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Abstract: Target classification and recognition have always been complex problems in underwater
acoustic signal processing because of noise interference and feature instability. In this paper, a robust
feature extraction method based on multi-task learning is proposed, which provides an effective
solution. Firstly, an MLP-based network model suitable for underwater acoustic signal processing
is proposed to optimize feature extraction. Then, multi-task learning is deployed on the model in
hard parameter-sharing so that the model can extract anti-noise interference features and embed
prior feature extraction knowledge. In the model training stage, the simultaneous training method
enables the model to improve the robustness and representation of classification features with the
knowledge of different tasks. Furthermore, the optimized classification features are sent to the
classification network to complete target recognition. The proposed method is evaluated by the
dataset collected in the real environment. The results show that the proposed method effectively
improves recognition accuracy and maintains high performance under different noise levels, which
is better than popular methods.

Keywords: underwater acoustics; target recognition; multi-task learning; robust feature extraction;
intelligent algorithm

1. Introduction

Underwater acoustic target recognition based on ship-radiated noise received by a
hydrophone is a research hotspot. Signal information received by a hydrophone depends
on the target characteristics and the marine environment. Features of the signal are closely
related to the route state and mechanical working state of the target, which are complex and
challenging to describe. The marine environment is usually accompanied by different noise
levels, which will weaken the target features and reduce the discrimination of the target.
Therefore, the importance of robust feature extraction ability for recognition algorithms
is ineffable.

In underwater acoustic target recognition, classical features include time-domain
waveform features [1,2], frequency and time–frequency features [3–9], and auditory percep-
tion features [10–14]. However, features with larger dimensions are often redundant and
difficult to process, and features with smaller dimensions cause a lot of information loss
to varying degrees. In addition, the application scenarios and scope of different types of
features are limited, and features with different dimensions and complexity have different
requirements for the design of classifiers. These reasons lead to poor generalization and lim-
itations of classification models. With the rapid development of deep learning technology,
it is a foreseeable reality to complete high-quality feature extraction in large-dimensional
features with rich information and even original signals. Deep learning technology pro-
motes advanced intelligent algorithms. Its powerful data learning ability provides the
model with strong feature extraction performance, ensuring that it obtains good results in
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underwater acoustic target location [15–17] and recognition [18–25]. Many researchers have
proposed corresponding algorithms from the perspective of improving feature extraction.
Qi et al. [26] proposed an integrated neural network based on feature fusion learning for un-
derwater acoustic target recognition. This method extracts the short-time Fourier transform
(STFT) amplitude spectrum, STFT phase spectrum, and bispectrum features of underwater
acoustic signals to form the network’s input. It uses a shuffled frog leaping algorithm
(SFLA) to train the weight coefficients of different networks, achieving higher recognition
accuracy and stronger noise robustness. Luo et al. [27] used the restricted Boltzmann
machine (RBM) to automatically encode the combined data of the power spectrum and
demodulation spectrum of ship-radiated noise without supervision and extract the deep
data structure layer by layer to obtain the signal feature vector. Tian et al. [24] proposed
a multi-scale residual deep neural network (MSRDN) to construct a deep convolutional
stack network. The problem of feature extraction using large convolution kernels in the
initial stage of neural networks is improved to avoid the lack of depth and structural
imbalance in the network. MSRDN can directly use the original signal waveform as the
input and achieve high recognition performance after training. Doan et al. [25] proposed a
dense model for underwater target recognition. The proposed model skillfully reuses all
former feature maps to optimize recognition accuracy under various impaired conditions
while satisfying low computational costs. Cao et al. [21] proposed a second-order pool-
ing convolutional neural network (CNN) model to capture temporal correlation, which
improved the performance of maximum pooling in CNN applied to underwater acoustic
target recognition. Wang et al. [20] proposed a dimension reduction method to obtain the
multi-dimensional fusion features of the original underwater acoustic signal, which ensures
the time dimension’s consistency. Additionally, the Gaussian mixture model (GMM) was
used to modify the structure of the deep neural network (DNN) to obtain high accuracy and
strong adaptability. Ke et al. [28] proposed a one-dimensional convolutional autoencoder-
decoder model to extract features from high resonance components, proposed a supervised
feature separation algorithm to separate further the features extracted in pre-trained, and
finally increased the recognition rate. Most methods for improving feature extraction
focus on two aspects: 1. improving the primary features of input by signal processing or
feature fusion; and 2. improving the structure of the classification neural network by model
optimization. Although these representative deep learning-based methods have achieved
acceptable results in underwater acoustic target recognition tasks, directly inputting fea-
tures into the black box classifier for training shields the internal working mechanism of
the model and reduce the interpretability and performance.

This paper presents a robust feature extraction method (RFEM) that adds prior knowl-
edge to improve feature robustness and model performance based on multi-task learning.
The proposed method not only extracts high-level features using the classification task-
driven model but also guides the model to extract anti-noise interference features and learn
prior knowledge based on multi-task learning. RFEM learns to extract manual features
based on prior knowledge while learning to resist noise interference, and uses this informa-
tion to extract small-dimensional robust features to improve the recognition performance
of the model. Specifically, the proposed method designs a multi-layer perceptron-based
(MLP) module to suppress noise interference on the signal. It generates a robust feature
based on multi-task learning that integrates time–frequency, hand-designed, and specific
task requirement features. The proposed method is efficient, has practical value, and can be
combined with other advanced deep learning-based methods after simple improvement.

The following sections are divided into three parts. Section 2 introduces the details of
RFEM, including the components of the MLP module, the training method and inference
stage of RFEM, and the loss function. Experiments and discussions are described in
Section 3, including multiple ablation experiments and identification experiments under
different signal-to-noise ratios. Finally, the conclusion is presented in Section 4.
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2. Proposed Method

Figure 1 shows the details of RFEM with a recognition system as an example, including
the training method and inference stage. In short, RFEM utilizes a particular feature extrac-
tion network to extract robust features. The extracted features are sent to the subsequent
classification network for high-level feature extraction and target discrimination. In the
training stage of the model, the robust feature extraction network is trained on an anti-noise
task, an a priori knowledge-based feature extraction task, and a classification task based
on multi-task learning. The network finds a balanced feature in the three tasks to make
it suitable for signal recognition under different noise levels. Given the complexity of the
underwater acoustic target radiated noise signal, this paper designs an MLP model to
extract features suitable for different tasks. In addition, various neural networks suitable
for underwater acoustic target recognition can be adapted for the classification network. In
the training stage, the damaged signal and the original signal are used to train the robust
feature extraction network and the classification network. After the training, two networks
can be cascaded to construct the recognition system.
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Figure 1. The illustration of an RFEM-based recognition system.

As shown in Figure 1, RFEM is introduced with a recognition system as an example.
RFEM includes the design of the basic block of the MLP (BBM) module, the design of the
robust feature extraction network, the loss and the training method. The three parts are
described in detail in the following parts.

2.1. Basic Block of the MLP Module

The underwater acoustic channel is a complex time-varying space-varying channel,
which makes various characteristics of ship-radiated noise time-varying. In addition, the
mechanism of ship-radiated noise is complex, which increases the difficulty of feature
extraction. Figure 2 shows the spectrogram of some underwater acoustic targets. It can
be seen that some ship-radiated noise has stable characteristics at specific frequencies,
and there is also a certain level of time variation, which is typical for a non-stationary
signal. These spectrograms are often used as primary features in deep learning-based target
recognition algorithms.
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Figure 2. The spectrogram of underwater acoustic targets. (a) Passenger ship; (b) ocean liner;
(c) fishing boat.

Convolutional neural networks (CNNs) are widely used in image and speech process-
ing. The working mode of CNN provides it with an intrinsic advantage of establishing
local spatial relations. For the complex cross-regional relations, CNN needs to rely on
layer-by-layer stacking of convolutional layers to improve the receptive field of the neural
network and establish it. For images or speech with strong local spatial relations, CNN
or time-delay neural networks will be particularly suitable. However, there are no strong
local spatial relations for underwater acoustic target signals, especially ship-radiated noise
signals. Moreover, much of the available information may be lost in the local space due to
the comb filtering characteristics of the underwater acoustic channel and ocean background
noise. Therefore, the neural network that establishes local spatial relations layer by layer
is unsuitable for underwater acoustic signal processing. The neural network needs to
establish cross-regional relations to expand the range of feature searches. This paper pro-
poses the BBM to establish a global cross-regional relation in each layer, so that the neural
network can extract stable and reliable robust features as much as possible, especially for
damaged signals. The overall architecture of the proposed BBM is shown in Figure 3.
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Figure 3. Schematic diagram of basic block of the MLP module.

The underwater acoustic target signal is subjected to time–frequency transformation
to obtain a two-dimensional spectrogram. These two dimensions represent frequency and
time, respectively, as shown in Figure 2. The two dimensions of input or output features
of the BBM are defined as the time-axis (T-axis) and the frequency-axis (F-axis). If the
spectrogram is directly input into BBM, the time dimension is represented by the T-axis,
and the F-axis represents the frequency dimension. For the middle layer of the network,
the T-axis still denotes the time dimension after the feature encoding, and F-axis denotes
the frequency dimension after the feature encoding.
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BBM divides features into patches based on the T-axis and F-axis. This division
method enables neural networks to build long-distance relationships in a single network
layer. Additionally, the division of patches is similar to VIT [29], but patches of BBM are
divided according to the horizontal or vertical axis. The patches divided by the T-axis are
called F-patches, and the patches divided by the F-axis are called T-patches. BBM consists
of two MLPs [30], Mlp1 and Mlp2. As shown in Figure 3, BBM first sends F-patches of
input features to Mlp1 for feature extraction, and Mlp1 will be encoded according to the F-
patches. This encoding method enables the neural network to establish a unique frequency
encoding, so that it can reconstruct the concept of frequency in its own way. Secondly, BBM
sends the T-patches of the Mlp1 output to Mlp2. Mlp2 encodes a single frequency encoded
value in the whole period, so the neural network can easily distinguish the frequency range
with a significant response, and the frequency shielded by noise and other interference
in a small range of time is compensated. Finally, the residual structure [31] is introduced
into the BBM to avoid the disappearance of the gradient, and the features after nonlinear
activation are output for the next block. BBM can establish a global feature relation and
is suitable for processing ship-radiated noise signals. In the next section, this paper will
construct a robust feature extraction network based on BBM, namely the MLP module.

2.2. Robust Feature Extraction Network

This section introduces the MLP module design based on the BBM constructed above,
called robust feature extraction network. The construction of a robust feature extraction net-
work aims to solve three defects in the classical deep learning-based underwater acoustic
target recognition algorithm: 1. the classic recognition network is trained on a spectrogram,
and the recognition accuracy is limited due to insufficient feature extraction performance;
2. the anti-noise ability of classical features is insufficient; and 3. the manual features
extracted based on human prior are challenging to fuse with the features extracted au-
tomatically by the machine. The MLP module for extracting robust features is shown
in Figure 4.
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In this paper, the MLP module uses an MLP unit to encode the time information, and
the encoded features are sent to the BBM sub-module for feature extraction. The BBM
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submodule is composed of four BBMs in series, and its output is sent to a mask generator
to generate a mask. The mask is multiplied by the input spectrum to filter noise and extract
robust features suitable for the classification network. The MLP module provides a neural
network suitable for processing underwater acoustic signals. The next section introduces
the method of training the network.

2.3. Training Method of RFEM-Based Recognition Systems

There are no massive training samples for most underwater acoustic target intelligent
recognition models. It is difficult for recognition algorithms to extract reliable features
from noisy signals. In addition, many scholars have studied ship-radiated noise and
proposed stable classical manual feature extraction methods, such as the frequency-selection
method. Therefore, this paper proposes a multi-task learning method to train RFEM, so that
RFEM learns to resist noise interference and learns to knowledge of frequency-selection
to complete the extraction of manual features. The schematic diagram of the multi-task
strategy is shown in Figure 5.
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For the MLP module, the single mask generator is replaced with three mask generators
during the training stage. These three generators are used for different tasks: a robust
feature extraction task for classification, an anti-noise task, and an optimized frequency-
selection task. All three tasks employ the mask generators to generate masks, then use
masks to shield interference information on the original spectrum and extract useful
information. The three tasks are similar, so they have the effect of promoting each other.

2.3.1. Anti-Noise Task

The purpose of the anti-noise task is to make the model learn to resist different levels
of noise and avoid interference in classification. Gaussian white noise with specified power
is added to the original signal to form a damaged signal interfered by noise. The anti-noise
ability of RFEM is trained on an anti-noise task based on these samples, as shown in
Figure 6. The anti-noise task is called Task 1 in this paper.

The purpose of Task 1 is to optimize the damaged signal and extract features similar
to the original signal. Gaussian white noise is added to the original signal according to
Equation (1):

d = s + n (1)
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where n is Gaussian white noise, s is the original signal, and d denotes the damaged signal.
The energy of the added signal is calculated according to Equation (2):

SNR = 10lg
E(s)
E(n)

(2)

where SNR represents the signal-to-noise ratio, E(s) is the energy of the original signal, and
E(n) is the energy of the noise signal. It is worth noting that the signal-to-noise ratio here
is not the actual signal-to-noise ratio of ship-radiated noise. The original and damaged
signals are sent to the primary feature extractor to extract the primary features. The original
signal is optionally autocorrelated before being fed into the primary feature extractor.
The time–frequency feature used in this paper is the spectrum. After the primary feature
extraction, the features of the damaged signal are input into RFEM, and the optimized
features consistent with the input feature dimension are output. The model is trained to
optimize the damaged signal and extract the same features as the original signal.
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2.3.2. Optimized Frequency-Selection Task

Ships are equipped with many complex types of machinery, including power systems
and other auxiliary mechanical systems. These machines inevitably produce friction, colli-
sion, and vibration when they work or the ship moves, thus spreading into the ocean. These
noises are likely to contain specific frequency components for target recognition [8]. This
paper introduces an optimized frequency selection method to select important frequency
components. The frequency selection task is designed in the training stage, called Task
2. Time–frequency analysis of a ship-radiated noise signal can obtain the change in the
frequency component with time. For the information obtained by time–frequency analysis,
the intensity of the frequency component is calculated according to Equation (3):

Fj =
1
T

T

∑
i=0

Sij (3)

where S denotes the optimized time–frequency spectrum matrix, T represents the length of
the time dimension, and F is the frequency intensity vector. The frequency components
with high intensity are screened according to Equation (4):

Aj =

{∣∣Fj − F
∣∣, j ≤ f

a
Fj − F, j > f

a
(4)

where F denotes the mean value of frequency intensity vector, f represents the maximum
frequency value, a represents the frequency threshold, and A represents a frequency selec-
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tion vector. After obtaining A, another optimized frequency selection vector is calculated
according to Equation (5):

Bj = Fj −
1
N

N

∑
c=0

kc(Fj) (5)

where kc(·) denotes the c-th kernel average smoother, N represents the total number of
kernel average smoother, and B represents the another frequency selection vector. After
obtaining two frequency selection vectors, the frequency intensity vector is optimized
according to Equation (6):

Lj =

{
Bj, Aj > 0, Bj > 0

0, other
(6)

where L denotes optimized frequency intensity vector. The optimized frequency-selection
task is designed according to the optimized frequency intensity vector, as shown in Figure 7.
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Based on the powerful feature extraction performance of RFEM, Task 2 guides the
model learning to select the frequency suitable for classification. It is worth noting that
when training the model based on Task 2, the frequency is still filtered based on the mask
structure in Figure 5.

2.3.3. Training Strategy and Loss Function

The previous section introduces the anti-noise and optimized frequency-selection tasks
in detail. This section introduces how to use these tasks to extract robust features and design
loss functions. This paper presents a multi-task learning method that uses anti-noise tasks,
optimized frequency-selection tasks as auxiliary tasks, and classification tasks as main
tasks. The same optimized normalization approach is used to handle features in different
tasks. Three tasks are collaboratively trained to search for common features automatically
under the hard parameter-sharing mechanism. Driven by the training samples, the model
is guided to extract robust features and complete target classification, as shown in Figure 8.

In the training stage, the damaged signal is first generated by original signal, and then
the time–frequency analysis module is used to extract the time–frequency features. Finally,
the time–frequency features of the damaged signal and the original signal are sent to RFEM
to complete the three tasks. In this paper, Task 1 and Task 2 use the L1 loss training model,
and Task 3 employs the negative likelihood loss training model. Although the three tasks
are trained by independent loss, the three tasks are trained simultaneously according to
Equation (7):

Loss = Loss1 + Loss2 + Loss3 (7)

Simultaneous training and the hard parameter-sharing mechanism enable RFEM to
extract robust features suitable for classification tasks.
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3. Experiments and Discussion
3.1. Experimental Dataset

This paper conducted experiments using ShipsEar [32], which was developed by the
research group of the University of Diego on the Spanish Atlantic coast and is currently
widely used by researchers. The dataset was recorded by hydrophones deployed from
docks to capture different ship noises corresponding to docking or undocking maneuvers.
The autonomous acoustic digitalHyd SR-1 recorder was used to record data. The recorder
had a nominal sensitivity of −193.5 dB re 1V/1 uPa and a flat response in the 1 Hz-28 kHz
frequency range. Annotated information includes recording technology and environmental
and other conditions during collection. Finally, the dataset was made up of 90 recordings
in wav. The recordings belonged to five categories: ocean noise and four different types of
ship targets, as shown in Table 1.

Table 1. The type of noise contained in the dataset used in the experiments.

Category Targets

Class-A Ocean noise
Class-B Fishing boats, trawlers, mussel boats, tugboats and dredgers
Class-C Motorboats, pilot boats, sailboats
Class-D Passenger liners
Class-E Ocean liners and Ro-Ro vessels

Each category contained one or more targets, and the duration of each audio segment
ranged from 15 s to 10 min. The data were pre-processed by removing the blank signal
and segmenting all accords to a fixed duration of 3s, which resulted in 3626 labeled sound
samples. Two dataset partitioning methods [33] were used in the experiments. The first
method randomly sorted all samples, and the ratio of the training set to the test set was 4:1,
named Dataset A. The other method involved taking only four types of target samples, and
sorting the samples from the same record according to time. The samples in the front were
test samples, and the samples in the back were training samples; the ratio of training data
to test data was 3:1. The dataset divided in the second way was named Dataset B. Dataset B
was more challenging than Dataset A in recognition tasks and is more suitable for practical
applications, which is equivalent to using samples for a period of time to train the model to
predict the category of targets for another time.
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3.2. Experimental Setup

In this paper, three experiments were designed to verify the proposed method, includ-
ing basic experiments, feature comparison experiments with observed data, and compari-
son experiments with published algorithms. The basic experiment compared the perfor-
mance differences between the proposed method and the features extracted directly by the
primary feature extractor. The primary features used here were classic short-time Fourier
transform spectral features. The second experiment compared the proposed method with
the popular feature-based method [34], including MFCC, F-Bank, and CQT. Additionally,
the proposed method was compared with the published methods in the final experiment.
The first two experiments were based on the challenging Dataset B to evaluate the proposed
method comprehensively. Additionally, the last experiment used Dataset A to be consistent
with the comparison method. Mfcc and F-bank had a window size of 2048, a jump length
of 512, and the number of frequency bands was 40 and 128, respectively. In the experiment,
we added different levels of Gaussian white noise to the observed data to simulate signals
with different signal-to-noise ratios, and evaluated the robustness of the method to noise.
Among them, noise was added to simulate different signal-to-noise ratio levels, ranging
from −5 dB to 30 dB, to facilitate a more comprehensive demonstration of algorithm per-
formance. The final experiment simulated signal-to-noise ratio levels from −10 dB to 5 dB,
which was convenient to maintain consistency with the comparison methods.

The classic VGGish [35] was used as the classification network to construct the classifier.
VGGish has been widely used, which can objectively reflect the classification performance
brought about by feature improvement. All the raw audio recordings were resampled to
4 kHz. In the training stage, the Adam algorithm was used as an optimizer with the default
parameters. The model had a total of 50,000 training steps, and the initial learning rate was
0.0001. When the number of training steps reached 30,000, the learning rate was reduced to
one-tenth of the initial learning rate.

3.3. Basic Experiment

The basic experiment compared the performance differences between the proposed
method and the features directly extracted by the primary feature extractor. In the experi-
ment, the short-time Fourier spectrum extractor was used as the primary feature extractor.
In other words, this part directly compared the performance between the robust features
extracted by RFEM and the classical time-frequency features. During the experiment,
classification networks were configured with the same parameters, and the following ex-
periments also followed this rule. Precision, recall, f1-score, and accuracy were used as
evaluation indicators. The experimental results are shown in Table 2.

Table 2. Classification accuracy of the basic experiment.

Model STFT Our

Precision 0.874 0.923
Recall 0.862 0.918

F1-score 0.867 0.920
Accuracy 0.875 0.926

Table 2 shows that the proposed method is ahead of STFT regarding various evaluation
indicators, and the proposed method improves the accuracy by 5.1%, which proves that
the proposed method can improve the recognition performance. In order to further verify
the robustness of the proposed method, recognition experiments with different Gaussian
noise levels were performed again on the dataset. In the experiment, Gaussian white noise
with specified power was added to the data, and the results are shown in Figure 9.
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Figure 9 shows that the proposed method significantly improves the anti-noise per-
formance of the recognition model. Using the robust features generated by RFEM for
classification, the accuracy is almost still the same when dealing with slight noise inter-
ference. Even under −5 dB, the accuracy is reduced by no more than 5%. In contrast, the
classification model adapted to STFT features has feeble anti-noise performance. The two
methods are based on the same primary feature extractor and classification network, but
the performance is very different. The proposed method’s RFEM and multi-task learning
strategy effectively improve the feature extraction and classification performance.

3.4. Comparison of Popular Feature-Based Methods

In this experiment, the proposed method was compared with methods based on
popular features, including MFCC, F-Bank, and CQT. These features are widely used in
deep learning-based recognition methods. Experiments were conducted at different noise
levels, and the results are shown in Figure 10.
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It can be seen from Figure 10 that the proposed method has better classification
performance than several classical features without additional noise. For different levels of
noise, different features show different performances. CQT performs well in the case of high
SNR, but it cannot resist noise well. MFCC and F-Bank have similar anti-noise performance,
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but F-Bank is slightly ahead of MFCC. It is worth mentioning that the proposed method is
entirely ahead of these classical features.

3.5. Comparison of Published Methods

In order to better measure the performance of the proposed method, the method was
compared with the recently published results. Experiments were arranged on Dataset A to
maintain consistency with the experimental conditions of the comparison methods. We
evaluated the method proposed in this paper five times, taking the appropriate average
value and giving the error range. The experimental results are shown in Table 3.

Table 3. The recognition accuracy of the proposed method is compared with SVM [36,37], Simple-
CNN [36,38,39], and MR-CNN-A [36].

SNR/dB SVM Simple-CNN MR-CNN-A Our

5 0.790 0.921 0.985 0.989 ± 0.003
0 0.752 0.868 0.955 0.986 ± 0.004
−5 0.695 0.738 0.917 0.978 ± 0.008
−10 0.643 0.726 0.884 0.944 ± 0.016

Compared with the recently published results, the proposed method presents an
improved performance. At −10 dB, the recognition accuracy is 30.2%, 21.9%, and 6.1%
higher than that of SVM, Simple-CNN, and MR-CNN-A, respectively. The recognition
results further prove the effectiveness of RFEM and multi-task learning strategies.

4. Conclusions

In this paper, a neural network block suitable for underwater acoustic signal process-
ing is designed, and a robust feature extraction method based on a multi-task strategy is
proposed. The proposed neural network block establishes a global cross-regional relation-
ship in a single block. Compared with the traditional convolutional neural network, it is
more efficient and easy to establish a global receptive field, which is conducive to modeling
signals using the neural network. Based on the proposed neural network block, a multi-
task learning strategy is designed to learn anti-noise and prior knowledge-based feature
extraction, which improves robust feature extraction and accuracy. Several experiments
were conducted based on a public dataset. The results show that the proposed method
presents an improved performance in anti-noise and accuracy compared with mainstream
methods. In addition, this paper presents the concept of embedding prior knowledge into
neural networks, which helps to promote the development of underwater acoustic target
recognition methods.
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