minimum residual sum of squares
(RSS). The fitting process makes 3WD-INB also able to deal with the classification problem
of continuous data.

3.1. Improvements for Continuous Data

For discrete data, P
(

v(h)i

∣∣∣Cc

)
can be calculated directly according to Equation (6), but

for continuous data, P
(

v(h)i

∣∣∣Cc

)
cannot be calculated in an original way. For this purpose,

a distribution function is fitted to the distribution of v(h)i according to the residual sum of

squares, then the distribution function is used to find the P
(

v(h)i

∣∣∣Cc

)
of the continuous data.

We refer to the Distfit official [42], and we selected 10 common distributions to apply
to our model and used RSS to fit the distribution. The 10 distributions are shown in Table 2.

Table 2. Selected distribution type.

Serial Number 1 2 3 4 5 6 7 8 9 10

Distribution norm expon pareto dweibull t genextreme gamma lognorm beta uniform

RSS describes the predicted deviation from the actual empirical value of the data. It
is a measure of the difference between the data and the estimated model. A small RSS
indicates a good fit of the model to the data. The calculation formula of RSS is shown in
Equation (13).

RSS =
n

∑
i=1

(yi − f (xi))
2 (13)

where yi is the i value of the variable to be predicted, xi is the i value of the explanatory
variable, and f (xi) is the predicted value of yi.
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During the fitting process, calculate the value of RSS under 10 distributions:
{rss1, rss2, · · · , rss10}. The distribution with the smallest RSS is the fitting optimal dis-
tribution; that is, the optimal distribution is arg min {rss1, rss2, · · · , rss10}.

Given a training set with N samples, U = {x1, x2, · · · , xN}, the training set con-
tains n attributes, A = {a1, a2, · · · , an}, and the category of data labels has k categories,
C1, C2, · · · , Ck. Represent the training sample xh as an n − dimensional feature vector
xh =

{
v(h)1, v(h)2 , · · · , v(h)n

}
; v(h)i represents the value of the sample xh in attribute ai.

The specific operation of the fitting is as follows (Algorithm 1):

Algorithm 1: My Distfit

Input: Training set: U = {x1, x2, · · · , xN}
Output: Fitted distribution function: pi

(
v(h)i |Cc

)
, pi

(
v(h)i

∣∣Cc

)
1. For v(h)i ∈ xh do
2. For i = 1, 2, · · · , N do
3. Calculate the set of RSSCc for 10 distributions:

{
rssCc1, rssCc2, · · · , rssCc10

}
4. pi

(
v(h)i |Cc

)
= arg min

{
rssCc1, rssCc2, · · · , rssCc10

}
5. Calculate the set of RSSCc

for 10 distributions:
{

rssCc1, rssCc2, · · · , rssCc10

}
6. pi

(
v(h)i |Cc

)
= arg min

{
rssCc1, rssCc2, · · · , rssCc10

}
7. End for
8. End for
9. Return pi

(
v(h)i |Cc

)
, pi

(
v(h)i

∣∣Cc

)
The optimal distribution is obtained by fitting with Algorithm 1: pi

(
v(h)i |Cc

)
, pi

(
v(h)i

∣∣Cc

)
,

approximately estimating P
(

v(h)i |Cc

)
and P

(
v(h)i

∣∣Cc

)
for continuous data.

3.2. Incremental Features

This part is the process of building the INB classifier. Because of the dynamic nature of
the dataset, this paper uses the incremental feature of naive Bayes and adopts incremental
learning. In addition, incremental learning can filter samples with high data quality, which
can improve the performance of the model to a certain extent.

Suppose the training set is U = {x1, x2, · · · , xN}, the incremental training set is
E = {e1, e2, · · · , eM}, and the test set is T = {t1, t2, · · · , tP}. The essence of the 3WD-INB
incremental feature is to add samples with higher confidence (θ) in the incremental training
set to the training set, and to update P(Cc), P

(
Cc
)
, P
(

v(h)i

∣∣∣Cc

)
and P

(
v(h)i

∣∣∣Cc

)
, the process

of incremental learning is as follows.
Introduce the confidence level θ. When the confidence level θj of the sample ej satisfies

Equation (15), add the sample to the training set U.

θj = max P(Cc)
n

∏
i=1

P
(

v(h)i

∣∣∣Cc

)
, 1 ≤ j ≤ M (14)

θj ≥ γ
l

∑
i=1

θi, 1 ≤ l ≤ M (15)

where γ is the confidence coefficient; under normal circumstances γ ∈ (0.5, 1].
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When the incremental training sample ej is added to the training set U, the updated
formulas of P(Cc) and P

(
Cc
)

are:

P(Cc) =

{
N+K

1+N+K P(Cc), Cb 6= Cc
N+K

1+N+K P(Cc) +
1

1+N+K , Cb = Cc

P
(
Cc
)
=

{
N+K

1+N+K P
(
Cc
)
, Cb = Cc

N+K
1+N+K P

(
Cc
)
+ 1

1+N+K , Cb 6= Cc
(16)

The updated formulas of P
(

v(h)i

∣∣∣Cc

)
and P

(
v(h)i

∣∣∣Cc

)
are as follows,

P
(

v(h)i

∣∣∣Cc

)
=


λ

1+λ P
(

v(h)i

∣∣∣Cc

)
, Cb = Cc ∧ vci 6= v(h)i

λ
1+λ P

(
v(h)i

∣∣∣Cc

)
+ 1

1+λ , Cb = Cc ∧ vci = v(h)i

P
(

v(h)i

∣∣∣Cc

)
, Cb 6= Cc

P
(

v(h)i

∣∣∣Cc

)
=


λ

1+λ P
(

v(h)i

∣∣∣Cc

)
, Cb 6= Cc ∧ vci 6= v(h)i

λ
1+λ P

(
v(h)i

∣∣∣Cc

)
+ 1

1+λ , Cb 6= Cc ∧ vci = v(h)i

P
(

v(h)i

∣∣∣Cc

)
, Cb = Cc

(17)

The updated formulas for the number of samples and the number of categories are:

N = N + 1

count(Cc) =

{
count(Cc), Cb 6= Cc

count(Cc) + 1, Cb = Cc
(18)

where N represents the number of samples, K represents the number of categories, count(Cc)
represents the number of samples belonging to category Cc, λ = |ai|+ count(Cc), and |ai|
represents the number of features ai.

3.3. Classification Rules

Assume that the parameters after incremental learning are P(Cc), P
(
Cc
)
, P
(

v(h)i

∣∣∣Cc

)
and P

(
v(h)i

∣∣∣Cc

)
. Substituting the naive Bayes classification rule Equation (7) into the three-

way decision expected-cost Equation (10) for calculation, since the calculation amount of
the continuous addition operation is much smaller than that of the multiplication operation
during the operation process, the logarithm of both sides is taken. The method reduces the
amount of computation and obtains the minimum cost decision rule as follows:

(P) If there are:

R(aPCc |xh) ≤ R(aNCc |xh)⇔
n

∑
i=1

log
P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

) ≥ log
P
(
Cc
)

P(Cc)
+ log

γCc

1− γCc

R(aPCc |xh) ≤ R(aBCc |xh)⇔
n

∑
i=1

log
P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

) ≥ log
P
(
Cc
)

P(Cc)
+ log

αCc

1− αCc

Then xh ∈ POS(αCc ,βCc )
(Cc).

(N) If there are:

R(aNCc |xh) ≤ R(aPCc |xh)⇔
n

∑
i=1

log
P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

) ≥ log
P
(
Cc
)

P(Cc)
+ log

γCc

1− γCc
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R(aNCc |xh) ≤ R(aBCc |xh)⇔
n

∑
i=1

log
P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

) ≥ log
P
(
Cc
)

P(Cc)
+ log

βCc

1− βCc

Then xh ∈ NEG(αCc ,βCc )
(Cc).

(B) If there are:

R(aBCc |xh) ≤ R(aPCc |xh)⇔
n

∑
i=1

log
P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

) ≥ log
P
(
Cc
)

P(Cc)
+ log

αCc

1− αCc

R(aBCc |xh) ≤ R(aNCc |xh)⇔
n

∑
i=1

log
P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

) ≥ log
P
(
Cc
)

P(Cc)
+ log

βCc

1− βCc

Then xh ∈ BND(αCc ,βCc )
(Cc).

If let P = ∑n
i=1 log

P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

) , then obtain a new POS domain, NEG domain and BND

domain, which is the final 3WD-INB classification rule, as shown in Equation (19).

POS(αCc ,βCc )
(Cc) =

{
xh

∣∣∣P ≥ α
′
Cc

}
NEG(αCc ,βCc )

(Cc) =
{

xh

∣∣∣P ≤ β
′
Cc

}
BND(αCc ,βCc )

(Cc) =
{

xh

∣∣∣β′Cc
≤ P ≤ α

′
Cc

}
(19)

where

α
′
Cc

= log
P
(
Cc
)

P(Cc)
+ log

αCc

1− αCc

β
′
Cc

= log
P
(
Cc
)

P(Cc)
+ log

βCc

1− βCc

(20)

3.4. Model Idea

Suppose the training set is U = {x1, x2, · · · , xN}, the incremental training set is
E = {e1, e2, · · · , eM}, and the test set is T = {t1, t2, · · · , tP}. First, use the training set U
to build a naive Bayes classifier NB and, then, carry out incremental learning according
to the incremental training set E to build the INB classifier and, finally, combine the three
decision ideas to build the 3WD-IBN classifier to classify the test set T. In the algorithm,
the maximum number of increments IM is added as a parameter, which can control the
process of incremental learning. The general flow of the algorithm is shown in Figure 2.
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The specific operation of the algorithm is as follows (Algorithm 2):

Algorithm 2: 3WD-INB Classification

Input: training set U = {x1, x2, · · · , xN}; incremental training set E = {e1, e2, · · · , eM}; test set
T = {t1, t2, · · · , tP}; thresholds for each category (αCc , βCc ); maximum number of increments IM;
confidence factor γ.
Output: the three-way classification results of the test set T: {POS, NEG, BND}.
1. Build NB classifier
2. For ai ∈ A do
3. For aj ∈ A do

4. If v(h)i is Discrete Data then

5. Use (5) (6) to calculate P(Cc), P
(
Cc
)
, P
(

v(h)i |Cc

)
and P

(
v(h)i

∣∣Cc

)
6. Else
7. Use (5) to calculate P(Cc), P

(
Cc
)

8. The optimal distribution obtained by fitting with Algorithm 1: pi

(
v(h)i |Cc

)
, pi

(
v(h)i

∣∣Cc

)
9. P

(
v(h)i |Cc

)
= pi

(
v(h)i |Cc

)
, P
(

v(h)i

∣∣Cc

)
= pi

(
v(h)i

∣∣Cc

)
10. End if
11. End for
12. End for
13. Conduct an incremental learning process
14. im = 0
15. For ej ∈ E do
16. Use (13) to calculate the sample confidence θj

17. If θj ≥ γ ∑l
i=1 θi, 1 ≤ l ≤ M then

18. E = E− ej
19. U = U + ej

20. If v(h)i is discrete data then

21. Use (16-18) to update the parameters: P(Cc), P
(
Cc
)
, P
(

v(h)i |Cc

)
, P
(

v(h)i

∣∣Cc

)
count(Cc) and U

22. Else
23. Perform steps 1-8 to reconstruct the NB classifier
24. End if
25. End if
26. End for
27. im = im + 1
28. If E = ∅ or im = IM then
29 Execute 33
30. Else
31. Execute 15
32. End if
33. Compute the threshold

(
α′Cc

, β′Cc

)
for category Cc according to (20)

34. Carry out three-way decision-making classification on category Cc, and get POS, NEG, BND
35. For t = 1, 2, · · · , p do

36. Calculate P = ∑n
i=1 log

P
(

v(h)i

∣∣∣Cc

)
P
(

v(h)i

∣∣∣Cc

)
37. If P ≥ α′Cc

then
38. tt ∈ POS(αCc ,βCc )

(Cc)

39. Else if P ≤ β′Cc
then

40. tt ∈ NEG(αCc ,βCc )
(Cc)

41. Else if β′Cc
≤ P ≤ α′Cc

then
42. tt ∈ BND(αCc ,βCc )

(Cc)
43. End if
44. End for
45. Return classification results: {POS, NEG, BND}
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4. Experimental Results and Analysis
4.1. Dataset and Experimental Environment

To verify the classification performance of the algorithm, seven discrete datasets and
eight continuous datasets are selected for experiments. The datasets are all from the official
website of UCI or Kaggle. The dataset information is shown in Table 3. To ensure that the
running environment of the comparison experiment is the same, all the simulation results
in this paper are obtained by programming in Python language under the environment of
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz, RAM 16GB.

Table 3. Dataset Information.

Name Type Number of
Samples

Number of
Features

Number of
Categories

Breast discrete 699 10 2
Vote discrete 435 16 2

Mushroom discrete 8124 22 2
Chess discrete 3196 36 2

Hayes-Roth discrete 160 5 3
Car Evaluation discrete 1728 6 4
Lymphography discrete 148 18 4

WDBC continuous 569 30 2
Pima Indians Diabetes continuous 766 9 2

Banknote Authentication continuous 1372 5 2
Magic04 continuous 19,020 11 2

Iris continuous 150 4 3
Waveform continuous 5000 22 3

Glass continuous 214 9 6
Segmentation continuous 2310 19 7

4.2. Evaluation Indicators

For the traditional binary classification model of binary decision-making, accuracy
(ACC), recall (Recall), precision (Precision), and F1-score (F1) are usually used to evaluate
the classification performance. These indicators are based on the classification confusion
matrix of binary decision-making, as shown in Table 4.

Table 4. Two-way decision confusion matrix.

Reference
Prediction

Positive Negative

Positive TP FN
Negative FP TN

Accuracy (ACC) describes the overall classification accuracy, as shown in Equation (21).

ACC =
TP + TN

TP + TN + FP + FN
(21)

Recall is the ability of the classifier to find all positive samples. The Recall value is 1 at
best and 0 at worst. The calculation process is Equation (22).

Recall =
TP

TP + FN
(22)

Precision is the ability of the classifier not to label negative examples as positive
examples. The best value of Precision is 1, and the worst is 0. The calculation process is
Equation (23).

Precision =
TP

TP + FP
(23)
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F1-score (F1) can be regarded as a harmonic average of model precision and recall,
with a maximum value of 1 and a minimum value of 0. The calculation formula is shown
in Equation (24).

F1 =
2× ACC× Recall

ACC + Recall
(24)

Since F1-score can comprehensively reflect the accuracy rate (ACC) and recall rate
(Recall), this paper selects two indicators of F1-score (F1) and Precision to evaluate the
classification performance.

For the evaluation index of the three-way decision model, this paper refers to the
processing method of Jia et al. [43]. The classification confusion matrix of the three decisions
is shown in Table 5. In Table 5, nxy represents the number of samples when the actual class
x is judged as class y.

Table 5. Three-way decision confusion matrix.

Actual Positive Domain Actual Negative Domain

Predicted as POS domain nPP nPN
Predicted as BND domain nBP nBN
Predicted as NEG domain nNP nNN

For the accuracy of the three-way decision, the calculation formula is shown
in Equation (25).

ACC =
nPP + nNN

nPP + nPN + nNP + nNN
(25)

For Recall, it is necessary to take into account the positive samples divided into the
NEG domain, and the calculation formula is shown in Equation (26).

Recall =
nPP

nPP + nNP + nNP
(26)

For Precision, it is necessary to take into account the positive samples divided into the
NEG domain, and the calculation formula is shown in Equation (27).

Precision =
nPP

nPP + nPN + nNP
(27)

The calculation formula of the F1-score is consistent with Equation (24).

4.3. Parameter Changes and Analysis of Experimental Results

Use the dataset to use 3WD-INB for classification testing, using fivefold cross-validation,
four for the training set, one for the test set, where the ratio of the training set in the training
set to the incremental training set is U : E = 1 : 3, and the maximum number of increments
IM = 20. Use F1 and Precision to evaluate results.

4.3.1. Threshold α and β Change Analysis

Thresholds α and β are important parameters of the 3WD-INB model, usually between
0 and 1. In the experiment of exploring the change of thresholds α and β, keep the
confidence coefficient γ = 0.7 unchanged, and the thresholds α and β take a fixed step 0.1
change for experiments.

For discrete data, take the mushroom and breast datasets as examples, and for con-
tinuous data, take the WDBC dataset as an example. Figures 3–8 show the change of F1
and Precision as the threshold (α, β) changes for the three datasets (only the results of one
category of each dataset are shown).
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It can be seen from the figure that as the threshold value (α, β) changes, the evaluation
indicators F1 and Precision are also constantly changing, achieving better-expected results.
Due to the regulation of α > β, in the case of α ≤ β, the values of F1 and Precision are
both 0; in the case of α > β, the overall F1 and Precision of the classification results of
3WD-INB have maintained a relatively high level; due to the comprehensive, consider F1
and Precision, so using the average of the two as a reference, the breast dataset is optimal
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at α = 0.7, β = 0.6, the mushroom dataset is optimal at α = 0.6, β = 0.3, and WDBC is
optimal at α = 0.8, β = 0.2.

Simulation experiments are also carried out on other datasets, and the optimal thresh-
old combination (α, β) under each category of all selected datasets is obtained, as shown in
Table 6.

Table 6. Optimal Threshold.

Dataset Name
Category

C1 C2 C3 C4 C5 C6 C7

Breast (0.7, 0.6) (0.5, 0.2) - - - - -
Vote (0.4, 0.1) (0.4, 0.1) - - - - -

Mushroom (0.6, 0.3) (0.2, 0.1) - - - - -
Chess (0.4, 0.3) (0.5, 0.2) - - - - -

Hayes-Roth (0.4, 0.3) (0.4, 0.3) (0.5, 0.4) - - - -
Car Evaluation (0.5, 0.3) (0.4, 0.3) (0.7, 0.6) (0.4, 0.3) - - -
Lymphography (0.3, 0.2) (0.5, 0.3) (0.5, 0.4) (0.8, 0.6) - - -

WDBC (0.8, 0.2) (0.5, 0.4) - - - - -
Pima Indians Diabetes (0.3, 0.1) (0.2, 0.1) - - - - -

Banknote Authentication (0.6, 0.1) (0.2, 0.1) - - - - -
Magic04 (0.3, 0.2) (0.6, 0.5) - - - - -

Iris (0.5, 0.4) (0.4, 0.3) (0.4, 0.3) - - - -
Waveform (0.2, 0.1) (0.5, 0.1) (0.2, 0.1) - - - -

Glass (0.5, 0.3) (0.4, 0.3) (0.2, 0.1) (0.4, 0.3) (0.2, 0.1) (0.4, 0.3) -
Segmentation (0.6, 0.5) (0.8, 0.5) (0.2, 0.1) (0.4, 0.3) (0.3, 0.2) (0.5, 0.4) (0.5, 0.4)

4.3.2. Change Analysis of Confidence Coefficient γ

The confidence coefficient γ is an important parameter in the incremental learning
process, generally between 0.5 and 1. In the exploration of the change analysis experiment
of confidence coefficient γ, the optimal threshold (α, β) in Table 6 is used for each dataset.
The maximum number of increments IM = 20, and the confidence coefficient γ is tested
with a step size of 0.05.

After experiments, the F1 changes of all datasets are shown in Table 7 (only one of the
changes is shown).

In the analysis, confidence factor γ plays a good role in the incremental learning stage.
From the test results of the experiment, in most cases, with the increase in the confidence
factor γ, the value of F1 usually rises first and then decreases, and the highest point tends
to appear in the middle. For breast datasets, the peak locations occur between 0.65 and 0.8,
indicating that the confidence factor γ is the best set in the next range. From the analysis, we
can see that the WDBC and iris datasets are not aware of the confidence factor γ and have
a wide optimal confidence range, which may be due to the high quality of the dataset. The
breast and chess datasets show that when the confidence coefficient γ increases from 0.55 to
0.95, the corresponding classification accuracy first remains unchanged from the maximum
value, then decreases gradually. The WDBC dataset is insensitive to the confidence factor
γ, and the accuracy remains unchanged at 0.9735. The vote and other datasets show a
trend of change that first rises and then decreases. Therefore, it is concluded that the larger
the confidence factor γ, the higher the data quality requirements for incremental training
samples of incremental learning, but the larger the γ, the better, because a larger confidence
factor γ may lose a large number of features in incremental training set samples. The
smaller the confidence factor γ, the lower the data quality requirement for incremental
training samples, and a large number of features can be preserved, but the poorer samples
may also be added to the training set. Therefore, in the process of practical application, γ
can be adjusted reasonably according to the data quality, and good results can be achieved.
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Table 7. Accuracy Statistics Table.

Dataset Name
Confidence Coefficient γ

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Breast 0.9015 0.9559 0.9856 0.9856 0.9856 0.9856 0.9715 0.9665 0.9665
Vote 0.9654 0.9786 0.9786 0.9786 0.9786 0.9551 0.9551 0.9441 0.9441

Mushroom 0.9775 0.9775 0.9898 0.9898 0.9898 0.9625 0.9625 0.9625 0.9459
Chess 0.8975 0.9001 0.9010 0.9115 0.9115 0.9115 0.9059 0.8949 0.8516

Hayes-Roth 0.9010 0.9103 0.8915 0.8915 0.8915 0.8814 0.8810 0.8810 0.8810
Car Evaluation 0.9809 0.9809 0.9809 0.9809 0.9755 0.9713 0.9215 0.9359 0.9001
Lymphography 0.8715 0.8990 0.8990 0.8850 0.8850 0.8850 0.8211 0.8013 0.8001

WDBC 0.9851 0.9851 0.9851 0.9851 0.9851 0.9851 0.9801 0.9799 0.9799
Pima Indians Diabetes 0.8859 0.8859 0.8919 0.8990 0.9015 0.9015 0.8915 0.8915 0.8126

Banknote Authentication 0.8915 0.8891 0.8891 0.9167 0.9167 0.9167 0.9011 0.9011 0.8756
Magic04 0.9557 0.9557 0.9557 0.9557 0.9355 0.9355 0.9215 0.9200 0.9167

Iris 0.9875 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9810
Waveform 0.8210 0.8390 0.8390 0.8220 0.8150 0.8001 0.7995 0.7995 0.7551

Glass 0.6655 0.6655 0.6744 0.6744 0.6744 0.6679 0.6679 0.6679 0.6679
Segmentation 0.9755 0.9815 0.9815 0.9815 0.9815 0.9713 0.9703 0.9667 0.9667

4.4. Comparative Experimental Analysis
4.4.1. Comparative Analysis in Discrete Data

Using discrete datasets, use 3WD-INB for classification testing, select RF, SVM, KNN,
NB, INB, and NB-IPCA (from the literature [2]) for comparative experiments and use
fivefold cross-validation, four for the training set, one for the test set, where the ratio of the
training set in the training set to the incremental training set is U : E = 1 : 3, and F1 and
Recall are used for the result evaluation. After the experiment, the results shown in Table 8
are obtained (showing the evaluation indicators of all categories).

As can be seen from Table 8, when the threshold (α, β) and confidence factor γ are
given a certain value, the classification performance of 3WD-INB is better than other
comparable models in most cases. For the mushroom datasets with a large number of
samples, the results are the best, except that the C2 category is lower than the SVM model.
For the chess datasets with more features, the results of 3WD-INB are higher than those
of comparable models. For the Hayes-Roth datasets with a small number of features and
samples, the results of 3WD-INB are also significantly superior, with the C3 class having
better performance in different classifiers. For the breast and vote datasets with a moderate
number of samples and features, 3WD-INB has a significantly better effect on breast than
other models and has a smaller difference in the C1 category of vote than the RF and SVM
models. For the car and lymphography datasets with a large number of categories, the
overall classification performance of 3WD-INB is much better than other types of Bayesian
models and traditional models. After the above analysis, 3WD-INB has a good effect on
datasets with different numbers of samples and features, as well as on the learning of
multiple classified samples, but overall, for datasets with a higher number of features,
although compared with other models, there is still room for improvement objectively.

4.4.2. Comparative Analysis in Continuous Data

Using discrete datasets, 3WD-INB was used for classification testing, RF, SVM, MLP,
D-NB, and G-NB were selected for comparative experiments, fivefold cross-validation
was adopted, four were the training sets, and one was the testing set. The ratio of the
training set is U : E = 1 : 3, and F1 and Recall are used for the result evaluation. After the
experiment, the results shown in Table 9 are obtained (showing the evaluation indicators of
all categories).
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Table 8. 3WD-INB Experimental Result 1 (bold is the best result).

Dataset Algorithm
C1 C2 C3 C4

F1 Precision F1 Precision F1 Precision F1 Precision

Breast

RF 0.9282 0.9333 0.8687 0.8600 - - - -
SVM 0.9432 0.9765 0.9038 0.8545 - - - -
KNN 0.9333 0.9438 0.8800 0.8627 - - - -
NB 0.9125 0.9044 0.9001 0.8774 - - - -
INB 0.9545 0.9655 0.9231 0.8728 - - - -

NB-IPCA 0.9545 0.9655 0.9231 0.8728 - - - -
3WD-INB 0.9856 0.9882 0.9531 0.9327 - - - -

Vote

RF 0.9789 0.9819 0.9661 0.9554 - - - -
SVM 0.9789 0.9819 0.9514 0.9667 - - - -
KNN 0.9663 0.9556 0.9647 0.9762 - - - -
NB 0.9351 0.9115 0.9356 0.9222 - - - -
INB 0.9535 0.9762 0.9545 0.9333 - - - -

NB-IPCA 0.9655 0.9767 0.9655 0.9545 - - - -
3WD-INB 0.9786 0.9815 0.9751 0.9799 - - - -

Mushroom

RF 0.9811 0.9885 0.9781 0.9711 - - - -
SVM 0.9615 0.9789 0.9893 1.0000 - - - -
KNN 0.9551 0.9245 0.9333 0.9125 - - - -
NB 0.9505 0.9145 0.9402 0.9872 - - - -
INB 0.9516 0.9156 0.9416 0.9886 - - - -

NB-IPCA 0.9654 0.9199 0.9215 0.9335 - - - -
3WD-INB 0.9898 0.9891 0.9994 0.9981 - - - -

Chess

RF 0.9005 0.9292 0.8849 0.9149 - - - -
SVM 0.8999 0.8999 0.8900 0.8855 - - - -
KNN 0.8848 0.9356 0.8849 0.8749 - - - -
NB 0.8950 0.9226 0.8749 0.9001 - - - -
INB 0.9005 0.9292 0.8887 0.9015 - - - -

NB-IPCA 0.9005 0.9335 0.8955 0.9119 - - - -
3WD-INB 0.9115 0.9433 0.8987 0.9211 - - - -

Hayes-Roth

RF 0.8387 0.9285 0.7368 0.6364 1.0000 1.0000 - -
SVM 0.7407 1.0000 0.6957 0.5333 1.0000 1.0000 - -
KNN 0.6842 0.6190 0.3529 0.3333 0.4444 1.0000 - -
NB 0.8485 0.8750 0.7778 0.7000 0.9231 1.0000 - -
INB 0.8387 0.9286 0.7368 0.6364 1.0000 1.0000 - -

NB-IPCA 0.8559 0.9359 0.8005 0.8115 0.9545 0.9887 - -
3WD-INB 0.9103 1.0000 0.8551 0.8445 1.0000 1.0000 - -

Car
Evaluation

RF 0.9682 0.9500 0.8182 1.0000 0.9979 0.9559 1.0000 1.0000
SVM 0.8322 0.8611 0.6667 0.8750 0.9697 0.9449 0.8889 1.0000
KNN 0.9487 0.9367 0.8182 1.0000 0.9938 0.9917 0.9677 0.9375
NB 0.7917 0.8507 0.6364 0.7778 0.9539 0.9225 0.8889 1.0000
INB 0.9557 0.8915 0.8855 0.9225 0.9656 0.9115 0.9005 0.9375

NB-IPCA 0.7273 0.7273 0.4000 0.5714 0.9535 0.9291 0.6957 1.0000
3WD-INB 0.9809 0.9625 0.9167 1.0000 1.0000 1.0000 0.9655 1.0000

Lymphography

RF 0.8990 1.0000 0.8485 0.7778 0.8000 0.8333 1.0000 1.0000
SVM 0.8990 1.0000 0.8485 0.7778 0.8000 0.8333 1.0000 1.0000
KNN 0.8990 1.0000 0.8965 0.9286 0.8571 0.8000 1.0000 1.0000
NB 0.8080 1.0000 0.8550 0.7946 0.8551 0.8657 1.0000 1.0000
INB 0.8152 1.0000 0.9286 1.0000 0.8966 0.8125 1.0000 1.0000

NB-IPCA 0.8556 1.0000 0.9116 0.9445 0.8988 0.8449 1.0000 1.0000
3WD-INB 0.8990 1.0000 0.9333 0.9333 0.8989 0.8571 1.0000 1.0000
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Table 9. 3WD-INB Experimental Result 2 (bold is the best result).

Dataset Algorithm
C1 C2 C3 C4

F1 Precision F1 Precision F1 Precision F1 Precision

WDBC

RF 0.9559 0.9285 0.9348 0.9773 - - - -
SVM 0.9103 0.8354 0.8433 1.0000 - - - -
MLP 0.9231 0.8571 0.8705 1.0000 - - - -
D-NB 0.9736 0.9659 0.9636 0.9302 - - - -
G-NB 0.9386 0.9545 0.9386 0.9167 - - - -

3WD-INB 0.9851 0.9667 0.9736 1.0000 - - - -

Pima Indians
Diabetes

RF 0.8186 0.7333 0.6806 0.7941 - - - -
SVM 0.8089 0.7000 0.5819 0.8333 - - - -
MLP 0.8059 0.7652 0.7355 0.7083 - - - -
D-NB 0.7662 0.7979 0.7662 0.7091 - - - -
G-NB 0.8403 0.8632 0.7403 0.8424 - - - -

3WD-INB 0.9015 0.8891 0.8551 0.8312 - - - -

Banknote
Authentication

RF 0.9933 1.0000 0.9545 0.9774 - - - -
SVM 0.9866 0.9795 0.9959 0.9779 - - - -
MLP 0.9933 1.0000 0.8551 0.8059 - - - -
D-NB 0.8073 0.8986 0.8073 0.7008 - - - -
G-NB 0.8036 0.8553 0.8036 0.7398 - - - -

3WD-INB 0.9167 0.9551 0.9967 0.9840 - - - -

Magic04

RF 0.9079 0.8780 0.8134 0.8743 - - - -
SVM 0.8724 0.8062 0.6957 0.8650 - - - -
MLP 0.8684 0.8436 0.7373 0.7833 - - - -
D-NB 0.7559 0.8059 0.9335 0.9011 - - - -
G-NB 0.9204 0.9115 0.8995 0.9559 - - - -

3WD-INB 0.9557 0.9226 0.9458 0.9175 - - - -

Iris

RF 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - -
SVM 1.0000 1.0000 1.0000 1.0000 0.9454 0.9285 - -
MLP 0.9559 0.9885 1.0000 1.0000 1.0000 1.0000 - -
D-NB 1.0000 1.0000 0.9333 1.0000 0.9333 0.7778 - -
G-NB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - -

3WD-INB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - -

Waveform

RF 0.8253 0.8435 0.8797 0.8746 0.8787 0.8676 - -
SVM 0.8152 0.8673 0.8673 0.8588 0.8571 0.8559 - -
MLP 0.7926 0.8144 0.8526 0.8551 0.8760 0.8543 - -
D-NB 0.8090 0.4984 0.8810 0.8452 0.8840 0.9277 - -
G-NB 0.8390 0.5285 0.8780 0.9020 0.8870 0.8995 - -

3WD-INB 0.8390 0.8850 0.8991 0.9105 0.9115 0.9456 - -

Glass

Algorithm C1 C2 C3 C4
F1 Precision F1 Precision F1 Precision F1 Precision

RF 0.7115 0.7335 0.6667 0.5998 0.6159 0.6667 0.8559 0.9556
SVM 0.7200 0.7500 0.7500 0.8000 0.5000 0.6510 1.0000 1.0000
MLP 0.7428 0.7222 0.7407 0.8333 0.5000 0.4286 0.6667 1.0000
D-NB 0.6744 0.6364 0.6512 0.2143 0.6233 0.6667 0.9069 0.2500
G-NB 0.7097 0.7557 0.6667 0.5882 0.3333 0.5000 0.6667 1.0000

3WD-INB 0.7244 0.7647 0.7857 0.8462 0.6520 0.6995 0.6667 1.0000

Algorithm C5 C6 -
F1 Precision F1 Precision - - - -

RF 0.7500 0.5656 0.6519 0.7500 - -
SVM 0.8000 1.0000 0.6667 0.6667 - -
MLP 0.6667 0.5000 0.6667 0.6667 - -
D-NB 0.6667 0.5000 0.6667 0.6667 - -
G-NB 0.7571 0.6556 0.6667 0.6667 - -

Segmentation

Algorithm C1 C2 C3 C4
F1 Precision Precision F1 Precision F1 Precision

RF 0.9800 0.9608 0.8595 0.9455 0.9185 0.9118 1.0000 1.0000
SVM 0.8085 0.9268 0.8955 0.8955 0.6713 0.6575 1.0000 1.0000
MLP 0.9906 0.9814 0.9403 0.9403 0.9067 0.8500 1.0000 1.0000
D-NB 0.9500 0.9245 0.9452 0.8656 0.8310 0.1429 1.0000 1.0000
G-NB 0.9548 0.9592 0.9338 0.8788 0.9554 0.6779 1.0000 1.0000

3WD-INB 0.9815 0.9849 0.9466 0.9688 0.9744 0.9500 1.0000 1.0000

Algorithm C5 C6 C7 -
F1 Precision F1 Precision F1 Precision

RF 0.9752 0.9516 1.0000 1.0000 0.8264 0.7937 - -
SVM 0.9925 0.9850 1.0000 1.0000 0.5873 0.5522 - -
MLP 0.9778 0.9865 1.0000 1.0000 0.8462 0.9778 - -
D-NB 0.9833 0.9242 1.0000 1.0000 0.8000 0.5763 - -
G-NB 0.9976 0.9795 1.0000 1.0000 0.8238 0.7414 - -

3WD-INB 1.0000 1.0000 1.0000 1.0000 0.9120 0.9048 - -

From Table 9, it can be concluded that 3WD-INB performs better than other comparable
models in most cases, even for continuous data, when the threshold AB and the confidence
factor Y are given a certain value. For the large Magic04 dataset, 3WD-INB gives full play
to the advantages that Bayesian should have. Classification performance is obviously lower
than the G-NB classifier only under the CC class because of the traditional model. For the
waveform datasets with the same number of samples, the results of each index 3WD-INB
under the three types of results are better, and the RF model is also better. For the WDBC
datasets with a large number of features, 3WD-INB is optimal in all categories. For the
iris datasets with a small number of features and samples, 3WD-INB meets the criteria
of a perfect classifier, which proves that 3WD-INB has excellent performance with a low
number of features. For the Pima Indians diabetes and banknote authentication datasets
with a moderate number of samples and features, 3WD-INB performs better and more
stably than traditional classifiers and has greater overall advantages, and all indicators are
improved to a great extent. For the multi-classification datasets of glass and segmentation,
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3WD-INB also showed satisfactory results. MLP and SVM are only better than 3WD-INB in
individual categories, and the 3WD-INB classifier is more stable. Overall, 3WD-INB is also
stable on continuous datasets, regardless of whether it is a two-class or multi-class task.

4.4.3. Algorithm Time-Consumption Analysis

The algorithm’s time consumption is an important index to evaluate an algorithm. We
expect that the algorithm will still perform well with lower time consumption. Due to the
different configurations of different running environments, the direct running time does not
accurately reflect the time consumption of the algorithm, so we select the fastest-running
algorithm as the benchmark algorithm, make its running time 1, and then test the relative
running time of other algorithms and the base algorithm. For discrete data, select the
fastest NB classifier as the base algorithm. For continuous data, G-NB is chosen as the
base algorithm.

After testing, the running time of each algorithm under discrete data is shown
in Table 10, and the running time of each algorithm under continuous data is shown
in Table 11.

Table 10. Algorithm time consumption under discrete data.

Dataset Name
The Running Time of the Relative Basis Algorithm

RF SVM KNN NB INB NB-IPCA 3WD-INB

Breast 19.4 2.5 2.7 1 1.2 3.9 1.9
Vote 18.9 1.1 1.7 1 1.6 2.6 1.4

Mushroom 21.2 63.8 36.0 1 11.6 15.9 12.5
Chess 18.2 19.8 4.5 1 2.7 9.5 2.8

Hayes-Roth 15.1 1.1 1.5 1 1.5 1.6 1.9
Car Evaluation 18.8 14.0 2.7 1 3.3 4.6 3.3
Lymphography 13.1 1.1 1.1 1 1.5 2.5 1.3

Table 11. Algorithm time consumption under continuous data.

Dataset Name
The Running Time of the Relative Basis Algorithm

RF SVM MLP D-NB G-NB 3WD-INB

WDBC 37.1 2.5 25.8 1.3 1 11.0
Pima Indians Diabetes 27.0 5.0 227.3 1.8 1 6.1

Banknote Authentication 52.4 3.6 302.8 2.9 1 8.0
Magic04 214.1 360.4 190.3 35.5 1 52.5

Iris 26.6 1.3 23.4 1.2 1 5.4
Waveform 182.8 134.0 581.7 6.5 1 75.3

Glass 17.5 1.7 4.8 1.5 1 6.4
Segmentation 44.6 7.8 488.0 1.9 1 8.3

After analysis, it can be seen that under the discrete data, since 3WD-INB does not
need distribution fitting, the time consumption of the algorithm is close to that of the
NB classifier. Compared with the traditional RF, SVM and other algorithms, the time
consumption is shorter under the same conditions. Under continuous data, since 3WD-INB
needs to fit the data distribution, the time-consuming performance of the algorithm is not
as good as that under discrete data, but the overall time consumption is still due to the RF
and MLP models. To sum up, 3WD-INB is not bad in terms of algorithm time consumption.
In most cases, the time consumption is relatively low, and it may decrease when the number
of attributes is large.

5. Conclusions and Future Work

Considering that in the process of classification, uncertain objects are forcibly divided
into certain categories that do not conform to people’s actual decision-making processes and
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real-world data are often acquired dynamically; combining incremental learning, three-way
decision ideas, and naive Bayes classifiers, a three-way incremental naive Bayes classifier
(3WN-INB) is proposed. Screen samples with high data quality through incremental
learning, perform three-way classification through three-way decision thinking, and use
distribution fitting for continuous data to estimate the posterior probability of the data
according to the minimum residual sum of squares (RSS), so that 3WN-INB can be used
for both discrete and continuous data. After simulation experiments under 10 datasets,
3WN-INB has greatly improved the accuracy and recall rate compared with the traditional
model, which verifies that 3WN-INB has better classification performance. In our future
work, we will consider the assumption of conditional independence of attributes and
consider the use of semi-naive Bayes methods or Bayes network methods to make the
conditional independence of each attribute stronger and further enhance the classification
performance of the model.

The advantage of this paper is that the new classification utilizes three-way decision
and incremental learning, which makes the classifier perform well on different types of
datasets and provides a new method for the study of the classification field. Objectively,
the limitation of this paper is that the assumption of conditional independence of the naive
Bayesian classifier attributes has not been improved, resulting in a slight degradation in
classification performance when processing datasets with a large number of attributes.

In the future, we will consider the assumption of conditional independence of at-
tributes and the use of semi-naive Bayesian methods or Bayesian network methods, such
as building three-way decision semi-naive incremental Bayesian classifiers and three-way
decision Bayesian network classifiers, to further improve the impact between attributes,
make the conditional independence of attributes stronger, improve the existing limitations
of 3WN-INB and further enhance the classification performance of models.
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