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Abstract: As an important topological property for a 3D binary image, the Euler number can be
computed by finding specific a voxel block with 2 × 2 × 2 voxels, named the voxel pattern, in the
image. In this paper, we introduce three strategies for enhancing the efficiency of a voxel-pattern-
based Euler number computing algorithm used for 3D binary images. The first strategy is taking
advantage of the voxel information acquired during computation to avoid accessing voxels repeatedly.
This can reduce the average number of accessed voxels from 8 to 4 for processing a voxel pattern.
Therefore, the efficiency of computation will be improved. The second strategy is scanning every
two rows and processing two voxel patterns simultaneously in each scan. In this strategy, only three
voxels need to be accessed when a voxel pattern is processed. The last strategy is determining the
voxel accessing order in the processing voxel pattern and unifying the processing of the voxel patterns
that have identical Euler number increments to one group in the computation. Although this strategy
can theoretically reduce the average number of voxels accessed from 8 to 4.25 for processing a voxel
pattern, it is more efficient than the above two strategies for moderate- and high-density 3D binary
images. Experimental results demonstrated that the three algorithms with each of our proposed three
strategies exhibit greater efficiency compared to the conventional Euler number computing algorithm
based on finding specific voxel patterns in the image.

Keywords: 3D image; topological property; Euler number; pattern recognition; computer vision

1. Introduction

With the growth of digital images on the web and elsewhere, we need to search,
retrieve and classify the images in many applications. Aimed at the problem of image
search result organization, Ref. [1] provides a review of the popular methods related to
cluster-based image search result organization. By these methods, color images can be
categorized by visual features or text features. However, binary images are one of the
important images in many image processing systems, and they are often classified by their
topological properties. Topological properties of a binary image play a significant role
in image recognition, object classification, image segmentation and many other analysis
applications. For a binary image, the Euler number remains unchanged despite stretching,
flexing or rotating the image, making it a valuable property in many image processing
applications, such as medical diagnosis [2], object recognition based on reflectance [3] and
crack detection [4]. Numerous algorithms for computing the Euler number of 2D binary
images have been used in the past decades, which can be categorized into perimeter-based
algorithms [5–7], bit-quad-based algorithms [8,9], run-based algorithms [10,11], graph-
based algorithms [12,13] and labeling-based algorithms [14,15].
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Recent advancements in image processing and analysis have led to an increase in
demand for 3D image processing. The Euler number of 3D images is often used for charac-
terizing complex microstructures [16,17]. For example, it can be used for differentiating the
morphologies of graphite; thus, the growth mechanism and the properties of cast iron can
be understood precisely.

The definition of Euler number in a 3D binary image is presented by Formula (1).

E = C - T + B (1)

where C represents the number of connected components, T represents the number of
tunnels (or holes), and B represents the number of bubbles (or cavities) in the given
image [18,19].

For clarity and convenience, it should be noted that the term “image” henceforth refers
exclusively to “binary image”.

In addition to this definition, many different kinds of algorithms have been introduced
for obtaining the Euler number of 3D images. As introduced above, perimeters and contact
perimeters have been used in calculating the Euler number in 2D cases [5–7]. Accordingly,
Bribiesca extended it to 3D cases. Ref. [5] presented a perimeter-based algorithm that
computes the Euler number of one-voxel-width 3D images according to the perimeters
and contact perimeters involved in the connected components of the given image. Akira
and Aizawa [20] used an n × n array of finite-state automata to calculate the numbers
of connected components, holes and cavities in the given image, after which the Euler
number can be obtained easily by use of Formula (1). Lee and Poston [21] presented an
algorithm that smooths the given 3D image and applies theorems of differential geometry
and algebraic topology. Moreover, Saha and Chaudhuri proposed an efficient method
for obtaining the numbers of connected components, holes and cavities under a specific
connectivity relation in [22,23] that can compute the Euler number of the given image
using Formula (1). Additionally, Lin et al. introduced an algorithm for computing the
Euler number of a 3D image by adding up the number of consecutive voxels, named runs,
and adjacent runs existing in the given image [24,25]. This algorithm is extended from 2D
cases. Meanwhile, Sánchez-Cruz et al. [26] proposed a new algorithm for computing the
Euler number through analyzing the voxelized connected components with cavities and/or
tunnels and the relationship between adjacent voxel faces with enclosing surfaces. The
algorithm proposed in [26] counts specific voxel patterns, including 1 × 2 × 2, 2 × 1 × 2,
2 × 2 × 1, and 2 × 2 × 2, in the image. In the last few years, two distinctive methods have
been presented for calculating the Euler number of a 3D image. Sossa [27] presented a
codification-based algorithm that employs the codification of vertices of the foreground
voxels in a given image. This algorithm can be thought of as the extension of the algorithm
presented in [28]. Moreover, Čomića [29] presented a surface-based formula in computing
the Euler number in 3D binary images. This algorithm involves counting only the boundary
vertices and faces in the connected components, with the vertex count adjusted for the
two adjacency relations.

In [18], Park and Rosenfeld proposed a simple algorithm for computing the Euler
number in the given 3D image. This algorithm counts specific 2 × 2 × 2 voxel patterns for
the six adjacent cases between voxels. As an extension, Morgenthaler solves the problem
of 26-adjacent cases between voxels in [30]. The two algorithms introduced in [18,30] are
simple and convenient in implementation.

As mentioned in [20], the judgement of holes is not as easy as that in 2D cases. For
example, there are two types of holes. The first type is like the hole in a donut, which allows
for string threading. The other type is the hole that can contain jam [21]. Thus, it will raise
ambiguities sometimes. Therefore, using a voxel-pattern-based algorithm to compute the
Euler number of the given 3D image becomes a relatively good choice. For convenience,
this voxel-pattern-based algorithm, proposed by Morgenthaler [30], is denoted as the VP
algorithm in our paper.

When computing the Euler number of 3D images, the VP algorithm must access eight
voxels in the corresponding voxel pattern in order to determine whether the current voxel
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pattern applies. However, many voxels are accessed repeatedly in the computation. If the
repeated accession can be avoided, the algorithm can become more efficient. Based this
consideration, three efficiency strategies for enhancing the efficiency of the VP algorithm
when computing the Euler number of the given 3D image are introduced in this paper. The
first strategy is taking advantage of the information of voxels acquired from the previous
processed 2× 2× 2 voxel pattern to avoid accessing voxels repeatedly. Then, it is possible to
reduce the average number of accessed voxels required for processing a voxel pattern from
8 to 4. Thus, the computing efficiency can be improved. We implement this strategy using
state transition; thus, the algorithm with this strategy is denoted as the ST algorithm in this
paper. The second strategy is scanning every two rows and processing two voxel patterns
simultaneously. By this strategy, only three voxels need to be accessed for processing a
voxel pattern in our proposed algorithm. Because more rows are scanned simultaneously in
this strategy, the algorithm with this strategy is denoted as the MR algorithm in this paper.
The last strategy focuses on the accessing order when processing a voxel pattern. We change
the accessing order of voxels when processing voxel patterns, and at the same time, the
voxel patterns with identical Euler number increments are combined to the same group for
processing. Theoretically, when we process a voxel pattern by this strategy, the reduction
of the average number of accessed voxels would be decreased from 8 to 4.25, but it is more
efficient for moderate- and high-density images. In this strategy, we change the voxel
accessing orders when we process a voxel pattern; thus, the algorithm with this strategy
is denoted as the CO algorithm in this paper. Experimental results demonstrated that the
algorithms with our strategies exhibit greater efficiency in comparison to the VP algorithm.

The organization of the paper is as follows: we review the conventional voxel-pattern-
based Euler number computing algorithm in Section 2 and present our strategies in
Section 3. In Section 4, experiments are conducted on different resolutions and different
densities of noise images for evaluating the efficiency of different strategies in comparison
to the VP algorithm. We discuss the algorithms in Section 5, and we present concluding
remarks in the last section.

2. Reviews of Conventional Voxel-Pattern-Based Euler Number Computing Algorithm
for a 3D Image

A 3D image can be described as an array of volume elements, or voxels. For the binary
case, a 3D image can be considered as a relation or function f : Σ→{0, 1}, which maps
from Σ to the set {0, 1}. To determine the adjacency between voxels in the image, a pair of
voxels P = (a1, a2, a3) and Q = (b1, b2, b3) are considered to be 6-adjacent if their Manhattan
distance is equal to 1, i.e., |a1 − b1| + |a2 − b2| + |a3 − b3| = 1. Alternatively, P and Q are
considered to be 26-adjacent if their Chebyshev distance is equal to 1, i.e., max (|a1 − b1|,
|a2 − b2|, |a3 − b3|) = 1. As illustrated in Figure 1, p1, p3, p5, p7, p17 and p26 are 6-adjacent
to voxel p, and voxels p1, p2, . . . , p26 are 26-adjacent to voxel p.
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We assume that the foreground voxels are expressed by 1 and the background voxels
are expressed by 0 in a 3D image. Furthermore, all voxels on the border of the given image
are assumed to be background voxels, which is the same as in most image processing
algorithms. Additionally, only 26-adjacent between foreground voxels are considered in
this paper.

In order to calculate the Euler number, specific configurations of 2 × 2 × 2 voxel
patterns need to be found in the given image in the VP algorithm, as shown in Figure 2. Let
#[x] (1 ≤ x ≤ 22) represents the number of occurrences that the voxel pattern i found in the
given image, and then we can compute the Euler number according to Formula (2) [30].

E = Ψ1 − Ψ2 + Ψ3 − Ψ4 + Ψ5 − Ψ6 + Ψ7 − Ψ8 (2)

where

Ψ1 = #[1];
Ψ2 = #[2] + #[3] + #[4];
Ψ3 = #[5] + #[6] + #[7];
Ψ4 = #[8] + #[9] + #[10] + #[11] + #[12] + #[13] + #[14];
Ψ5 = #[15] + #[16] + #[17];
Ψ6 = #[18] + #[19] + #[20];
Ψ7 = #[21];
Ψ8 = #[22].
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In is known that a 2 × 2 × 2 voxel pattern consists of eight voxels, and each of them is
either a foreground voxel or a background voxel. Accordingly, there will be 256 different
types of configurations formed by the eight voxels, theoretically. To determine a voxel
pattern’s configuration as found in the image, it is necessary to check it from all orientations.
In practice, it is difficult to determine the voxel patterns’ configurations occurring in the
image from all orientations. To address this issue, Morgenthaler summed up the Euler
number increments of 256 different types of voxel patterns in the VP algorithm and listed
their increments (see Table 1). The table lists the Euler number increment ∆E of voxel
patterns that are not zero according to an index generated by the values of voxels in the
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voxel pattern. For instance, for the voxel pattern presented in Figure 3, if the values of
voxels a, b, c, d, e, f, g and h are 1, 0, 1, 1, 1, 1, 1 and 1, respectively, the index should be
10111111, and from Table 1, it can be concluded that the Euler number increment of the
current voxel pattern will be 1. In other words, once this pattern is found in the image, the
Euler number of the image should be increased by 1. The Euler number increments of the
other voxel patterns should be decided using a similar method.

Table 1. Voxel patterns’ indexes and their Euler number increments.

Index of
Voxel Patterns ∆E Index of

Voxel Patterns ∆E Index of
Voxel Patterns ∆E

00000010 1 00001001 −1 00001011 −1
00011000 −1 00011001 −1 00011010 −1
00011011 −1 00100001 −1 00100011 −1
00100100 −1 00100101 −1 00100110 −1
00100111 −1 00101000 −1 00101001 −2
00101010 −1 00101011 −2 00101100 −1
00101101 −1 00101110 −1 00101111 −1
00111000 −1 00111001 −1 00111010 −1
00111011 −1 10000001 −1 10000011 −1
10001001 −1 10001011 −1 10010100 1
10010101 1 10010110 1 10010111 1
10011100 1 10011101 1 10011110 1
10011111 1 10100001 −1 10100011 −1
10101001 −1 10101011 −1 10110100 1
10110101 1 10110110 1 10110111 1
10111100 1 10111101 1 10111110 1
10111111 1 Others 0
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Although 256 different types voxel patterns can be formed by a 2 × 2 × 2 voxel block,
as listed in Table 1, there are only 49 types of voxel patterns having non-zero Euler number
increments. In other words, the increment of all the other 207 types of the voxel patterns is
0; thus, they will not have an influence on the Euler number of the image [30]. Among the
voxel patterns which will have influences on the Euler number, 30 types of voxel patterns’
increments are −1, 17 types of voxel patterns’ increments are 1 and the last 2 types of voxel
patterns’ increments are −2.

The VP algorithm is practicable in implementation. According to this algorithm, when
computing the Euler number, it is necessary for us to access voxels in the image one by
one, confirm the corresponding voxel patterns’ indexes and consult Table 1 for their Euler
number increments. Once all voxels have been processed and all voxel patterns’ Euler
number increments have been determined, we can obtain the Euler number of the given
image easily. It is obvious that for finding the voxel patterns that will have influences on the
Euler number, all voxel patterns’ Euler number increments have to be determined, and all
the eight voxels have to be accessed in each voxel pattern. Therefore 8 × X × Y × Z voxel
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accessions are required for computing the Euler number of an image with a resolution of
X × Y × Z voxels in the VP algorithm.

3. Our Proposed Strategies for Improving the VP Algorithm

As introduced above, while calculating the Euler number, for each voxel found in
the raster scan, the VP algorithm will access all voxels in the corresponding voxel pattern
when confirming whether the voxel pattern should be applied. As a matter of fact, plenty
of voxels are accessed repeatedly in the computing procedure. In this section, we will
introduce some strategies for reducing the number of voxel accessions while processing a
voxel pattern.

3.1. Strategy of State Transition

In the VP algorithm, many voxels would be accessed repeatedly. For example, as
shown in Figure 4, when processing voxel a1, it is required to access eight voxels in the
corresponding voxel pattern {a1, b1, i1, j1, a2, b2, i2, j2} and confirm its index of the pattern.
After doing this, it goes on to process the next voxel, i.e., voxel b1, and the same method is
used as in processing voxel a1: eight voxels in the corresponding voxel pattern {b1, c1, j1, k1,
b2, c2, j2, k2} will be accessed, where the voxels b1, j1, b2 and j2 have already been accessed
while processing the previous voxel a1. To prevent the repeated accesses, we can utilize the
information of voxels b1, j1, b2 and j2 obtained during processing the voxel a1.
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In order to reduce the accession of voxels considered above, we construct sixteen
different states for a quad, which are denoted as St0, St1, . . . , St15, as shown in Figure 5. In
this way, the left quad (four voxels) in the voxel pattern being processed can be replaced by
the corresponding state, and thus, by utilizing transitions among the states, we only need
to access the four voxels in the right quad in the current voxel pattern. Then, we describe
the strategy in detail.
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Because all voxels on the border in a 3D image are considered to be background
voxels, the left quad of the first voxel pattern will be the state St0. Thus, we will begin
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our processing based on the state St0 and access the other four voxels in the right quad
for determining the index of the first voxel pattern of the image. For example, when the
left quad of the current voxel pattern {a1, b1, i1, j1, a2, b2, i2, j2}, i.e., {a2, a1, i2, i1}, shown in
Figure 4, is the case St0, we only need to access the voxels in the right quad {b2, b1, j2, j1}
for determining the index of the voxel pattern. After doing this, we proceed to process the
following voxel pattern {b1, c1, j1, k1, b2, c2, j2, k2}, where the left quad is {b2, b1, j2, j1}, which
will be a certain state as listed in Figure 5 according to the values of voxels b2, b1, j2 and j1.
Therefore, we only need to access the four voxels in the right quad {c2, c1, k2, k1}.

Then, let us consider, when the left quad {b2, b1, j2, j1} is, for example, the state St7,
i.e., {0, 1, 1, 1}, how to process the voxel pattern {b1, c1, j1, k1, b2, c2, j2, k2}. We first check
the voxels in the right quad {c2, c1, k2, k1} to confirm its state. For each possible state Sti
(0 ≤ i ≤ 15), we go a step further to determine the Euler number increment of the current
voxel pattern by consulting Table 1. Then, let us consider some cases.

(1) If the values of voxels c2, c1, k2 and k1 are 0, as shown in Figure 4, the voxel pattern
being processed will be {0, 0, 1, 0, 1, 0, 1, 0}. According to Table 1, we know that the current
voxel pattern needs to be involved in the computation, and its Euler number increment is
−1. Thus, the Euler number of the given image will decrease by 1. After doing this, we
proceed to process the next one in the image. Because the values of voxels c2, c1, k2 and k1
are 0, we will process the next one from state St0.

(2) If the values of voxels c2, c1, k2 and k1 are 0, 0, 0 and 1, respectively, the voxel
pattern being processed will be {0, 0, 1, 0, 1, 0, 1, 1}. According to Table 1, we know that
the current voxel pattern needs to be involved in the computation, and its Euler number
increment is −2. Therefore, the Euler number will decrease by 2. After doing this, we
proceed to process the next one in the image. Because the values of voxels c2, c1, k2 and k1
are 0, 0, 0 and 1, we will process the next one from state St1.

(3) If the values of voxels c2, c1, k2 and k1 are 0, 1, 1 and 0, respectively, the voxel
pattern being processed will be {0, 0, 1, 1, 1, 1, 1, 0}. According to Table 1, we know that
the current voxel pattern does not need to be involved in the computation on account of
its zero Euler number increment, and this voxel pattern will not have an influence on the
Euler number of the image. Then we proceed to process the next voxel pattern. Because the
values of voxels c2, c1, k2 and k1 are 0, 1, 1 and 0, we will process the next one from state St6.

Similar procedures can be applied to process other cases. The processing results are
presented in Table 2.

Table 2. The Euler number increment of a voxel pattern whose left quad is St7.

The State of
the Right Quad Index ∆E The State of

the Right Quad Index ∆E

St0 00101010 −1 St8 01101010 0
St1 00101011 −2 St9 01101011 0
St2 00101110 −1 St10 01101110 0
St3 00101111 −1 St11 01101111 0
St4 00111010 −1 St12 01111010 0
St5 00111011 −2 St13 01111011 0
St6 00111110 0 St14 01111110 0
St7 00111111 0 St15 01111111 0

For each of the other states of the left quad in the voxel pattern, we can process the
voxel pattern in a similar way. This procedure will be executed recursively until we finish
processing all voxel patterns. Thus, we acquire the indexes and the same increments of all
voxel patterns as in the VP algorithm. Consequently, the Euler number of the given image
can be obtained according to the increments of different voxel patterns easily.

In this strategy, taking advantage of the voxel information acquired while processing
the previous voxels, the number of accessed voxels decreased from 8 to 4 while processing
each voxel pattern, which is half of that in the VP algorithm. Thus, it results in more
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efficient computing. For convenience, the state-transition-based algorithm described above
is denoted as the ST algorithm in this paper.

3.2. Scanning Every Two Rows and Processing Two Voxel Patterns Simultaneously

As introduced above, when processing a voxel pattern, the ST algorithm can avoid
accessing the four voxels that have been accessed by making use of the voxel information
acquired while processing the previous voxels. Nevertheless, many voxels are still accessed
repeatedly in the ST algorithm. As shown in Figure 4, for processing the voxel a1 in the
first row, eight voxels in the voxel pattern {a1, b1, i1, j1, a2, b2, i2, j2} need to be accessed.
Then, when we process the voxel i1 in the next row, another eight voxels in the voxel
pattern {i1, j1, q1, r1, i2, j2, q2, r2} need to be accessed. Obviously, voxels i1, j1, i2 and j2 will
be accessed repeatedly.

We can avoid accessing such voxels repeatedly if we scan every two rows simul-
taneously, and for each voxel being processed, we access the involved twelve voxels to
determine the indexes of two voxel patterns simultaneously. For example, when processing
voxel a1 in Figure 4, we access twelve voxels simultaneously, i.e., a1, b1, i1, j1, q1, r1, a2, b2, i2,
j2, q2 and r2, to determine the indexes of two voxel patterns {a1, b1, i1, j1, a2, b2, i2, j2} and {i1,
j1, q1, r1, i2, j2, q2, r2} simultaneously. For convenience, we represent the two voxel patterns
as VP1 and VP2, respectively.

Furthermore, when we access twelve voxels to process two voxel patterns simulta-
neously, similar to that in the ST algorithm, by use of states transitions, we only need to
access the voxels b1, j1, r1, b2, j2, and r2. Obviously, there are 26 = 64 states, as shown in
Figure 6, to be defined.
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Similar to that in the ST algorithm, because all voxels on the border of a 3D image are
background voxels, our computation should begin from state St0, as shown in Figure 6(1),
and access the other six voxels to determine the indexes of voxel patterns. As shown in
Figure 4, when we process the first voxel a1, because voxels a2, a1, i2, i1, q2 and q1 on the
border are background voxels and the corresponding state is the state St0, we only need to
access voxels b2, b1, j2, j1, r2 and r1 to determine the indexes of voxel patterns {a2, a1, i2, i1,
b2, b1, j2, j1} and {i2, i1, q2, q1, j2, j1, r2, r1}, respectively. After doing this, taking advantage
of the state determined by the values of voxels b2, b1, j2, j1, r2 and r1, we go on to access the
next six voxels c2, c1, k2, k1, s2 and s1 to confirm the indexes of voxel patterns {b2, b1, j2, j1,
c2, c1, k2, k1} and {j2, j1, r2, r1, k2, k1, s2, s1}, respectively.

Then, let us consider, when the left six voxels {b2, b1, j2, j1, r2, r1} are, for example, the
state St7, i.e., {0, 0, 0, 1, 1, 1}, how to process the voxel patterns {b1, c1, j1, k1, b2, c2, j2, k2}
and {j2, j1, r2, r1, k2, k1, s2, s1}. We first check the six voxels to the right of the twelve voxels,
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i.e., {c2, c1, k2, k1, s2, s1} to confirm its state Sti (0 ≤ i ≤ 63). Then, by using of two voxel
patterns derived from the twelve voxels, we further confirm the Euler number increment
of the corresponding voxel pattern by referring to Table 1. We use the following cases
for explanation.

(1) If the values of voxels c2, c1, k2, k1, s2 and s1 are 0, 0, 0, 0, 0 and 0, respectively, then
VP1 will be {0, 0, 0, 0, 0, 0, 1, 0} and VP2 will be {0, 0, 1, 0, 1, 0, 1, 0}. According to Table 1,
we know that VP1 should be involved in the computation, and its Euler number increment
is 1. At the same time, VP2 should be also involved, and its Euler number increment is −1.
Then we proceed to process the next voxel pattern. Because the values of voxels c2, c1, k2,
k1, s2 and s1 are 0, 0, 0, 0, 0 and 0, we will process the next one from state St0.

(2) If the values of voxels c2, c1, k2, k1, s2 and s1 are 0, 0, 0, 0, 1 and 1, respectively, then
VP1 will be {0, 0, 0, 0, 0, 0, 1, 0} and VP2 will be {0, 0, 1, 0, 1, 1, 1, 1}. According to Table 1,
we know that VP1 should be involved in the computation, and its Euler number increment
is 1. However, VP2 should not be involved because its Euler number increment is 0. Then
we proceed to process the next voxel pattern. Because the values of voxels c2, c1, k2, k1, s2
and s1 are 0, 0, 0, 0, 1 and 1, we will process the next one from state St3.

(3) If the values of voxels c2, c1, k2, k1, s2 and s1 are 1, 1, 1, 1, 1 and 1, respectively, then
VP1 will be {0, 1, 0, 1, 0, 1, 1, 1} and VP2 will be {0, 1, 1, 1, 1, 1, 1, 1}. According to Table 1, we
know that both VP1 and VP2 should not be involved in the computation because their Euler
number increments are 0. Then, we proceed to process the next voxel pattern. Because the
values of voxels c2, c1, k2, k1, s2 and s1 are 1, 1, 1, 1, 1 and 1, we will process the next one
from state St63.

Similar procedures can be applied to process other cases. The processing results are
presented in Table 3.

Table 3. The Euler number increment of a voxel pattern whose left six voxels are St7.

State of
Right Voxels Voxel Pattern Index ∆E State of

Right Voxels Voxel Pattern Index ∆E

St0
VP1 00000010 1 St1

VP1 00000010 1
VP2 00101010 −1 VP2 00101011 −2

St2
VP1 00000010 1 St3

VP1 00000010 1
VP2 00101110 −1 VP2 00101111 −1

St4
VP1 00000011 0 St5

VP1 00000011 0
VP2 00111010 −1 VP2 00111011 −1

St6
VP1 00000011 0 St7

VP1 00000011 0
VP2 00111110 0 VP2 00111111 0

. . . . . . . . . . . .

. . . . . . . . . . . .

St56
VP1 01010110 0 St57

VP1 01010110 0
VP2 01101010 0 VP2 01101011 0

St58
VP1 01010110 0 St59

VP1 01010110 0
VP2 01101110 0 VP2 01101111 0

St60
VP1 01010111 0 St61

VP1 01010111 0
VP2 01111010 0 VP2 01111011 0

St62
VP1 01010111 0 St63

VP1 01010111 0
VP2 01111110 0 VP2 01111111 0

After all voxel patterns are processed in the image, we can acquire the same increments
of all voxel patterns as in the VP algorithm. Thus, the Euler number of the image can be
obtained easily on the basis of increments of different voxel patterns.

In this strategy, we scan every two image rows, and for each voxel in processing, we
access six voxels to process two voxel patterns simultaneously. That is to say, for processing
a voxel pattern, the average number of voxels needing to be accessed will be 6/2 = 3, which
is fewer than that in the ST algorithm; thus, it might lead to more efficient processing.
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For convenience, this multi-row-scan-based algorithm is denoted as the MR algorithm in
this paper.

3.3. Strategy of Changing the Order of Accessing Voxels and Combining Similar Voxel Patterns

We continue to analyze the information in Table 1. It is not difficult to find that some
voxel patterns’ indexes are consecutive, as listed in Table 4. Moreover, we can observe
that these voxel patterns with consecutive indexes have something in common, i.e., these
voxel patterns have the same Euler number increments. Accordingly, we can divide these
voxel patterns into some groups. For example, for each voxel pattern indexed by 00011000,
00011001, 00011010 or 00011011 occurring in the processing, the Euler number will decrease
by 1. On the other hand, it can be noticed that these consecutive indexes are different in the
last two bits, which vary from 00 to 11.

Table 4. Euler number increments of voxel patterns with consecutive indexes.

Indexes of Voxel Patterns ∆E Indexes of Voxel Patterns ∆E

00011000–00011011 −1 10010100–10010111 1
00100100–00100111 −1 10011100–10011111 1
00101100–00101111 −1 10110100–10110111 1
00111000–00111011 −1 10111100–10111111 1

Then, if the voxel patterns in each group are considered to be a voxel pattern cluster,
we can represent the cluster by the first six voxels. In other words, the Euler number
increments of the voxel patterns in these clusters can be acquired by accessing the first six
voxels. For example, for the processing voxel pattern, if the values of the first six voxels a, b,
c, d, e and f are 1, 0, 1, 1, 1 and 1, respectively, according to Table 4, we can deduce that the
Euler number increment of the current voxel pattern is 1. In this case, we can acquire its
Euler number increment without accessing voxel g and voxel h. Obviously, for processing a
voxel pattern listed in Table 4, only six voxels need to be accessed.

By taking into account the aforementioned consideration, we can apply the same
approach to the other groups of voxel patterns listed in Table 4. As shown in Table 4,
32 types of voxel patterns’ Euler number increments can be determined by the voxel
information of the six voxels. Thus, this strategy will result in a more efficient computation.

We conducted further analysis on the voxel pattern indexes that have influences on
the Euler number of the given image. An important observation was that the voxel located
at the position “b” in each of these indexes is always a background voxel. Based on this
observation, when we process a voxel pattern, we should focus on the voxel at the position
“b” first. When the voxel “b” is found to be a background voxel, then we have to access
other voxels in the voxel pattern for determining the increment. When the voxel “b” is
found to be a foreground voxel, no voxels need to be accessed further, because the current
voxel pattern Euler number increment must be 0. By this means, while processing a voxel
pattern with a foreground voxel at the position “b”, only one voxel needs to be accessed for
determining its Euler number increment.

In implementation, the two methods described above can be combined for improving
the VP algorithm, and we can process a voxel pattern according to the following steps.

When processing the voxel pattern {a, b, c, d, e, f, g, h}, we first access the voxel “b” in
its index.

(1) If the voxel “b” is a foreground voxel, it can be confirmed that the current voxel
pattern does not need to be involved in the computation because its Euler number increment
must be 0. Subsequently, we proceed to process the next one. In this case, only one voxel
needs to be accessed for determining these voxel patterns’ Euler number increments.

(2) If the voxel “b” is a background voxel, we must conduct a sequential accessing of
the voxels a, c, d, e and f of the current voxel pattern. If the values of voxels a, c, d, e and f
are equal to one of the value groups {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 1}, {0, 1, 1, 1, 0}, {1,



Electronics 2023, 12, 1726 11 of 16

0, 1, 0, 1}, {1, 0, 1, 1, 1}, {1, 1, 1, 0, 1} or {1, 1, 1, 1, 1}, following the list in Table 4, only six
voxels need to be accessed for determining these voxel patterns’ Euler number increments.

(3) Otherwise, the two remaining voxels need to be accessed for determining the Euler
number increment of the current voxel pattern. In this case, eight voxels need to be accessed
for determining the Euler number increment.

By utilizing the above steps, we can process all voxel patterns in the given image
and acquire the increments of all voxel patterns. Accordingly, the Euler number of the
given image can be obtained easily. In this strategy, we change the accessing order of
voxel patterns. For convenience, this changing-order-based algorithm is denoted as the CO
algorithm in this paper.

4. Experimental Results

In this section, experiments are conducted on different resolutions of noise images
for verifying the efficiency of different strategies in comparison to the VP algorithm. The
performance of the ST algorithm, the MR algorithm and the CO algorithm will be compared
with the VP algorithm. The efficiency of the algorithms is evaluated by their execution
time in processing the same 3D images. All of the algorithms used for comparison were
implemented in C language. The experimental environment and the experimental platform
are presented in Table 5.

Table 5. The experimental setup and configurations of hardware and software.

Name Version

Processor Intel Core i7-6770
Frequency 3.20 GHz
Memory 8 GB

Operating System Ubuntu Linux 20.04.1
GCC Compiler 4.6.1

Because noise images have random voxel distribution and complex connectivity
among voxels, they are conducive to evaluating the performance of the algorithms. In our
experiments, five resolutions (32× 32× 32, 64 × 64 × 64, 128 × 128 × 128, 256 × 256 × 256,
512 × 512 × 512 voxels) of 3D noise images were tested. For each resolution, 41 noise im-
ages were generated by thresholding of the images containing uniform random noise
with 41 different values from 0 to 1000 in steps of 25. We presented nine cross sections of
3D noise images with densities of 0.1 to 0.9 in steps of 0.1 in Figure 7. In order to make
the experimental results more accurate, we repeated the test 1000 times and obtained the
experimental results by averaging of the execution time of the compared algorithms.
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4.1. Execution Time versus the Number of Voxels in the Image

In this experiment, a total of 205 noise images with different resolutions were tested
for evaluating the execution time versus the number of voxels for the compared algorithms.
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The experimental results are given in Figure 8. From Figure 8, it is found that for both the
maximum execution time and the average execution time, all algorithms in comparison
hold good linear features versus the number of voxels in the image. Furthermore, the
algorithms with our proposed strategies perform more efficiently than the VP algorithm.
Among the algorithms with our proposed strategies, the CO algorithm is the most efficient.
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4.2. Comparison of the Number of Accessed Voxels in the Compared Algorithms

In this experiment, 41 noise images with a resolution of 64 × 64 × 64 voxels were
tested for comparing the number of accessed voxels among the compared algorithms. The
experimental results are shown in Figure 9. From Figure 9, it can be found that when
all voxels are background voxels in the image, the number of accessed voxels in the VP
algorithm is the same as that in the CO algorithm. With the increased densities of the
foreground voxels in the images, the number of voxels needing to be accessed in the CO
algorithm gradually becomes fewer than that in the VP algorithm. When all voxels are
foreground voxels in the image, the number of voxels needing to be accessed in the CO
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algorithm is less than 1/10 of that in the VP algorithm. Moreover, for all tested images, the
VP algorithm needs to access the same number of voxels. Similarly, the ST algorithm needs
to access the same number of voxels for processing any image, but the number of accessed
voxels is about half of that in the VP algorithm. As to the MR algorithm, for processing any
image, it also needs to access the same number of voxels, which are fewer than that in the
ST algorithm. This is consistent with our analysis.
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4.3. Execution Time versus Image Densities

In this experiment, 41 noise images with a resolution of 512 × 512 × 512 voxels are
employed for verifying the execution time versus the densities of foreground voxels in the
image. Figure 10 presents the trend of execution time of the compared algorithms. From
Figure 10, it is found that the algorithms with our presented strategies are more efficient
than the VP algorithm for almost all images.
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Furthermore, as depicted above, for processing a voxel pattern, the number of voxels
accessed in the ST algorithm and the MR algorithm is fewer than that in the VP algorithm.
Therefore, the ST algorithm and the MR algorithm outperformed the VP algorithm. How-



Electronics 2023, 12, 1726 14 of 16

ever, although the ST algorithm only accesses half of the number of voxels that the VP
algorithm does, when we calculate the Euler number of a 3D image, the execution time of
the ST algorithm is not half of that of the VP algorithm. Moreover, for all tested images,
although the MR algorithm performs more efficiently than the ST algorithm, the difference
between the two algorithms is minimal.

As to the CO algorithm, it is much more efficient than the other compared algorithms,
in particular for those images whose densities of foreground voxels vary from 0.4 to 0.8.
However, it is less efficient than the ST algorithm and the MR algorithm when the densities
of foreground voxels are lower than 0.2.

5. Discussion

In this paper, we study the voxel-pattern-based Euler number computing algorithms.
The VP algorithm proposed by Morgenthaler needs to access eight voxels in the corre-
sponding voxel pattern for processing a voxel of the image. Thus, for a 3D image with a
resolution of X × Y × Z voxels, 8 × X × Y × Z voxels need to be accessed for computing
the Euler number. Taking advantage of the voxel information acquired while processing
the previous voxel patterns, the number of voxels needing to be accessed can decrease to
four for processing a voxel pattern in the ST algorithm. The MR algorithm scans every
two rows and processes voxel patterns two by two; only three voxels need to be accessed
for processing a voxel pattern.

In fact, we could scan every three rows and process voxel patterns three by three. In
this case, taking advantage of the voxel information acquired during processing of the
previous voxel patterns, we can access eight voxels for processing three voxel patterns
simultaneously. That is to say, for processing a voxel pattern, the average number of
accessed voxels would be 8/3 = 2.66, which is fewer than that in the MR algorithm.

Theoretically, though we scan more rows, more voxel patterns are processed simul-
taneously, resulting in a lower average number of voxels to be accessed for processing
a voxel pattern and thus a more efficient computing probably. On the other hand, with
the increase of voxel patterns processed simultaneously, more and more states need to be
considered. In the ST algorithm, we scan image rows in the raster scan and process voxel
patterns one by one. There are 24 = 16 states, and for each state, when we process a voxel
pattern, four voxels need to be accessed; thus, we have to consider 24 × 24 = 256 cases. In
the MR algorithm, we scan every two rows and process voxel patterns two by two. There
are 26 = 64 states, and for each state, we need to access six voxels; therefore, we need to
consider 26 × 26 = 4096 cases. In the same way, if we scan every three rows and processed
voxel patterns three by three, we need to consider 28 × 28 = 65,536 cases.

In general, when the interval of the rows to be scanned increases by 1, the voxel
patterns to be processed simultaneously will increase by 1, and the number of considered
cases will increase 16 times. As the number of cases to be considered increases, the
complexity of the corresponding algorithm will also increase, and the algorithms may
not be as efficient as expected in implementation. The experimental results presented in
Section 4 demonstrate that although the MR algorithm performs more efficiently than the
ST algorithm, it is not as efficient as expected.

For low density images, because there are rarely foreground voxels, for most of the
voxel patterns in the image, the CO algorithm needs to access eight voxels in the voxel
pattern being processed; therefore, it is less efficient than the ST algorithm and the MR
algorithm. With the increased number of foreground voxels existing in the image, the
efficiency of the CO algorithm will be improved gradually.

As mentioned above, if the voxel “b” in the voxel pattern is a foreground voxel, no
other voxels need to be accessed for determining its Euler number increment. Thus, for
processing a voxel pattern, we need to access one voxel only in this case. If the background
voxels and the foreground voxels share the same probability of occurrence in the image,
for half of the voxel patterns involved in the image, only one voxel needs to be accessed
for determining the Euler number increments. Furthermore, we can determine 32 types of
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voxel patterns’ Euler number increments by accessing six voxels. Lastly, for the rest of the
96 types of voxel patterns, all the eight voxels need to be accessed for determining their
Euler number increments. To sum up, for obtaining the Euler number of a 3D image with a
resolution of X × Y × Z voxels, the total voxel accessions will be 128/256 × 1 × X × Y × Z
+ 32/256 × 6 × X × Y × Z + 96/256 × 8× X × Y × Z = 4.25 × X × Y × Z.

In practice, for the images with low densities of foreground voxels, the CO algorithm
needs to access more voxels than those in the ST algorithm and the MR algorithm for
processing a voxel pattern; thus, it is less efficient than the ST algorithm and the MR algo-
rithm. On the other hand, for the images with moderate and high densities of foreground
voxels, the number of accessed voxels for processing a voxel pattern in the CO algorithm is
similar to or fewer than that in the ST algorithm and the MR algorithm. Thus, without extra
transition among the states, the CO algorithm becomes the most efficient in the algorithms
with our different strategies. The experimental results are consistent with our analysis.

6. Conclusions

For improving the voxel-pattern-based Euler number computing algorithm in 3D bi-
nary images, we introduced three strategies in this paper. The first strategy takes advantage
of the information acquired during computing to avoid accessing voxels repeatedly and
therefore can reduce the number of accessed voxels from 8 to 4 for determining the voxel
pattern’s Euler number increment. The second strategy involves scanning every two rows
and processing voxel patterns two by two; therefore, only three voxels need to be accessed
for determining the voxel pattern’s Euler number increment. In the last strategy, the access-
ing order of voxels is changed when processing a voxel pattern in the image, and the voxel
patterns with the same Euler number increments and consecutive indexes are combined
into one group. Although this strategy can theoretically reduce the average number of
accessed voxels for determining the Euler number increment from 8 to 4.25, it is more
efficient than the previous strategies for moderate- and high-density images. Experimental
results demonstrated that the three algorithms with each of our proposed three strategies
respectively exhibit greater efficiency compared to the conventional voxel-pattern-based
Euler number computing algorithm in most cases.

The voxels are processed in the raster scan order in the voxel-pattern-based Euler num-
ber computing algorithm; thus, these algorithms are suitable for parallel implementation.
For our future work, we will consider hardware implementation and parallel implementa-
tion of the voxel-pattern-based Euler number computing algorithms on multiprocessors or
FPGAs to further enhance the efficiency of Euler number computing.

Author Contributions: Methodology, B.Y. and L.H.; software, B.Y. and S.K.; validation, H.H. and
Y.C.; writing—original draft preparation, B.Y.; writing—review and editing, L.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under Grant Nos. 61971272 and 61603234, the Nitto Foundation, Japan, the Hibi Science Foundation,
Japan and the Scientific Research Foundation of Shaanxi University of Science and Technology under
Grant No. 2020BJ-18.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tekli, J. An overview of cluster-based image search result organization: Background, techniques, and ongoing challenges. Knowl.

Inf. Syst. 2022, 64, 589–642. [CrossRef]
2. Hashizume, A.; Suzuki, R.; Yokouchi, H.; Horiuchi, H.; Yamamoto, S. An algorithm of automated RBC classification and its

evaluation. Bio Med. Eng. 1990, 28, 25–32.
3. Nayar, S.K.; Bolle, R.M. Reflectance-based object recognition. Int. J. Comput. Vis. 1996, 17, 219–240. [CrossRef]

http://doi.org/10.1007/s10115-021-01650-9
http://doi.org/10.1007/BF00128232


Electronics 2023, 12, 1726 16 of 16

4. Liu, Y.F.; Cho, S.; Spencer, B., Jr.; Fan, J.S. Concrete crack assessment using digital image processing and 3D scene reconstruction.
J. Comput. Civ. Eng. 2016, 30, 04014124. [CrossRef]

5. Bribiesca, E. Computation of the Euler number using the contact perimeter. Comput. Math. Appl. 2010, 60, 1364–1373. [CrossRef]
6. Sossa, H.; Cuevas, E.; Zaldivar, D. Alternative way to compute the Euler number of a binary image. J. Appl. Res. Technol. 2011,

9, 335–341.
7. Santiago, R.; López, A.; Ayala, A.P.; Jimenez, E.C.; Espino, E.R.; Juan, H. Alternative formulations to compute the binary shape

Euler number. IET Comput. Vis. 2014, 8, 171–181.
8. Gray, S.B. Local properties of binary images in two dimensions. IEEE Trans. Comput. 1971, C-20, 551–561. [CrossRef]
9. Yao, B.; He, L.; Kang, S.; Zhao, X.; Chao, Y. Bit-quad-based Euler number computing. IEICE Trans. Inf. Syst. 2017, E100-D, 2197–2204.

[CrossRef]
10. Bishnu, A.; Bhattacharya, B.; Kundu, M.K.; Murthy, C.A.; Acharya, T. A pipeline architecture for computing the Euler number of

a binary image. J. Syst. Archit. 2005, 51, 470–487. [CrossRef]
11. Yao, B.; He, L.; Kang, S.; Zhao, X.; Chao, Y. A new run-based algorithm for Euler number computing. Pattern Anal. Appl. 2017,

20, 49–58. [CrossRef]
12. Chen, M.; Yan, P. A fast algorithm to calculate the Euler number for binary images. Pattern Recognit. Lett. 1988, 8, 295–297.

[CrossRef]
13. Yao, B.; He, L.; Kang, S.; Chao, Y.; Zhao, X. A novel bit-quad-based Euler number computing algorithm. Springerplus 2015, 4, 1–16.

[CrossRef] [PubMed]
14. He, L.; Chao, Y.; Suzuki, K. An algorithm for connected-component labeling, hole labeling and Euler number computing. J.

Comput. Sci. Technol. 2013, 28, 468–478. [CrossRef]
15. He, L.; Chao, Y. A very fast algorithm for simultaneously performing connected-component labeling and Euler number computing.

IEEE Trans. Image Process. 2015, 24, 2725–2735.
16. Velichko, A.; Holzapfel, C.; Siefers, A.; Schladitz, K.; Mücklich, F. Unambiguous classification of complex microstructures by their

three-dimensional parameters applied to graphite in cast iron. Acta Mater. 2008, 56, 1981–1990. [CrossRef]
17. Vogel, H.J.; Roth, K. Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 2001,

24, 233–242. [CrossRef]
18. Park, C.; Rosenfeld, A. Connectivity and Genus in Three Dimensions; Computer Science Center, University of Maryland: College

Park, MD, USA, 1971; Technical Report TR-156.
19. Toriwaki, J.; Yonekura, T. Euler number and connectivity indexes of a three dimensional digital picture. Forma 2002, 17, 183–209.
20. Akira, N.; Aizawa, K. On the recognition of properties of three-dimensional pictures. IEEE Trans. Pattern Anal. Mach. Intell. 1985,

7, 708–713.
21. Lee, C.; Poston, T. Winding and Euler numbers for 2D and 3D digital images. Graph. Model. Image Process. 1991, 53, 522–537.

[CrossRef]
22. Saha, P.; Chaudhuri, B. A new approach to computing the Euler characteristic. Pattern Recognit. 1995, 28, 1955–1963. [CrossRef]
23. Saha, P.; Chaudhuri, B. 3D digital topology under binary transformation with applications. Comput. Vis. Image Underst. 1996,

63, 418–429. [CrossRef]
24. Lin, X.; Xiang, S.; Gu, Y. A new approach to compute the Euler number of 3D image. In Proceedings of the IEEE Conference on

Industrial Electronics and Applications, Singapore, 3–5 June 2008; pp. 1543–1546.
25. Lin, X.; Ji, J.; Huang, S.; Yang, J. A proof of new formula for 3D images Euler number. Pattern Recognit. Artif. Intell. 2010, 23, 52–58.
26. Sánchez, H.; Sossa, H.; Braumann, U.-D.; Bribiesca, E. The Euler-Poincaré formula through contact surfaces of voxelized objects. J.

Appl. Res. Technol. 2013, 11, 65–78. [CrossRef]
27. Sossa, H.; Rubío, E.; Ponce, V.; Sánchez, H. Vertex codification applied to 3-D binary image Euler number computation. Adv. Soft

Comput. 2019, 11835, 701–713.
28. Sossa, J.; Santiago, R.; Pérez, M.; Rubío, E. Computing the Euler number of a binary image based on a vertex codification. J. Appl.

Res. Technol. 2013, 11, 360–370. [CrossRef]
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