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Abstract: Open-Domain Question Answering (Open-Domain QA) aims to answer any factoid ques-
tions from users. Recent progress in Open-Domain QA adopts the “retriever-reader” structure,
which has proven effective. Retriever methods are mainly categorized as sparse retrievers and dense
retrievers. In recent work, the dense retriever showed a stronger semantic interpretation than the
sparse retriever. When training a dual-encoder dense retriever for document retrieval and reranking,
there are two challenges: negative selection and a lack of training data. In this study, we make
three major contributions to this topic: negative selection by query generation, data augmentation
from negatives, and a passage evaluation method. We prove that the model performs better by
focusing on false negatives and data augmentation in the Open-Domain QA passage rerank task.
Our model outperforms other single dual-encoder rerankers over BERT-base and BM25 by 0.7 in
MRR@10, achieving the highest Recall@50 and the max Recall@1000, which is restricted by the BM25
retrieval results.

Keywords: open-domain question answering; passage rerank; data augmentation; negative selection;
BERT

1. Introduction

With the rapid development of the internet, people are facing the problem of obtaining
the required response from a large amount of information. Search engines alleviate this
issue; however, they can only provide a list of web page results rather than a direct answer.
Compared with search engines, Question Answering (QA) systems are able to provide
direct answers to satisfy users. The early question answering systems (e.g., [1,2]) are more
like expert systems. As QA systems gradually develop, the knowledge source changes from
an artificially encoded knowledge base to text collections. Restricted Domains Question
Answering (RDQA [3]) aims to answer questions in restricted domains. Compared with
RDQA, Open-Domain QA [4] aims to find the answers to any factoid questions using an
unlimited knowledge base in any domain.

Due to the gradual maturity of associated techniques in natural language processing,
deep learning has been used in almost every stage of Open-Domain QA. DrQA [5] is the
first Open-Domain QA model to use Neural Machine Reading Comprehension (Neural
MRC) in Open-Domain QA, resulting in a two-stage structure QA system which consists of
a retriever and a reader. In a two-stage QA system, the retriever retrieves a list of passages
from a large database, then the reader provides the final answer, the accuracy of which is
not only decided by the reader itself but also by the performance of the retriever. Traditional
retrievers are efficient, with an inverted index, but face difficulties (e.g., term mismatch [6])
in matching queries and passages, e.g., Term Frequency–Inverse Document Frequency
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(TF-IDF) and Best Match 25 (BM25). Recently, based on Pre-trained Language Models
(PLMs), the dual-encoder has been widely used to learn the relations between queries and
passages. It outperforms sparse retrievers.

There are two major challenges when it comes to training a dual-encoder for document
retrieval:

The first is the hard negative selection problem. A hard negative is a negative that
is more likely to be regarded as a positive by the model and is more valuable than simple
negatives (there may be lots of overlapping tokens between the hard negative and the
positive). Since most negatives in Open-Domain QA are not labeled, selecting hard nega-
tives for the model is problematic. There are two main training approaches used to select
hard negatives for dual-encoders: list-wise and pair-wise. In the list-wise approach, the
dual-encoder chooses in-batch negatives, facing the limit of the memory of the GPU (or
other devices). When using the pair-wise approach, the dual-encoder uses triples of query,
positive and negative as the training data, leading to issues related to the low quality of
training data. Both methods face the hard negative selection problem.

The second is the training data deficiency problem. More training data usually
improves the performance of the Open-Domain QA models, but it is expensive to acquire
labeled data. In recent work, cross-encoders have been used to build labels for unlabeled
data, especially in large-scale datasets (e.g., MS-MARCO [7]; Natural Questions [8]), but
the method faces two problems: the cross-encoder is too expensive and the labeled data
are limited since they only come from the original unlabeled passages (the total amount of
training data is constant).

In this paper, we present several methods with which to alleviate these problems
relating to dual-encoder training in Open-domain QA systems. First, we change the dataset
distribution to enable the dual-encoder to learn more about the difference between false
negatives and negatives using a fine-tuned BART [9] model. Second, to acquire more
training data, we use the BART model to generate queries. We choose the generated queries
which have low similarity scores with the positive queries as the new queries, the negatives
as new positives, and the positives as new negatives. Third, we use the probability of
generating the query from the negative as an evaluation of the negative.

Our contributions are as follows:

• We present a BERT-based semantic information selection method, named SS-BERT,
to alleviate the hard negative selection problem and the training data deficiency
problem.

• We prove that the dual-encoder performs better by focusing on hard negatives in the
Open-Domain QA passage rerank task;

• The proposed methods outperform other passage rerankers on MRR@10 and Recall@50
with a single dual-encoder based on the BERT-based model and BM25 retriever.

2. Related Work

The retriever, the reranker, and the reader are the core modules of the two-stage Open-
domain QA, in this section, we introduce how retrievers and rerankers have developed
recently and give a brief review of the sequence-to-sequence method, which is applied in
our proposed model.

2.1. Retriever Methods

Retriever methods are mainly divided into sparse retrievers and dense retrievers.
In recent work, dense retrievers (e.g., [10–12]) outperformed traditional sparse retrievers
(e.g., TF-IDF and BM25). They usually represent queries and passages as vectors in low-
dimensional vector space (compared with the dictionary size) and calculate their similarity
in terms of the dot product.

Retrieval models usually use dual encoders or cross-encoders, which are representa-
tion based and interaction based, respectively. Furthermore, the late interaction encoder
is representation–interaction based (e.g., [13]). The three methods are shown in Figure 1.
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Dual encoders use two encoders to represent queries and passages, respectively (e.g., [10]).
Cross-encoders use one encoder to jointly represent queries and passages (e.g., [14–16]).
The cross-encoder captures the semantic relationships between queries and passages more
precisely than the dual encoder, but it requires much more computational resources than
the dual encoder, and it is usually used as the passage reranker.

Figure 1. Retriever Methods. Among the methods, dual-encoder is more efficient, cross-encoder is
more accurate, and late-interaction looks for a balance of efficiency and accuracy.

2.2. Passage Reranker

Recently, a two-stage retriever structure has been proved efficient, which further
divides the retriever into two categories: retriever and passage reranker. For example,
Rocket QA [14] con-cats the query and the passage as the input to train the reranker, then
uses the reranker to drop the retrieval results with low confidence scores and generate
labeled data with which to train the cross-encoder. PAIR [16] follows Rocket QA and
presents a method for measuring the similarity of passages to drop false negatives. Rocket
QA v2 [15] presents dynamic list-wise distillation to jointly train the retriever and reranker.
ColBERT [13] presents a light late interaction model over BERT [17] as a reranker.

Since the cross-encoder is expensive, in order to balance efficiency and accuracy
simultaneously, our method uses a dual-encoder as the reranker. We fine-tune a BART [9]
model to improve the dual-encoder through negative selection, data augmentation, and
passage evaluation, which is described in the Methodology and the Experimental Section.

2.3. Sequence-to-Sequence Method

Sequence-to-Sequence (Seq2Seq) is a method that generates a sequence with a given
sequence. It was first presented in 2014 ([18,19]). GPT [20] uses a diverse corpus of
unlabeled text to train a generative pre-train model, then fine-tunes the model on different
tasks, e.g., text generation. BART [9] is one of the best seq2seq models for text generation,
combining the advantages of BERT [17] and GPT [20], BART uses a cascade structure of
a bidirectional encoder and an auto-regressive decoder to allow arbitrary noises to avoid
model dependence on sequence information. DocT5query [21] follows DocTquery [22]; it
uses T5 [23] to generate queries from given documents. The queries can be answered with
the documents, then the generated queries are added to the documents. Recent work [24]
used BART-large (374M parameters, 12 layers in the encoder and decoder) to generate
queries from English Wikipedia in a zero-shot retrieval task, unsupervised, and found that
for some datasets, the model training on the generated dataset outperformed the original
one. Our proposed model uses a fine-tuned BART-base model to generate queries from
negatives, which is described in the Methodology and the Experimental Section.

3. Methodology

In this section, we present a light passage reranker that selects semantic information
including negatives via the BART [9] model and method over BERT [17] dual encoder
(called SS-BERT). SS-BERT has the advantage of being a light model which can be used as a
module in another retriever framework.
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3.1. Task Description

To choose passages to obtain the answer to a natural question from a large corpus,
a two-stage retriever begins by using a retriever to choose a list of passages from the corpus.
Since we present our model as a flexible module for the retriever, we continue to use BM25
as the retriever and keep the top k results of BM25, then we use a passage reranker to
rerank the top k results.

3.2. Negative Selection by Query Generation

The QA system faces the problem of insufficient training data since it is expensive to
obtain labeled data. We try to improve the quality of training data to alleviate the problem.
In the retrieval task, when using the pairwise training method, training data are in the
form of triples consisting of query, positive, and negative (denoted as T(q, p, n)). However,
there are more negatives than positives, which means the quality of negatives may not be
very high because they are actually unlabeled. Furthermore, hard negatives are not labeled;
thus, the model would regard them as simple negatives. Table 1 shows a hard negative
case in the MS-MARCO dataset; our proposed negative selection method tries to judge the
hard negatives.

Table 1. Hard Negative Case. In this case, the keywords ‘a master’s degree’ are mentioned many
times both in the positive and the negative. The cosine similarity of the positive and the hard negative
is 0.9, which is calculated as shown in Section 4.2. This kind of negative is called hard negative;
however, a hard negative is always regarded as a common negative, since it is too expensive to label
all negatives.

Data Type Text

query How long it takes to get a master’s degree

positive

In most cases, a master’s degree program takes two
years to complete, although there are exceptions to the
rule. If you’d like to know how long it would take to
earn a master’s degree, you should consider how much
time you could devote to school and the specific type
of program you will be enrolling in.

hard negative

Normally you need to get a bachelor’s degree before
you get a master’s degree. The bachelor’s degree is
the basic college degree. it can be completed in three
years including summers, or in four years if you take
summers off. The master’s degree follows it. Any indi-
viduals may pursue a master’s degree in a field unre-
lated to their bachelor’s degree. My bachelor’s degree
is in psychology. However, my master’s degree is in
organizational management.

To alleviate the problem, we fine-tune the BART-base model with the MS-MARCO
dataset (using the Huggingface Transformers library [25]) and use the model to generate
queries from the negatives (denote the queries as generated queries qG ). Then, we compute
the similarity score (denoted as sim(q, qG )) between the queries q) and the generated queries:

sim(q, qG ) = E(q) · E(qG ) (1)

We set a threshold (denoted as tG ) and drop the negative if sim(q, qG ) is smaller than
tG . After all the negatives have been selected, we obtain the negatives set (denoted as
nH ), which represents the part of the original data which are more similar to the positives
and thus more likely to be hard negatives; the pipeline is shown in Figure 2. Then, we
mix the triples T(q, p, n) and T(q, p, nH ) in a 1:1 ratio and obtain new triples Thybrid, which
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have a data distribution that focuses more on the false negatives. The strategy is shown in
Figure 3.

The method enables the dual encoder to learn more about the differences between
false negatives and positives. As a result, it performs better, which indicates a novel
method for data pre-processing for the task (e.g., training a data reranker to change the
data distribution to improve the dataset quality). With the proposed method, the model
performs better; the experimental results are shown in Section 4.3.

Figure 2. The pipeline of negative choices from the original dataset. (1) A BART model is fine-tuned
with query-positive pairs; (2) the fine-tuned BART model generates queries from the negatives; (3) the
similarity scores of queries and generated queries are calculated after being encoded by a BERT
model; (4) choose negatives of which the similarity scores are higher than the threshold.

Figure 3. Acquire the hybrid triples. The chosen triples are more likely to be hard negatives.

3.3. Data Augmentation From Negatives

We set a threshold (denoted as tA ) using the generated query qG , the negative, and the
positive as a new triple T(qG , pnew, nnew), of which the sG is lower than tA . This means the
positive is not similar to the negative, so it is actually the negative of the generated query.
Compared with the original triple T(q, p, n), p is the same as nnew, and n is the same as pnew.
We add the new triples T(qG , pnew, nnew) into Thybrid and the model performs better. The
experimental results are shown in Section 4.3, and a case of data augmentation is shown in
Section 4.4.
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3.4. Passage Evaluation

In passage rerank, we set the query as the target and the passage as the input, denoting
the probability of a BART model generating the target from the input as Pt . A high Pt means
the passage is more likely positive. In Formula (2), n is the length of a query, tokt is the tth
token of a query, and squery is the score needed for BART to generate the query from the
passage. A ratio (denoted as ks) is used to limit the influence of the score squery. In passage
rerank, we denote the score of a passage as spassage (spassage is calculated as ColBERT [13]).
It becomes s

′
passage with our method, as shown below. The experimental results are shown

in Section 4.3:

squery = −
n

∑
t=1

log p(tokt|tok1, . . . , tokt−1, passage) (2)

s
′
passage = spassage + ks · squery (3)

4. Experiments

In this section, we describe the experimental setting details, including how to make the
generated query reusable for saving computing resources, evaluation metrics, experimental
results, and case studies.

4.1. Experimental Settings
4.1.1. Dataset

This paper uses MS-MARCO [7] to evaluate the proposed model. MS-MARCO is
one of the most popular Open-Domain QA datasets. In MS-MARCO, all queries are
sampled from real anonymous user queries through Bing or Cortana. The passages are
extracted from real web documents by the Bing search engine. The answers are human-
generated from the context passages and are strongly encouraged to be in the form of a
complete sentence.

The dataset has 502,939 queries in the training set; 6980 queries in the dev set;
6837 queries in the test set; 8,841,823 non-redundant passages and 39,769,172 triples (a
triple consists of a query, a positive, and a negative; the negatives are from the 8,841,823 pas-
sages, which means each passage is used 4.5 times on average). Each query has an average
of only 1.07 positives and 5.97 words; each passage has an average of 56.58 words.

In the MS-MARCO dataset, since the queries come from real anonymous users, only
part of the queries contain keywords such as “what”, “how”, “where”, etc. As mentioned in
Section 3.3, our proposed method generates queries from negatives with a fine-tuned BART-
base [9] model, the distribution of queries’ keywords in the generated queries is compared
to that in the MS-MARCO dataset in Table 2. The top two words in both datasets are “what”
(42.2% and 43.8%) and “how” (15.3% and 19.5%), and the third word in MS-MARCO is
“where” (4.4%, 4.3% in the generated dataset) and the third word in the generated dataset is
“which” (4.9%, 1.7% in MS-MARCO). The similar keyword distribution between the two
datasets indicates the generated queries are reliable.

Table 2. The distribution of queries’ keywords of MS-MARCO and SS-BERT generated queries.

Query Contains Percentage of Queries
(MS-MARCO)

Percentage of Queries
(SS-BERT)

what 42.2% 43.8%
how 15.3% 19.5%

where 4.4% 4.3%
when 2.0% 3.4%
why 1.8% 1.1%
who 1.7% 4.9%

which 1.4% 0.3%
others 1 31.2% 22.5%

1 “others” means queries that do not contain the above words.
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4.1.2. Evaluation Metrics

Following previous work, we use Mean Reciprocal Rank (MRR) and Recall at Top k
(R@k) to evaluate the performance of the reranker.

MRR calculates the averaged reciprocal of the rank at which the first positive passage
is retrieved. When using MRR we focus more on the EM (exact match) part than R@k.
When we use MRR@k to evaluate the model on N queries, it is calculated as below, pi
represents the rank of the true positive:

MRR@k =
1
N

N

∑
i=1

1
pi
(pi 6 k) (4)

R@k calculates the proportion of queries to which the top k retrieved passages contain
positives. We use R@50 and R@1000 to evaluate the reranker. When we use R@k to evaluate
the model on N queries, it is calculated as below, TPj = 1 when the jth sample is true
positive, TPj = 0 when the jth sample is negative (one true positive at most):

Recall@k =
1
N

N

∑
i=1

k

∑
j=1

TPj (5)

Rouge Rouge-N [26] calculates the n-gram recall between a candidate text and a
reference text, Rouge-L calculates the longest common sub-sequence between the candidate
and the reference, we use Rouge-1, Rouge-2, and Rouge-L to evaluate the fine-tuned BART-
base model mentioned in Section 3.2. Rouge-N is calculated as Formula (6), M is the number
of candidates, Countmatch(gramn) is the maximum number of n-grams co-occurring in the
candidate and the reference. Rouge-L is calculated as Formula (7), β is a large constant, Rlcs
is obtained by dividing LCS(R, C) (the longest common sub-sequence of the candidate and
the reference) by the length of the reference, Clcs is obtained by dividing LCS(R, C) by the
length of the candidate.

RougeN =
1
M

M

∑
i=1

∑
gramn∈Re f erence

Countmatch(gramn)

∑
gramn∈Re f erence

Count(gramn)
(6)

RougeL =
(1 + β2)RlcsClcs

Rlcs + β2Clcs
(7)

4.1.3. Implementation Details

We choose the MS-MARCO triples dataset, which has a format of query, positive
passage, and negative passage. The triples are disordered and the negatives are repeated.
We build labels between each triple and non-redundant negative (a non-redundant neg-
ative means one of the 8,841,823 passages mentioned in Section 4.1.1), then build labels
between each negative and its generated query. Once we acquire all generated queries
from the non-redundant negatives, we use the labels to distinguish the relationships
among queries, positives, negatives, and generated queries when we try new methods or
other hyper-parameters.

4.2. Passage Rerank

Fine-tune PLM Huggingface Transformers library [25] provides the method to fine-
tune BART [9] model on CNN-Dailymail dataset ([27,28]) of news articles paired. We
follow the framework, preprocess the MS-MARCO query-positive pairs to suit Huggingface
Transformers, and fine-tune BART-base on these data. In this paper, for efficiency, we choose
BART-base (6 layers in the encoder and decoder) to generate queries from negatives. The
fine-tuning process costs 5 h on 4 NVIDIA Tesla V100 GPUs (with 16G RAM). The version of
the transformers is 4.17.0. The ratio of train: test: valid is 8:1:1, dropout is 0.1, the number of
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epochs is 5, the batch size is 64, optimization steps is 26,000, and the gradient accumulation
step is 1. Cases of the generated queries are shown in Table 3, and the performance of the
fine-tuned BART-base model is shown in Table 4, which indicates the degree of confidence
of the generated queries.

Table 3. Query generation case, in this case, we choose three query-negative pairs to visually show
the quality of the generated queries.

Generated
Queries

Negatives

How to apply for
Schengen Visa

To apply for a Schengen Visa you should apply to the
embassy of the first country you intend to visit. If you
plan to visit Italy, France, and Spain (in that order) then
you only need to apply to the Italian embassy and your
visa is good for France and Spain too.

What diseases do
finches carry

However, in terms of diseases that can be transmitted
to other birds, finches can carry pretty much any avian
disease, including influenza viruses, Newcastle’s dis-
ease virus, many different bacterial diseases and both
internal and external parasites.

What is the func-
tion of capillaries

Veins carry blood from the other parts of the body to
the heart. They have valves to stop the backward flow
of blood. Capillaries are only one cell thick in reality,
and they help to diffuse substances from the blood to
the cell through the cell membrane (which is selectively
permeable).

Table 4. The performance of the fine-tuned BART-base model.

Model Dataset Rouge-1 Rouge-2 Rouge-L

Our Fine-tuned
BART-base MS-MARCO 55.66 31.28 52.67

Negative Selection We first process the MS-MARCO triples (query, positive, and
negative) train set and change the train set into ordered. Then, we build maps from triples
to non-redundant negatives and use the fine-tuned BART-base model to generate queries
(denoted as qG ) from the non-redundant negatives. Then, we use sentence-BERT [29] to
calculate the similarity score (denoted as sG ) of queries (denoted as q) and qG by dot product
(using cosine similarity as the metric). Then, we drop the negatives of which the sG is lower
than a threshold (denoted as tG ), the distribution of sG is in Table 5. We set the threshold
(denoted as tG ) as 0.3 which means we keep the top 50% of similar negatives for each
positive since these parts of negatives are more likely to be hard negatives. Then, we hybrid
the selected triples and original triples by 1:1. Finally, we train the dual encoder with the
hybrid train set.
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Table 5. The distribution of the similarity scores between queries and generated queries. The
distribution is important evidence for the threshold selection in the negative selection method and
the data augmentation method, which indicate the degree of confidence of the selected data. The
similarity scores are calculated through sentence-BERT [29].

Similarity Score Range Percentage Negatives Amount

(−1.0, 0.1) 20.17% 8,022,848
(0.1, 0.3) 30.69% 12,204,995
(0.3, 0.6) 39.02% 15,519,172
(0.6, 1.0) 10.12% 4,022,157

Total 39,769,172

Data Augmentation We set the threshold tA as 0.1, which means we choose about 8 M
generated queries to build new triples. The triples are the top 20% of credible generated data,
seen from the distribution of similarity scores, approximately. The rationality of the chosen
threshold is discussed in Section 4.3, and a case of the new triples is shown in Section 4.4.

Passage Evaluation The score of the passage is denoted as squery, we add (ks · squery)
on spassage to re-evaluate the passage. The ratio ks should not be too high since spassage and
squery are similar in size, a big ks intuitively means we regard a model fed with about 500 k
data as reliable as one fed with about 50 M data. When ks is in [0.05, 0.15], the model
performs best. The proposed method enhances the robustness of the model, thus improving
its performance.

4.3. Experimental Results
Compared Methods

We report the results of the following baselines: BM25 (official), K-NRM [30],
Duet ([31,32]), fastText+ConvK-NRM ([33]), ColBERT [13], and COIL [34]. Detailed
descriptions of the baselines are given below: Duet and fastText+ConvK-NRM are
representations of neural matching models that have been tested in MS-MARCO [7]
passage rerank task. ColBERT and COIL are both BERT-based and have a single dual-
encoder architecture. We do not show the result of BERT-large models, since the large
model with more parameters and neural network layers surely improves the model
performance. We do not compare the result with Multi-stage BERT [35], which has a
tandem structure of a list-wise BERT and a pair-wise BERT because our model can be
seen as a pair-wise BERT of the architecture.

• BM25 (official) is a traditional bag-of-words information retrieval method (a sparse
retriever), the rerank task of the following compared methods is based on the BM25
retriever result, which limits the Recall@1000 to 0.814.

• Soft-match of queries to document is a weaker signal compared with an exact match,
K-NRM focuses on soft-match features extraction through kernels, uses a kernel-
pooling technique to build word embeddings, then uses a translation matrix to model
word-level similarities.

• Duet uses two deep neural networks, a local sub-model to match the term space of
the queries and documents, and a distributed sub-model to match the learned latent
space of the queries and documents.

• fastText+ConvK-NRM conduct a set of experiments on K-NRM, ConvK-NRM [36]
and MatchPyramid [37], present a method that adopts sub-word token embeddings to
alleviate the absence of low-frequency words in the word embeddings list.

• COIL gives the matching scores between queries and documents through overlapping
query document tokens’ contextualized representations. COIL-tok uses the exact
match of tokens, and COIL-full uses CLS matching in addition.

• Col-BERT introduces a late interaction architecture to model the similarity between
queries and documents.
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The results are in Table 6, our SS-BERT outperforms other neural matching models
and dual-encoders based on BERT-base and BM25 retriever, all our proposed methods can
improve MRR@10 and achieve the maximum of Recall@1000, SS-BERT(d) has a higher
Recall@50 than baselines. The result shows that changing the data distribution improves
the model performance since the method enables the dual-encoder to focus more on hard
negatives. Data augmentation from negatives improves the model performance since the
method provides the dual-encoder with more reliable training data. Passage evaluation
improves the model performance since it enhances the robustness of the model.

Table 6. The results in MS-MARCO passage rerank task, PLM means the pre-trained language models
used in the dual-encoder. SS-BERT(t) means the model uses the negatives select method, SS-BERT(h)
means the model uses the negatives select method and the data augmentation method, SS-BERT(d)
means the model uses the negatives select method, the data augmentation method, and the passage
evaluation method.

Methods PLM MRR@10 Recall@50 Recall@1000

BM25(official) - 16.7 - 0.814
K-NRM - 19.8 - -

Duet - 24.3 - -
fastText+ConvK-NRM - 29.0 - -

COIL-tok BERTbase 33.6 - -
COIL-full BERTbase 34.8 - -
ColBERT BERTbase 34.9 0.751 0.814

SS-BERT(t) BERTbase 35.3 0.746 0.814
SS-BERT(h) BERTbase 35.5 0.751 0.814
SS-BERT(d) BERTbase 35.6 0.753 0.814

In order to prove the rationality of the threshold tA (tA = 0.1) in Section 4.2, when tA

changes, as shown in Table 5, the amount of new triples consisting of generated queries
grows as tA grows; however, a higher tA means the generated queries has a lower degree of
confidence.

Figure 4 shows how the model performs with different tA , a higher tA means the
new triples have a lower degree of confidence, thus the model performs worse when the
threshold is too high, which provides the model with too much “bad data”. Figure 5 shows
how many training steps the model needs to perform best with different tA , a higher tA

means more training data; thus, the model training cost is much higher. In both experiments,
the chosen tA are in [0.10, 0.16, 0.22, 0.28, 0.34, 0.40], according to a sequence of equal
difference.

4.4. Case Study

We choose a case of the data augmentation shown in Table 7, the original training
triple consists of a query, a positive, and a negative, and the generated query is generated
from the original negative. From the table, we see that the original negative contains the
answer to the generated query while the original positive does not. Therefore, we acquire
a new triple that regards the generated query as the new query, the original negative as
the new positive, and the original positive as the new negative. In the label, the main
overlapping tokens are in bold, we see that although the positive and negative have lots of
overlapping tokens, our method finds that they are different indeed, our method ensures
the quality of the new triple.
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Figure 4. This figure shows the model performance with different thresholds tA , which present
different amounts of new triples. When the amount of new triples grows, the model performs worse
since the data quality is worse.
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Figure 5. This figure shows the training steps for the model to perform best with different threshold tA ,
which presents different amount of new triples, the model costs much more computational resource
when tA is too big. Every 100,000 training steps cost about 17 hours for two NVIDIA Tesla V100 GPUs
with 16G RAM to train.

Table 7. Data Augmentation Case. In the case, since there are lots of overlapping tokens (‘interest’,
‘account’, which are in bold type) between the original positive and negative, it is hard for the model
to judge whether the positive and negative are similar through term frequency. We calculate the
similarity between the generated query and the original query, the similarity score is lower than 0.1
(using cosine similarity), so we regard the original positive as the negative of the generated query
and build a new triple.

Data type Text
original query $10,000 at 5% interest term deposit how much interest
original positive
(new negative)

With simple interest, interest is only paid at the end of
a specified term. A term deposit is an example of an
account that will earn simple interest not compound
interest. If you invested $10,000 at 5% per year, you
would earn $2,500 in simple interest after 5 years, $500
for each year.If you invested $10,000 at 5%, you would
earn $2,834 in compound interest after 5 years, giving
you a total of $12,834.

original negative
(new positive)

A full offset means that 100% of the funds in your offset
account will be deducted from what you owe on your
home loan before interest is calculated. A partial offset
gives you a reduced interest rate on the part of your
home loan equal to the balance of your offset account.
And while your money is working hard to reduce the
interest you pay, your offset account will also be every
bit as an everyday transaction account.this means you
pay less interest on your home loan.

generated query
(new query)

What is a full offset

Figure 5. This figure shows the training steps for the model to perform best with different thresholds
tA , which present different amounts of new triples, the model costs much more computational
resources when tA is too big. Every 100,000 training steps cost about 17 h for two NVIDIA Tesla V100
GPUs with 16G RAM to train.
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Table 7. Data Augmentation Case. In this case, since there are lots of overlapping tokens (‘interest’,
‘account’, which are in bold type) between the original positive and negative, it is hard for the model
to judge whether the positive and negative are similar through term frequency. We calculate the
similarity between the generated query and the original query, and the similarity score is lower than
0.1 (using cosine similarity), so we regard the original positive as the negative of the generated query
and build a new triple.

Data Type Text

original query $10,000 at 5% interest term deposit how much interest

original positive
(new negative)

With simple interest, interest is only paid at the end
of a specified term. A term deposit is an example of an
account that will earn simple interest not compound
interest. If you invested $10,000 at 5% per year, you
would earn $2500 in simple interest after 5 years, $500
for each year. If you invested $10,000 at 5%, you would
earn $2834 in compound interest after 5 years, giving
you a total of $12,834.

original negative
(new positive)

A full offset means that 100% of the funds in your offset
account will be deducted from what you owe on your
home loan before interest is calculated. A partial offset
gives you a reduced interest rate on the part of your
home loan equal to the balance of your offset account
and while your money is working hard to reduce the
interest you pay, your offset account will also be every
bit as an everyday transaction account. This means
you pay less interest on your home loan.

generated query
(new query)

What is a full offset

5. Conclusions

The recent work focus on the two-stage Open-Domain QA system, improvements in
both the retriever and the reader can improve the performance of the system. Our work
tries to improve the reranker module in a retriever–reranker structure.

In this paper, to alleviate two problems in Open-domain QA: high-quality negatives
selection and insufficient high-quality training data, we propose SS-BERT, a semantic
information selecting method for Open-Domain QA passage rerank. We propose three
methods to re-evaluate labeled data and create new labeled data: Negative selection
by query generation, Data augmentation from negatives, and Passage evaluation. The
experiments show that our methods are effective: among all the dual-encoder rerankers
based on BERT-base and BM25, our proposed model performs best on MRR@10 (all the
methods are effective) and Recall@50 and achieved the highest Recall@1000, which is
limited by the BM25 retrieval result.

SS-BERT is a light model used for training a dual encoder, we use light pre-trained
models (e.g., BERT-base, BART-base) to finish the dual-encoder training and query genera-
tion. We believe the absolute value of the model performance will significantly improve
if we replace the base models with other state-of-art pre-trained models, which may cost
much more computational resources. We plan to apply our method to train a cross-encoder
and apply our method on other datasets in the future, which ask for much more computing
resources (we have only two NVIDIA Tesla V100 GPUs with 16G RAM most of the time).
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