
Citation: Lee, H.; Choi, J.; Lee, Y.

Approximating Max Function in

Fully Homomorphic Encryption.

Electronics 2023, 12, 1724. https://

doi.org/10.3390/electronics12071724

Academic Editor: Andrei Kelarev

Received: 15 February 2023

Revised: 25 March 2023

Accepted: 31 March 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Approximating Max Function in Fully Homomorphic Encryption
Hyunjun Lee, Jina Choi and Younho Lee *

Department of Data Science, SeoulTech, Seoul 01811, Republic of Korea
* Correspondence: younholee@seoultech.ac.kr

Abstract: This study focuses on efficiently finding the location of the maximum value for large-scale
values encrypted by the CKKS (Cheon—Kim—Kim–Song) method. To find the maximum value,
log M + 1 comparison operations and log M rotation operations, and 2 log M + 3 additions and
2 log M + 1 multiplications are required. However, there is no known way to find a k-approximate
maximum value, i.e., a value with the same most significant k-bits as the maximum value. In
this study, when the value range of all data in each slot in the ciphertext is [0, 1], we propose a
method for finding all slot positions of values whose most significant k-bits match the maximum
value. The proposed method can find all slots from the input ciphertexts where their values have
the same most significant k-bits as the maximum value by performing 2k comparison operations,
(4k + 2) multiplications, (6k + 2k log M + 3) additions, and 2k log M rotation operations. Through
experiments and complexity analysis, we show that the proposed method is more efficient than the
existing method of finding all locations where the k MSB is equal to the maximum value. The result
of this can be applied to various privacy-preserving applications in various environments, such as
IoT devices.

Keywords: max function; fully homomorphic encryption; applied cryptography; information security

1. Introduction

With the increase in privacy-related regulations, such as GDPR (General Data Protec-
tion Regulation) [1,2], the importance of privacy preservation methods for data analysis and
processing is gradually increasing. Among the various types of privacy preservation tech-
niques, homomorphic encryption (HE) enables computation over encrypted data without
decryption. By supporting homomorphic operations on ciphertexts, a new ciphertext can
be created that has the encryption of the operation result. Moreover, HE has the advantage
of not requiring intermediate interaction with the owner of data to obtain the result if these
computations are outsourced.

Furthermore, the user can obtain the result by decrypting the ciphertext without addi-
tional interaction with the cloud server that performed the computation once she receives
the ciphertext containing the computation result. Such convenience enables HE to be widely
used as a tool to build up privacy-preserving protocols thanks to its easy usage. Although
various methods have been proposed for the realization of homomorphic encryption, two
methods are currently receiving the most attention. One is TFHE [3], which supports very
fast bootstrapping operation, can process the underlying plaintexts in ciphertexts in bit
units, and provides table lookup functions during bootstrapping thus can perform certain
homomorphic computations with a ciphertext even during bootstrapping. Another is
called the CKKS method which can efficiently perform multi-precision fixed point mul-
tiplication operations with complex numbers [4,5]. This method had a disadvantage in
that the bootstrapping operation was slower than TFHE, but its performance has recently
been improved in various ways [6–9]. However, since CKKS has to perform various logical
and statistical operations only with polynomial operations, many functions should be
approximated with polynomial expressions to perform them with encrypted input. For
example, the comparison function [10–12], logit function [13], and round function [9] were

Electronics 2023, 12, 1724. https://doi.org/10.3390/electronics12071724 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071724
https://doi.org/10.3390/electronics12071724
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1767-6165
https://doi.org/10.3390/electronics12071724
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071724?type=check_update&version=2

Electronics 2023, 12, 1724 2 of 8

approximated with polynomials, and there were other attempts to replace ReLu and tanh
functions for machine learning to similar polynomial functions [14].

As an extension of this flow, this study aims to efficiently calculate the location of the
maximum value for large-scale values in homomorphically encrypted data by the CKKS
method. If the number of slots of the ciphertext is M and all slots have input data, in
order to find the location of the maximum value for M numbers, the maximum value
must be obtained first. For this, (log M) comparison operations and rotation operations,
and two addition (or subtraction) and multiplication operations are required. After that,
to find the slot where the maximum value exists and set the value of that slot to 1, that
is, to find the location of the maximum value, 1 comparison, 3 additions/subtractions,
and 1 multiplication are required. Therefore, combining these two processes requires up
to (log M + 1) comparisons, log M rotation operations, 2 log M + 3 additions, and finally
2 log M + 1 multiplications.

However, this method can only find the position of the maximum value. If we want to
find the positions of approximate maximum values, i.e., all values that have the same most
significant k-bit as the maximum value, there is no known way to do such an operation.
For example, if an operation to find the maximum value is computationally expensive, it
may be advantageous to efficiently find a value whose most significant k-bit is the same as
the maximum value in order to implement the privacy preservation operation in a low-cost
device such as an IoT device, where approximate computation is quite common to reduce
the required computation for energy saving [15,16]. There may also be applications where it
is necessary to find all the positions in the ciphertext where approximate maximum values
exist. For example, as an intermediate step to find the maximum value, we can first find
approximate max values to save the computational cost.

In this study, when the value range of all data existing in each slot in the ciphertext
is [0, 1], we deal with how to find all the slot positions of values whose most significant
k-bits match the maximum value. The proposed method proceeds by finding a range of
maximum values. As in binary search, the range of the maximum value is determined
and repeated k times to make the range half at every time. As a result, we can produce
a new ciphertext where we put the value 1 to only the slot positions having the same
most-significant k-bit value as those of the maximum value in the input ciphertext. The
proposed method can carry out this by performing 2k comparison operations, (4k + 2)
multiplication, (6k + 2k log M + 3) addition, and 2k log M rotation operations.

The contributions of this paper are summarized as follows.

• For the first time, we propose a method for finding all slot positions of a ciphertext
where the most significant k-bit of the values in the slots is equal to that of the maxi-
mum value in CKKS homomorphic encryption by O(k) size comparison operation.

• By way of experiment, we have shown that the proposed algorithm is superior to the
existing approach in terms of computational cost if certain conditions are met (see
Section 5).

The rest of the paper is organized as follows: Section 2 provides some background
including the notation description and a brief introduction to CKKS. Section 3 provides
the related work and the problem definition, which is followed by the proposed method in
Section 4. The experimental result and the complexity analysis are provided in Section 5.
The paper concludes in Section 6.

2. Background
2.1. Notation

The notation used throughout this paper is given in Table 1.

Electronics 2023, 12, 1724 3 of 8

Table 1. Notations and Conventions.

Symbol Meaning
−→z , JzK −→z = (z0, z1, · · · , zM−1) ∈ RM and JzK is its encryption.

M The number of slots in a ciphertext.

[a, b]B {n : a ≤ n ≤ b, n ∈ B} (B ∈ {Z,R}). Z can be omitted.

evk,sk,pk evaluation key, secret key and public key.

JzK[i] refers to i-th slot of ciphertext.

c, cx, m, my c, cx refers to ciphertexts and m, my refers to plaintexts (x, y can be any subscript).

JaK−1 A approximate inverse vector of JaK, where (JaK(i))−1 ≈ JaK−1(i) for every
i ∈ [0, M− 1].

~1(~0, ~0.5) A vector where every slot is 1 (0, 0.5).

~1(i) A vector where i-th slot (component) has 1 and the other slots are zero. It can
be used for representing a ciphertext that contains it.

~1[a,b] A vector where the slots between a-th and b-th have 1 including the border and
the other slots are zero. It can be used to represent the ciphertext containing
it. If (a > b), it means the zero vector where all slot values are zero.

(~1a||~0b) f A vector where (i ∗ (a + b))-th∼ (i ∗ (a + b) + a− 1)-th slots are 1 and (i ∗
(a + b) + a)-th∼ (i ∗ (a + b) + b− 1)-th slots are 0 for all i ∈ [0, f − 1]. It also
can be used to represent the ciphertext of the vector.

2.2. CKKS

The CKKS method is a popular homomorphic encryption (HE) technique that al-
lows efficient multiplication of encrypted complex numbers [4]. Despite only providing
approximate arithmetic on encrypted data, it has been widely adopted by various privacy-
preserving applications due to its fast computation speed [6].

CKKS supports the following algorithms:

• KeyGen(1λ) returns pk, sk, and evk after taking a security parameter λ as input.
• Encpk(

−→x) outputs JxK. Every component in −→x places at the corresponding slot in JxK.
• Decsk(JxK) produces −→x only if JxK is a valid encryption from −→x , which is a result of

Enc or created through a set of operations with valid ciphertexts with correct pk and
evk, where pk and evk are mapped to sk. Otherwise, it returns ⊥.

• Add(JxK, JyK)(Sub(JxK, JyK)) outputs a new ciphertext c that is an encryption of −→x +
−→y (−→x −−→y). We denote it as JxK� JyK (JxK� JyK) to simplify the description.

• Add(JxK, k)(Sub(JxK, k)) outputs a new ciphertext, which represents the encryption
of (x0 + k, · · · , xM−1 + k) ((x0 − k, · · · , xM−1 − k)) for given k ∈ C. To make the
description simpler, it is represented as JxK� k (JxK� k).

• Level(JxK) returns the level of JxK’s, which is a non-negative integer representing the
number of further possible multiplication with the ciphertext JxK.

• Multevk(JxK, JyK) provides an (approximate) encryption of (x0 ∗ y0, · · · , xM−1 ∗ yM−1)
with a level of Min(Level(JxK), Level(JyK))− 1. For the purpose of simplifying the
description, it is referred to as JxK � y.

• Multevk(JxK, k) outputs a c that is an encryption of (kv0, · · · , kvM−1) where k ∈ C. The
level of c is reduced from the level of JxK by 1. To simplify the notation, it is referred to
as JxK � k.

• Rotevk(JxK, i) returns an encryption of (xi, xi+1, · · · , xM−1, x0, · · · , xi−1), where i ∈
[0, M− 1]. If i ∈ [−(M− 1),−1], we set i = i + M to make i ∈ [0, M− 1].

• Bootevk(JxK) returns a new ciphertext c′ that has approximation of −→x if Level(JxK) ≥
lminboot , the number of required multiplication level to perform Boot. lminboot depends
on what bootstrapping algorithm is used and parameter.

Electronics 2023, 12, 1724 4 of 8

It is assumed that the rescaling algorithm [4] is carried out within the Mult algo-
rithm. The details of the keys used have been omitted for simplicity. If multiplication
requires bootstrapping, it is assumed to be carried out automatically, and the related part
has been omitted for clarity of the algorithm description. Furthermore, the RNS-CKKS
implementation, which leverages the GPU for improved performance [5–7,17], is used.

The parameters for CKKS are as follows: the number of slots (M) is 32,768, up to
9 multiplications are permitted between bootstrapping operations, the initial multiplication
depth before the first bootstrapping is 21, and the value of lminboot is 3.

The method in [11], referred to as ApproxSign(JxK), is used. It takes a single ciphertext
JxK and returns the encryption of a vector (a0, · · · , aM−1), with ai set to 1 if JxK[i] > 0, ai set
to 0 if JxK[i] = 0, or ai set to -1 otherwise (i ∈ [0, M− 1]).

3. Related Work and Problem Definition

Concentrating on CKKS-based research, the first research related to the max function is
a study on [10], which studied the comparison of elements in two ciphertexts of the CKKS
method. More specifically, the authors in [10] focused on calculating the sign function. By
subtracting one input from another and using the result of the subtraction as an input of
the sign function, the sign function can be used for comparison. Since then, there have
been studies [11,12] that have improved the efficiency and accuracy of homomorphic sign
functions. Independently of this, there was a study that can calculate a step function that
can be used for comparison on encrypted input [18].

Apart from homomorphic comparison, there are some studies that focus on efficient
data sorting on the encrypted data by CKKS [19].

Unfortunately, there is no research that finds the positions (slots) of all the values with
the same most significant k-bit as the maximum value. This study aims to efficiently find
such functions in CKKS homomorphic encrypted data.

The specific problems to be addressed in this study are as follows. Let M be the
maximum number of data that can fit in one ciphertext in CKKS homomorphic encryption.
Then, among these M numbers, there will be a maximum value. Our goal is to simultane-
ously find the positions of slots where these maximum values and values with the same
most significant k-bits exist. However, due to the characteristics of CKKS homomorphic
encryption, the plaintext range is limited to [0, 1], which is the plaintext range in which all
homomorphic operations can be easily performed including various polynomial approxi-
mation functions and bootstrapping. The goal of this study is to find an efficient algorithm
that can achieve the goal, where the term ‘efficient’ means that the algorithm can complete
its task in the linear complexity to k (thus logarithmic to the entire input space).

4. Proposed Method

In this section, the proposed method is described. To help understand the pro-
posed method, an overview is given first, and then the detailed process is explained
using pseudo-code.

4.1. Overview

There are two techniques used in the proposed method. For example, when there
is a cipher text c containing input values, it is possible to find out whether the input
value present in each slot is greater than 1/2 by performing ApproxSign(c− ~1/2). The
ApproxSign() function memorizes the position of slots whose values are greater than 0 in
the input ciphertext, then sets 1 to the slots at the same position in the resulting ciphertext.
Similarly, it sets 0 in the output ciphertext for the slots with a value of 0 in the input
ciphertext and set it to −1 if it has a negative value.

We use the result ciphertext of ApproxSign(c− ~1/2) to find the range of the maximum
value. If there is even one slot whose result is 1, the maximum value among the values
in the input ciphertext is at (1/2.1], otherwise it is in [0.1/ 2]. Hence, by using this fact,
if the result value of ApproxSign(c − ~1/2) is less than 1 in all slots, the value that is

Electronics 2023, 12, 1724 5 of 8

subtracted from c changes from 1/2 to 1/4 and runs ApproxSign(c− ~1/4) again. If not,
run ApproxSign(c− ~3/4) to proceed to the next step. By repeating this routine k times, we
can obtain the result.

We discuss why the iterations of the above steps by k times can find slot locations
where values with the most significant k-bit equal to the maximum value exist. What we
need to explain is the meaning of the result of ApproxSign(c− ~1/2). If one or more slots
representing 1 are found in the resulting ciphertext, it means that the most significant bit of
the maximum value in the ciphertext of c is 1. (Note that it is assumed that the input range
is [0, 1]) Therefore, the slot positions of inputs with the same most significant bit as the
maximum value can be found by executing ApproxSign(c− ~1/2). Of course, there may not
be a value greater than 1/2 in any slot in c. In this case, every slot in the resultant ciphertext
of ApproxSign() returns −1. In this case, we can conclude that the most significant bit is
zero. By repeating the same procedure with 1/4 (or 3/4 depending on the result of the
previous ApproxSign()), we can find the positions of the values whose most significant
two bits are the same as the maximum value. If we repeat this procedure by k-times, we
can find the slot positions of the values which have the same most significant k-bit as the
maximum value.

4.2. Description of the Proposed Algorithm

This subsection deals with the details of the proposed method. The proposed method
is described below.

• Input: ciphertext c containing all input data in M slots, bit value (integer) k.
• Output: Cipher text cout with 1’s in slots containing values with the same most

significant k-bit value as the maximum value and 0’s in other positions.

The procedure for the proposed method is given as follows:

Algorithm 1 k-approximate max algorithm

1: procedure k-ApproxMax(c, k)
2: i← 0, cs ← J ~0.5K
3: c0 ← ApproxSign(c− cs)

4: c′0 ← (c0 �~1)� ~0.5
5: c1 ← (Sum up all slot values in c0 and put the result into 0-th slot)
6: c1 ← (Copy c1[0] to every slot in the ciphertext)

7: c2 ← ApproxSign(c1 � ~1
M)

8: i← i + 1
9: if i == k then

10: c′2 ← (c2 �~1)� ~0.5
11: c3 ← c′2 −~1
12: c4 ← c′0 −~1
13: cout ← −((c4 � c′2)� (c′0 � c3))
14: return cout
15: ctmp ← (2c2 � 1)� (~0.5i)
16: cs ← cs � ctmp
17: Goto 3.

4.3. Subroutines

In the description of the Algorithm 1, which is the proposed method in the previous
subsection, Step 4 and Step 5 are not explained in pseudo-code, but in text. Therefore, in
order to implement the proposed method, the corresponding steps must be described in
detail using pseudo-code. This subsection describes how to implement the two processes.

Electronics 2023, 12, 1724 6 of 8

First, Step 4 is described. The input of this stage is the ciphertext c0 where every slot
has a value, and the result value is the sum of the values of all slots of c0. It is stored in the
0th slot of the output ciphertext c1 (c1[0]), and the remaining slots of c1 are filled with zeros.

1. j← 1
2. While (j < log M) do

(a) ctmp ← Rot(c0,−j)
(b) c0 ← c0 � ctmp
(c) j← j ∗ 2

3. c1 ← c0 �~1(0)

4. Return c1

We proceed to discuss Step 5. Step 5 is an algorithm that copies the value of c1[0] to all
slots in the resulting ciphertext and creates the resulting ciphertext so that all slots have the
same value of c1[0]. The process is given as follows.

1. j← 1
2. While (j < log M) do

(a) ctmp ← Rot(c0, j)
(b) c0 ← c0 � ctmp
(c) j← j ∗ 2

3. c1 ← c0 �~1(0)

4. Return c1

5. Experimental Results and Complexity Analysis

In this section, the experimental results and computational complexity analysis of the
proposed method and the existing method are discussed.

5.1. Experimental Result

First, the experimental results are described. The CKKS parameters are as follows. The
number of slots = 32,768, log(QP) = 1555, secret key hamming weight = 192 bit, the depth
of multiplication up to the first bootstrapping after encryption is 21, and 9 multiplications
are possible between the subsequent bootstrapping. The plaintext bit-precision provided
by the ciphertext is 42 bits.

Using these CKKS parameters, the HEaaN GPU library [20] was used to conduct exper-
iments in the following environment: CPU = AMD 3950X, RAM = 128 GB, GPU = Nvidia
RTX 6000.

The execution time of each unit operation provided by the HEaaN GPU library is as
follows [20]. We measured them by 100 times and the result is given in Table 2.

Table 2. Average Time (ms) of CKKS unit operations and subroutines.

Add Mult (lv.9) Mult (lv.1) Rot Boot ApproxSign()

0.060 0.864 0.417 0.776 115.7 405.0

The performance of the proposed algorithm based on these basic operations is as
follows. Table 3 shows the average and standard deviation measured after running 10 times
in each case. From the table, we can see that the running time increases linearly in terms
of k.

Table 3. Average and standard deviation of running time of the proposed algorithm (in ms).

k 1 2 3 4 5 6 7 8 9 10

AVG 1080.2 1964.1 2734.1 3507.5 4281.3 5055.0 5827.2 6602.4 7376.4 8152.8

STDEV 0.4472 0.4868 1.5189 2.9761 1.0289 2.2819 0.8204 1.8407 1.7393 2.2627

Electronics 2023, 12, 1724 7 of 8

5.2. Computational Complexity Analysis

In this subsection, a comparison of computational complexity between the proposed
method and a well-known basic method for finding the maximum value in CKKS is
performed. The comparison results are described in Table 4 below.

Table 4. Computational complexity comparison between the proposed method and the basic
max function.

Computation Cost

Basic max function (log M+1)ApproxSign()+(2 log M + 3)Add+log MRot+(2log M+1)Mult
Proposed method 2kApproxSign() + (6k + 2k log M + 3)Add + 2k log MRot + (4k + 2)Mult

To analyze the results in Table 4, let us first look at the number of instances of
ApproxSign() and Mult, which consume the most amount of computation. The pro-
posed method consumes an amount of computation linearly proportional to k, and the
conventional method for finding the position of the maximum value requires an amount
of computation proportional to log M. In practice, the proposed method finds multiple
values, not just one. Therefore, the above comparison is not fair, and the cost for the max
function that is actually compared must be multiplied by a certain constant. If we say
it is q, the existing method requires q(log M + 1) of ApproxSign() and q(2 log M + 1) of
Mult. In contrast, the proposed method requires 2kApproxSign() and (4k + 2) Mult, so the
computational complexity actually varies depending on the values of q, log M, and k.

Based on this, if we think that the input data is a value sampled from the uniform
distribution in (0, 1), for a fixed k, the positions of about M/2k slots are returned if we
run the proposed method. If we set this value as q and consider the most expensive
operation ApproxSign(), we can conclude that if k + logk + 1 < (log M)(log M + 1), the
proposed method is superior to the existing method in terms of the computational cost.
This inequality is from 2k < M(log M + 1)/2k.

6. Conclusions and Future Work

In this study, among the values located in all slots of one ciphertext, we discussed how
to generate a new ciphertext with a value of 1 only at the position of the slot containing the
value whose most significant k-bit is equal to the maximum value. This method was shown
to be more efficient in terms of size comparison operation and homomorphic multiplication
operation, which require the most computational cost, compared to the existing method
of finding the position of the maximum value. The proposed method can be applied to
applications where the exact maximum value or exact top-k values are not required but the
positions of the approximate maximum values are sufficiently good to be used instead.

One remarkable thing in this study is that, unlike many homomorphic computation
algorithms whose complexity is linear, even their plaintext versions have logarithmic com-
plexity, and the proposed homomorphic algorithm preserves the logarithmic complexity.
As a future study, we must explore what characteristics must be present to maintain effi-
ciency in an algorithm of plaintext input if we convert it to the homomorphic version of
the algorithm.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L.; software, H.L. and J.C.; validation,
Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L.; supervision, Y.L.;
funding acquisition, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Research Program funded by the SeoulTech (Seoul
National University of Science and Technology).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Electronics 2023, 12, 1724 8 of 8

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer

International Publishing: Cham, Switzerland, 2017; Volume 10, pp. 10–5555.
2. Goldman, E. An introduction to the California consumer privacy act (CCPA) (July 1, 2020). In Santa Clara University Legal Studies

Research Paper; Santa Clara University: Santa Clara, CA, USA, 2020. [CrossRef]
3. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast Fully Homomorphic Encryption over the Torus. IACR Cryptol.

ePrint Arch. 2018, 2018, 421. [CrossRef]
4. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proceedings of the

Advances in Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; pp. 409–437.
5. Cheon, J.H.; Han, K.; Kim, A.; Kim, M.; Song, Y. A full RNS variant of approximate homomorphic encryption. In Proceedings of

the International Conference on Selected Areas in Cryptography, Calgary, AB, Canada, 15–17 August 2018; pp. 347–368.
6. Jung, W.; Kim, S.; Ahn, J.H.; Cheon, J.H.; Lee, Y. Over 100× faster bootstrapping in fully homomorphic encryption through

memory-centric optimization with GPUs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 4, 114–148. [CrossRef]
7. Lee, J.W.; Lee, E.; Lee, Y.; Kim, Y.S.; No, J.S. High-precision bootstrapping of RNS-CKKS homomorphic encryption using optimal

minimax polynomial approximation and inverse sine function. In Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 17–21 October 2021; pp. 618–647.

8. Bae, Y.; Cheon, J.H.; Cho, W.; Kim, J.; Kim, T. Meta-bts: Bootstrapping precision beyond the limit. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 26–30 November 2023; pp. 223–234.

9. Kim, S.; Park, M.; Kim, J.; Kim, T.; Min, C. EvalRound Algorithm in CKKS Bootstrapping. In Proceedings of the Advances in
Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, 5–9 December 2022; Part II; pp. 161–187.

10. Cheon, J.H.; Kim, D.; Kim, D.; Lee, H.H.; Lee, K. Numerical method for comparison on homomorphically encrypted numbers. In
Proceedings of the Advances in Cryptology—ASIACRYPT 2019: 25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, 8–12 December 2019; Part II; pp. 415–445.

11. Cheon, J.H.; Kim, D.; Kim, D. Efficient homomorphic comparison methods with optimal complexity. In Proceedings of the
International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, Republic of Korea,
7–11 Decermber 2020; pp. 221–256.

12. Lee, E.; Lee, J.W.; Kim, Y.S.; No, J.S. Optimization of homomorphic comparison algorithm on rns-ckks scheme. IEEE Access 2022,
10, 26163–26176. [CrossRef]

13. Kim, A.; Song, Y.; Kim, M.; Lee, K.; Cheon, J.H. Logistic regression model training based on the approximate homomorphic
encryption. BMC Med. Genom. 2018, 11, 23–31. [CrossRef] [PubMed]

14. Marshalko, G.B.; Trufanova, J.A. Polynomial approximations for several neural network activation functions. Inform. Autom.
2022, 21, 161–180. [CrossRef]

15. Irtija, N.; Anagnostopoulos, I.; Zervakis, G.; Tsiropoulou, E.E.; Amrouch, H.; Henkel, J. Energy Efficient Edge Computing Enabled
by Satisfaction Games and Approximate Computing. IEEE Trans. Green Commun. Netw. 2022, 6, 281–294. [CrossRef]

16. Ghosh, A.; Raha, A.; Mukherjee, A. Energy-efficient IoT-health monitoring system using approximate computing. Internet Things
2020, 9, 100166. [CrossRef]

17. Han, K.; Ki, D. Better bootstrapping for approximate homomorphic encryption. In Proceedings of the Cryptographers’ Track at
the RSA Conference, San Francisco, CA, USA, 24–28 February 2020; pp. 364–390.

18. Akavia, A.; Leibovich, M.; Resheff, Y.S.; Ron, R.; Shahar, M.; Vald, M. Privacy-preserving decision trees training and prediction.
ACM Trans. Priv. Secur. 2022, 25, 1–30. [CrossRef]

19. Hong, S.; Kim, S.; Choi, J.; Lee, Y.; Cheon, J.H. Efficient sorting of homomorphic encrypted data with k-way sorting network.
IEEE Trans. Inf. Forensics Secur. 2021, 16, 4389–4404. [CrossRef]

20. CryptoLab. HEAAN Library. 2022. Available online: https://heaan.it/ (accessed on 30 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.2139/ssrn.3211013
http://dx.doi.org/10.1007/s00145-019-09319-x
http://dx.doi.org/10.46586/tches.v2021.i4.114-148
http://dx.doi.org/10.1109/ACCESS.2022.3155882
http://dx.doi.org/10.1186/s12920-018-0401-7
http://www.ncbi.nlm.nih.gov/pubmed/30309349
http://dx.doi.org/10.15622/ia.2022.21.6
http://dx.doi.org/10.1109/TGCN.2021.3122911
http://dx.doi.org/10.1016/j.iot.2020.100166
http://dx.doi.org/10.1145/3517197
http://dx.doi.org/10.1109/TIFS.2021.3106167
https://heaan.it/

	Introduction
	Background
	Notation
	CKKS

	Related Work and Problem Definition
	Proposed Method
	Overview
	Description of the Proposed Algorithm
	Subroutines

	Experimental Results and Complexity Analysis
	Experimental Result
	Computational Complexity Analysis

	Conclusions and Future Work
	References

