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Abstract: Electrode-pair towed antennas are widely utilized for marine electromagnetic detection,
underwater communication, and other purposes. However, the motion-induced noise created by
antenna vibrations due to environmental turbulence affects extremely low frequency and super
low frequency (ELF/SLF) communications. In this article, we presented a method for detecting the
motion-induced noise of electrode-pair towed antennas using helix coil sensors. The equivalent
resistance, inductance, capacitance, and conductance (RLCG) transmission model and parameters
were derived based on the mirror method of the twisted structure with a shielding layer inside. A
water-flow cycling experimental platform was constructed to evaluate two types of antenna sections.
Electrode-pair, accelerators, and helix coils sensors signals were sampled and analyzed in time and
frequency domain. The comparison results demonstrated that the helix coil sensors achieved a high
correlation with the electrode-pair towed antenna in various vibration speeds ranging from 0.7 to 0.9.

Keywords: ELF/SLF; electrode-pair; towed antennas; motion-induced noise; helix coil sensors

1. Introduction

The electrode-pair towed antenna, which exposed electrodes submerged in a con-
ductive medium, is the ideal antenna for receiving ELF/SLF electromagnetic signals in
water due to its low impedance and long effective length. It was utilized extensively for
submerged geological surveys [1], oil exploration [2], electromagnetic communication [3],
and other applications. According to research, the change in relative velocity caused by
the towing speed, cable structure, current turbulence, etc., is the primary cause of the
motion-induced noise produced by the vibrating antenna cable while being towed in
seawater [4].

Burrows collaborated with the Naval Underwater Systems Center (NUCC), New
London Laboratory, and Lincoln Laboratory to undertake the initial research. He con-
ducted experiments using a 300 m electrode-pair towed antenna [5] and concluded that
the motion-induced noise was produced by boundary layer turbulence adjacent to the
electrodes. In addition to measuring the power spectrum density of noise at various towing
speeds, a summary of empirical formulas was also provided. The mechanics analysis and
cable vibration experiments [6] provided additional evidence that surface wave dynamics
stimulated cable transverse displacement and curvature change and produced ELF/SLF
noise. Maksi [7,8] examined how the conducting medium created a double electric layer
(DEL) structure on the electrode surface and claimed that polarization noise was analogous
to the relative displacement of parallel capacitance plates. A shroud with open-hole domes
can be used to reduce noise. Djanni [9] observed in an experiment using a prototype
EM streamer suspended in the Edinburgh FloWave tank that the primary source of noise
was the fluctuation of seawater, which could be reduced by dragging the cable deeper
and tightening it. According to Ronaess [10], multiple sensors, such as accelerometers,
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gyroscopes, compasses, strain gauges, and other devices, should be placed along the towed
cable in order to estimate the induced voltage from motion measurements, which can then
be used to correct the electromagnetic field parameters. Ziolkowski [11] suggested putting
three mutually orthogonal coils next to the electromagnetic receiver in order to identify
and evaluate motion-induced noise in the received signals. The Wiener filter can eliminate
the disturbance. None of the aforementioned patents, however, gave experimental sensor
design data. Kai Chen [12] discovered a substantial association between induced EM noise
and current velocity when the speed exceeded 2 cm/s and mounted a current meter on an
OBEM to determine synchronous velocity. An adaptive correlation filter was developed in
order to reduce motion-induced noise in maritime magnetotelluric (MT) observations. The
current velocity sensor has a threshold value, which limits the effectiveness of the filter.

Accelerators were mainly used for motion-induced noise detection in previous lit-
eratures, which included piezoelectric, piezoresistive, capacitive, and servo sensors [13],
etc. However, the towed antenna is hundreds of meters long, and the accelerators can
only detect local signals, which can easily lose high frequency harmonics. Installing a
large number of accelerators will lead to an increase in antenna cable density and affect
the positive buoyancy. In addition, accelerators need long-distance power supply, and the
harmonics will interfere with the weak ELF/SLF received signals. Thus, we propose a type
of helix coil sensors. It is conformally installed along the antenna cable without a power
supply, which showed a strong prospect for practical engineering.

The main contributions of this article were as follows:

• A new helix coil sensors structure with conformal towed antenna was proposed to
simultaneously detect the motion-induced noise of an electrode-pair towed antenna.
The RLCG transmission line model was established. The influence of the inner shield-
ing layer on the mutual inductance of the helix coil was analyzed based on the mirror
principle, and the potential equation of the antenna was derived.

• The water flow cycling experimental platform was constructed. Two type of towed
antenna sections were designed and testified. The results showed that the helix coil
sensors detected motion-induced noise synchronized with the electrode-pair towed
antenna, and achieved higher correlation with vibrations than accelerators.

The structure of this article is as follows: in Section 2, the structure of helix coil
sensors is proposed. The motion-induced noise of detection mechanism of ELF/SLF
towed antennas using helix coil sensors is examined. Additionally, the equivalent RLCG
transmission model and parameters were derived. In Section 3, the water flow cycling
experiment is described, as well as the time domain and frequency domain analyses of the
received signals from the two types of sections. Sections 4 and 5 contain the discussions
and conclusions, respectively.

2. Proposed Methods
2.1. A. Sensor Structure

In contrast to magnetic antennas [14], the helix coil sensors comprise of a metal coil,
a low-noise amplifier, and a filter with an air core, as illustrated in Figure 1. A typical
configuration of 1000 mm-long differentially twisted wire is coiled axially along the antenna
with 80 turns. This transmission structure can be seen as a short circuit at the end and
a low noise amplifier (LNA) at the beginning. The two electrodes were mounted at
both ends of the antenna were, respectively, 20 mm from the helix coil sensors, receiving
ELF/SLF signals.

To prevent coil insulation rupture and seawater contact, the coil can be positioned on
the inside of the polyethylene sheath of the antenna cable, outside of the shield. The coil
must be flexible in order to be wound and retracted. In actual engineering, to assure the
antenna’s buoyancy, the coil can be constructed from aluminum wires with lower resistance,
smaller weight, and fewer turns. Another viable option is to increase the coil turns near the
two electrodes while decreasing the coil turns in the center region, which can still capture
the majority of noise.
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2.2. Principle of Motion-Induced Noise Detection

According to Maks’s theory [15], antenna electrodes are composed of materials with
high permeability, such as Ag-AgCl and stainless steel. The primary source of noise is the
induced voltage generated by the fluctuation of magnetic flux during motion. Likewise, the
terminal short-circuiting helix coils move synchronously with the antenna cable, and the
induced voltage is also generated by the change in magnetic flux across the cross-section.

According to Faraday’s electromagnetic induction [16], when disregarding the impact
of the time-varying geomagnetic field, the induced electric potential of helix coil sensors
vhc(t) can be represented as follows:

vhc(t) =
dΦ
dt

=
∫

L

dyhc(x, t)
dt

· uhc(x)[Bx + By
dyhc(x, t)

dx
]dl, (1)

where the geomagnetic flux with x and y axis are given by Bx and By; yhc(x,t) represents the
transverse displacement of a unit length coil at position x at time t; and uhc(x) represents
the product of the cross-sectional area and turns of a unit length coil.

For the two components of the geomagnetic field Bx and By, only vibrations in the
y-direction cause motion-induced noise. Assuming that Ahc represents the equivalent
cross-sectional area, changes induced by the coil’s bending can be assumed constant. N(x)
represents the number of turns per unit length. The above equation is simplified as follows:

vhc(t) = By

∫
L

dµhc(x)
dx

dyhc(x, t)
dt

dx = By Ahc

∫
L

Nhc(x)
dyhc(x, t)

dt
dx, (2)

The principle by which the helix coil sensors detect motion-induced noise resembles
that of an electrode-pair towed antenna, which can be viewed as a wire with an equivalently
thickened cross-section. Increasing the diameter and number of turns of the coil can greatly
augment the motion-induced voltage. From Equation (2), the motion-induced voltage
is proportional to turns of helix coils. However, turns per unit length cannot be infinite,
where the upper limit depends on the density of the antenna cable. According to the actual
engineering positive buoyancy requirements, the cable density is about 0.6–0.8. Therefore,
it is necessary to optimize the turns of helix coil sensors according to the material, radius,
wire diameter, and other parameters.

2.3. Equivalent Circuit

As seen in Figure 2, the cable motion generated an induced voltage compared to the
stationary state. The helix coil sensors can be viewed as a serial circuit of induction voltage
sources per unit length of cable. Considering the twisted pair and shielding layer as three
conductors, the equivalent RLCG transmission model is
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Figure 2. Helix coil sensors equivalent RLCG transmission model per dx.

where vhc1(x,t) and vhc1(x + dx,t) represent the input and output voltage of one conductor.
R11 and L11 represent serial resistor and inductor, C11 and G11 represent parallel capacitor
and admittance. From the input and output ports, vhc2(x,t) and vhc2(x + dx,t) represent the
voltage of the other twisted conductor; meanwhile, −∑2

k=1 ik(x, t) and −∑2
k=1 ik(x + dx, t)

represent the current of shielding layer. The other twisted conductor had similar parameters.
Additionally, Rshd represents the resistor of shielding layer.

The mirror method [17] is used to calculate mutual inductance between twisted pairs.
The shielding layer was considered to be equal potential surface, and its impedance can be
ignored. Then, the matrix form of telegraph equation per unit length helix coil sensors is:[

vhc(x + dx, t)
ihc(x + dx, t)

]
=

[
cosh(γdx) sinh(γdx)Z0

sinh(γTdx)Z0
−1 cosh(γTdx)

][
vhc(x, t)
ihc(x, t)

]
, (3)

where γ =
√
(R + jωL)(G + jωC) is transmission constant matrix, Z0 represents for char-

acteristic impedance matrix.
The RLGC parameters are 2 × 2 matrix as below:

R =

[
Rshd + R1 Rshd

Rshd Rshd + R2

]
, (4)

L =

[
L11 L12
L12 L22

]
, (5)

C =

[
C11 + C12 −C12
−C12 C22 + C12

]
, (6)

G =

[
G11 + G12 −G12
−G12 G22 + G12

]
, (7)

The cross-section of the antenna is shown in Figure 3. c1 and c2 are twisted wires of
the helix coil sensors with radius of rc. The dielectric constant of materials from cable jacket
to shielding layers are εSEA, εPE, εINSUL, respectively.
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The induced charge q on the sphere can be equated with a mirror image charge q′

inside the conductor sphere. The mirror charge is located on the line connecting the point
charge to the center of the sphere at a distance of d1

′. Then, the potential equation [18] can
be expressed as

ϕ =
q

4πεPE
√

rs2 + d1
2 − 2rsd1 cos θ

− q′

4πε INSUL
√

rs2 + d1
′2 − 2rsd1

′ cos θ
, (8)

According to the boundary conditions, ϕ = 0 in the spherical shielding layer,

R′

R
= − εPEq′

ε INSULq
, (9)

and
q2

εPE(rs2 + d1
2 − 2rsd1 cos θ)

=
q′2

ε INSUL(rs2 + d1
′2 − 2rsd1

′ cos θ)
, (10)

The above equation holds for any angle θ,{
q2ε INSUL(rs

2 + d1
′2) = εPEq′2(rs

2 + d1
2)

q2ε INSULd1
′ = εPEq′2d1

, (11)

By dividing the upper and lower equations to eliminate εPE and εINSUL,

(rs
2 + d1

′2)

d1
′ =

(rs
2 + d1

2)

d1
, (12)

Since the mirror image is inside the shield, it follows that

d1
′ =

rs
2

d1
, (13)

Therefore, influenced by the shieldling layer, L11 can be seen as the inductance of
parallel double lines together with a unit length spiral and its mirror.

L11 = L22 =
µTAl
2π

ln[
d1 − (rs

2/d1)

rc
+

1
4
], (14)

where µTA is relative permeability of the towed antenna. Thus, the L12 is the mutual
inductance of two twisted wires per unit length.

L12 =
L11L22 −M12

2

L11 + L22 − 2M12
=

L11L22(1− k2)

L11 + L22 − 2k
√

L11L22
, (15)

where M12 = k
√

L1L2 represents the mutual inductance with the coupling coefficient k of
two coils.

3. Experimental Results
3.1. Experimental Platform

The experimental section of the helix coil sensors conformal electrode-pair towed
antenna was designed and manufactured using the parameters specified in Table 1.

The experimental section is depicted in Figure 4. In order to compare the performance
of sensors and electrode-pair antenna simultaneously, the sensors were installed conformal
with the antenna cable using enameled copper wires. The near-end electrode and far-end
electrode were mounted near both ends of the section.
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Table 1. Experiment platform parameters.

Components Parameters Value

Helix coil sensors

material Copper
wire diameter 0.5 mm

winding diameter 17.8 mm
pitch 11.5 mm

coil turns 80

Electrode-pair towed antenna

material Stainless steel
electrode diameter 18.5 mm

electrode length 60 mm
distance 1 m

cable jacket Polyethylene
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The experiments were conducted in the water-flow cycling experimental platform
depicted in Figure 5, which was filled with 4% salt water to replicate saltwater. The
platform consisted of a thick-walled aluminum pipe, through which salt water continuously
flowed in and out. The experimental section was in shielded housing with an output port
connecting to an LNA and a data acquisitor. The antenna’s end was attached to a vibrator
in order to imitate various accelerations.
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3.2. Results Analysis

During the experiment, the dual-channel data acquisition sampled the output signals
with a noise factor of less than 0.5 nV/Hz−1/2, an accuracy of 24 bits, and a sampling rate
of 256 ksps.

From static through vibration, Figure 6 depicts the received signals of the experimental
area. The blue curve represents electrode-pair signals, whereas the red curve represents
signals from the helix coil sensor. It was demonstrated that the amplitude of the electrode-
pair towed antenna was greater when the electrode was exposed to water and generated
additional polarization voltage [19]. In a period of 4.9798 s, when vibration occurred, both
amplitudes varied significantly. Ignoring the latency of the cable and data acquisition,
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both the electrode-pair towed antenna and the helix coil sensor simultaneously identified
motion-induced noise. Figure 7 depicts the fundamental and harmonic frequencies created
by vibration.

Electronics 2023, 12, 1677 7 of 13 
 

 

connecting to an LNA and a data acquisitor. The antenna’s end was attached to a vibrator 
in order to imitate various accelerations. 

 
Figure 5. Experimental platform for water flow cycling. 

3.2. Results Analysis 
During the experiment, the dual-channel data acquisition sampled the output signals 

with a noise factor of less than 0.5 nV/Hz−1/2, an accuracy of 24 bits, and a sampling rate of 
256 ksps. 

From static through vibration, Figure 6 depicts the received signals of the experi-
mental area. The blue curve represents electrode-pair signals, whereas the red curve rep-
resents signals from the helix coil sensor. It was demonstrated that the amplitude of the 
electrode-pair towed antenna was greater when the electrode was exposed to water and 
generated additional polarization voltage [19]. In a period of 4.9798 s, when vibration oc-
curred, both amplitudes varied significantly. Ignoring the latency of the cable and data 
acquisition, both the electrode-pair towed antenna and the helix coil sensor simultane-
ously identified motion-induced noise. Figure 7 depicts the fundamental and harmonic 
frequencies created by vibration. 

 
Figure 6. Time domain of experimental section signals from static to vibrations. Figure 6. Time domain of experimental section signals from static to vibrations.

Electronics 2023, 12, 1677 8 of 13 
 

 

 
Figure 7. Frequency domain of experimental section signals from static to vibrations. 

As illustrated in Table 2, when an antenna transitioned from a static to a vibrating 
state, the time domain peak-to-peak values of two signals increased dramatically. The for-
mer grew considerably more than the latter, indicating that polarization noise of the ex-
posed electrode also increased with vibration. From static to low-speed vibration, the 
background noise level of the two signals increased by 10.51 dB and 9.52 dB, respectively, 
in the frequency domain, and the highest error was less than 2.1 dB. Due to the increased 
coil turns, the sensitivity of the helix coil sensor was enhanced. Figure 8 illustrates the 
received signal under various vibrations. The signals were filtered to reduce spectral leak-
age by adding a Hanning window prior to FFT. 

 
Figure 8. Signals received in the time domain under various vibrations. 

Table 2. Experimental results of signal and noise varying with various vibrations. 

Antenna State 
Time Domain (mV) PSD (uV/Hz−1/2) 

Ele-Par. Vpp Hlx-Col. Vpp Ele-Par. Vpp Hlx-Col. Vpp 
Static 48.38 0.81 220.21 1.43 

Low Vibr. 241.24 2.97 738.45 4.28 
Med Vibr. 460.41 3.27 992.19 6.02 
Hgh Vibr. 814.91 3.53 1635.36 8.39 

100 101 102

Frequency (Hz)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Electrode-Pair
Helix-Coil

11.72Hz
0.18m

3.92Hz
96.21u

11.72Hz
1.82u

3.92Hz
0.49m

7.81Hz
0.71m

7.81Hz
2.84u

Figure 7. Frequency domain of experimental section signals from static to vibrations.

As illustrated in Table 2, when an antenna transitioned from a static to a vibrating
state, the time domain peak-to-peak values of two signals increased dramatically. The
former grew considerably more than the latter, indicating that polarization noise of the
exposed electrode also increased with vibration. From static to low-speed vibration, the
background noise level of the two signals increased by 10.51 dB and 9.52 dB, respectively, in
the frequency domain, and the highest error was less than 2.1 dB. Due to the increased coil
turns, the sensitivity of the helix coil sensor was enhanced. Figure 8 illustrates the received
signal under various vibrations. The signals were filtered to reduce spectral leakage by
adding a Hanning window prior to FFT.
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Table 2. Experimental results of signal and noise varying with various vibrations.

Antenna State
Time Domain (mV) PSD (uV/Hz−1/2)

Ele-Par. Vpp Hlx-Col. Vpp Ele-Par. Vpp Hlx-Col. Vpp

Static 48.38 0.81 220.21 1.43
Low Vibr. 241.24 2.97 738.45 4.28
Med Vibr. 460.41 3.27 992.19 6.02
Hgh Vibr. 814.91 3.53 1635.36 8.39
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According to [20], the motion-induced noise is associated with the local vibration of the
antenna cable, and variable vibration speeds produce noise signals of varying frequencies.
As seen in Figure 9, the electrode-pair towed antenna and the helix coil sensor were able
to detect three fundamental frequencies of 1.95 Hz, 2.93 Hz, and 3.91 Hz, as well as third
harmonic frequencies of 6.84 Hz, 9.76 Hz, and 11.72 Hz, which corresponded to low,
medium, and high vibration speeds, respectively. As the vibration speed increased, the
frequency of the noise continued to rise.
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3.3. Comparisons of Helix Coil Sensors and Accelerators

Figure 10 depicts the improved experimental section of the towed antenna, in which
three-axial accelerators were placed near two electrodes that could detect the instantaneous
acceleration of the distant and close electrodes in the X, Y, and Z directions, respectively. The
four-channel data acquisition with two ADC and two IEPE interfaces can simultaneously
sample signals from the electrode-pair towed antenna, the helix coil sensor, as well as the
far-end and near-end accelerators. Accelerators among them were DC-powered, which
presumably had no effect on AC transmissions. Because the current was generated by the
motion charges, the power supply consisted of coaxial cable and a shielded enclosure.
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Figure 10. Improved experimental section of the towed antenna.

In Figure 11, the improved experimental section’s electrode-pair towed antenna, helix
coil sensor, and far-end and near-end accelerator outputs are normalized. Figure 12 displays
the power spectral curves at three vibrational speeds. Below 103 Hz, the curves of the
electrode-pair towed antenna and two accelerators were similar; however, the sensor with
the helix coil was around 20 dB less sensitive. As frequency increased, the accelerator
curve dropped to the level of the helix coil sensor. According to wave equations [21],
the instantaneous transverse displacement of a flexible cable is a function of numerous
frequencies with varying attenuation and delay. Consequently, the near-end accelerator
was further away from the vibrator than the far-end accelerator, resulting in a smaller
power spectra curve.
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4. Discussions

To further verify the relationship between the helix coil sensor and the electrode-pair
signals, and to reduce the influence of data acquisition, the first and last second of the
data were deleted, and the normalized correlation coefficients of the four channel received
signals were calculated using the following formula.

r =

n
∑

i=1
(xi − x)(yi − y)

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
, (16)

To avoid power frequency and harmonic interference, the trapping filter was first
applied. According to Table 3, the re h and re-f values for three vibration rates ranged from
0.7 to 0.9, suggesting that the helix coil sensors and the far-end accelerator had a high
correlation with the electrode-pair towed antenna. As the vibration speed increased, re h
reduced slightly, whereas re-f tended to rise. The primary cause was that the accelerator was
more sensitive to motion at high speeds. As one approached the vibrator, the noise intensity
increased. At low-speed vibration, the near-end accelerator was distant from the vibrator,
re-n was less than 0.5, showing that the vibration was localized, and as the vibration speed
increased, the vibration waves propagated to the near-end accelerator, causing re-n to rise
over 0.7. For hundreds of meters of towed antenna in engineering, there was a significant
attenuation of local vibration propagation along the cable; thus, many accelerators must be
densely arranged along the cable to assure a good correlation.

Table 3. Correlation coefficient of electrode-pair towed antenna, helix coil sensors, and accelerators.

Antenna State re-h re-f re-n

Low Vibr.
0.88 0.71 0.48
0.78 0.68 0.51

Med Vibr.
0.94 0.83 0.66
0.84 0.91 0.71

Hgh Vibr. 0.81 0.92 0.77
0.69 0.95 0.78
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5. Conclusions

This article proposed a method of motion-induced noise detection using helix coil
sensors. The equivalent RLCG transmission model and parameters were derived. A water-
flow cycling experimental platform was constructed to demonstrate that the twisted pairs
with shielding layer can enhance the sensitivity and extend transmission distance, which
makes helix coil sensors higher correlation with vibrations than accelerators. The improved
experimental section further indicated that helix coil sensors achieved higher correlation
with vibrations than accelerators, and were more suitable for conformal installation with
the ELF/SLF towed antennas.
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