
Citation: Zhang, J.; Li, Z. A Clustered

Federated Learning Method of User

Behavior Analysis Based on Non-IID

Data. Electronics 2023, 12, 1660.

https://doi.org/10.3390/

electronics12071660

Academic Editor: Antoni Morell

Received: 27 February 2023

Revised: 24 March 2023

Accepted: 28 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Clustered Federated Learning Method of User Behavior
Analysis Based on Non-IID Data
Jianfei Zhang * and Zhongxin Li

School of Computer Science and Technology, Changchun University of Science and Technology,
Changchun 130000, China
* Correspondence: jfzhang@cust.edu.cn

Abstract: Federated learning (FL) is a novel distributed machine learning paradigm. It can protect
data privacy in distributed machine learning. Hence, FL provides new ideas for user behavior
analysis. User behavior analysis can be modeled using multiple data sources. However, differences
between different data sources can lead to different data distributions, i.e., non-identically and non-
independently distributed (Non-IID). Non-IID data usually introduce bias in the training process
of FL models, which will affect the model accuracy and convergence speed. In this paper, a new
federated learning algorithm is proposed to mitigate the impact of Non-IID data on the model, named
federated learning with a two-tier caching mechanism (FedTCM). First, FedTCM clustered similar
clients based on their data distribution. Clustering reduces the extent of Non-IID between clients in a
cluster. Second, FedTCM uses asynchronous communication methods to alleviate the problem of
inconsistent computation speed across different clients. Finally, FedTCM sets up a two-tier caching
mechanism on the server for mitigating the Non-IID data between different clusters. In multiple
simulated datasets, compared to the method without the federated framework, the FedTCM is
maximum 15.8% higher than it and average 12.6% higher than it. Compared to the typical federated
method FedAvg, the accuracy of FedTCM is maximum 2.3% higher than it and average 1.6% higher
than it. Additionally, FedTCM achieves more excellent communication performance than FedAvg.

Keywords: federated learning; Non-IID; user behavior; user modeling

1. Introduction

As the computer field boomed, users generated a variety of behavior data while surfing
the Internet, such as video-clicking behavior, shopping behavior, and more. In recent years,
deep learning techniques have been used to uncover the hidden information behind such
behavioral data. It is well known that the predictive power of deep learning models relies
on training data. However, with the increasing emphasis on user privacy, it will be more
difficult to collect and share data across organizations, thus creating isolated data islands.
Besides, the owners of some highly sensitive data may object to the unrestricted use of such
data. In this environment, how to solve the fragmented data and isolated data island will
become the primary problem in the field of machine learning.

To simultaneously achieve privacy protection and train models using data, FL is
proposed. FL aims to build a federated model based on global data. Edge devices with
fragmented data participate in training models using their data while keeping their data
secure. In this case, the client does not transmit their local data but rather the parameters of
the model trained using the local data. At the end of the training, all clients will obtain a
model that meets the requirements.

However, user behavior data is influenced by age, gender, lifestyle, and other factors.
The local data on the client side is likely to be non-independently and non-identically dis-
tributed. Due to the characteristic of “data does not move, model moves” of FL, the central
server cannot directly operate the local data of each client. The authors of [1] proposed a

Electronics 2023, 12, 1660. https://doi.org/10.3390/electronics12071660 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071660
https://doi.org/10.3390/electronics12071660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2664-5216
https://doi.org/10.3390/electronics12071660
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071660?type=check_update&version=1

Electronics 2023, 12, 1660 2 of 18

framework for FL and designed the FedAvg algorithm. The FedAvg algorithm has excellent
performance on identically and independently distributed (IID) data. However, Non-IID
data can affect the performance of the FedAvg algorithm. As the degree of Non-IID in-
creases, there will be a significant decrease in model accuracy. Local training of FL relies on
stochastic gradient descent, and only the IID of local data ensures that the local stochastic
gradient is an unbiased estimate of the global gradient. Gradient differences will cause the
global model to be influenced by the client-side local model. Hence, differences in data
distribution between clients are a critical issue for federated learning.

Recently, various approaches attempting to solve the impact of Non-IID data on
FL models have been proposed. A part of the method applies adaptive optimization.
In [2–4], these methods limit the update magnitude of the local model by adding proximal
terms and reducing the gap between the local model and the global model. However, all
these methods require adjusting the ratio parameter of the proximal term. Different ratio
parameters can affect the accuracy and convergence speed of the model. A part of the
approach tries to adjust the data distribution of all clients to improve the performance
of the FL model. In [5,6], clients share a part of the data to build a public dataset. The
public dataset can reduce data distribution differences across all clients. In [7,8], data
augmentation is performed for classes with fewer samples to balance the data samples for
each client. The method of sharing data will leak privacy, especially in the field of user
behavior analysis. User data are supposed to be highly confidential, and sharing data
methods violate the original intent of federated learning to protect privacy.

As the Internet grows, users may interact with different devices. User behavior data is
stored on multiple devices. The devices involved in the training may be cell phones, tablets,
or edge devices with restricted resources. As a result, during the training of the model, the
devices have different computational speeds called system heterogeneity. In [1–3], the client
and server use synchronous communication, which has the advantage of high accuracy
and fast convergence. Since clients have different computational speeds, if synchronous
communication is used, the device with the slowest computation speed will prolong the
overall training time. The existing approach [2] is to drop the slow training devices, but
dropping the slow devices only alleviates the problem of ‘wait’. Randomly dropping
devices will destroy the integrity of the overall data. Asynchronous communication solves
the problem of different computing speeds for clients. It requires all cluster mediators to
communicate directly with the server after the local update is complete rather than waiting
for all clusters. Due to the special way of asynchronous communication, each client can
only generate aggregated models with the server individually. However, the aggregation
parameter weights are difficult to adjust. A series of methods for aggregating parameter
weights for asynchronous communication was proposed in [9,10], but these methods still
have gaps with synchronous communication.

We propose an FL algorithm based on a two-tier cache mechanism (FedTCM) that
supports the mitigation of the impact of Non-IID data on the model and considers the
different computational speeds of devices. First, FedTCM clusters all clients based on
the similarity of their data distribution, and the clients within the cluster can optimize
their model parameters. Additionally, this process does not involve operating the private
data of the client, so it is more secure. Second, due to the difference in the computing
speed of the devices, the cluster mediator asynchronously communicates with the server.
Finally, FedTCM sets up a two-tier cache structure on the server side, where the first-tier
cache stores the latest model parameters for each cluster. In this way, FedTCM avoids
the problem of difficult adjustment of aggregation weights for traditional asynchronous
communication. In the second-tier cache, we use a random distribution strategy to train
the model in different clusters. If the training order is not considered, the model in the
second-tier cache will contain data information for all clusters. The impact of Non-IID data
on FL models is reduced by a random distribution strategy.

The main contributions of this paper are summarized as follows:

Electronics 2023, 12, 1660 3 of 18

• To solve the problem of the impact of Non-IID data on the FL model and the difficulty
in adjusting parameters due to asynchronous communication, FedTCM sets up a
two-tier cache structure in the server, which results in accuracy improvement in
non-IID environments.

• Using intra-cluster synchronous communication and inter-cluster asynchronous com-
munication mitigates the impact of varying client computation speed and reduces the
communication burden on the server.

• The performance evaluation on the user behavior dataset shows that the algorithm in
this paper has high accuracy compared to existing algorithms.

2. Related Work

To solve the impact of Non-IID data, various methods have been proposed. The
existing work falls into four main categories: data augmentation, cluster-based multi-
model learning, adaptive optimization methods, and personalized federated learning.

2.1. Data Augmentation

The authors of [5] found that the difference between local and global data distribution
reduces the accuracy of the model and proposed an approach based on data sharing.
Experiments show that sharing 5% of the data per client will improve accuracy by 30%.
The literature [7] uses the smote oversampling technique to generate new samples for
categories with a small number of samples. Similarly, the authors of [11] use the conditional
generative network to generate new samples. These methods reduce the heterogeneity of
local client data by way of data expansion. However, these methods involve operating
client local data, which violates the original intent of FL to protect privacy.

2.2. Cluster-Based Multi-Model Learning

The literature [12] proposed an approach based on multiple centers. The local model
and center location are iteratively optimized by modifying the loss function of the local
client. Clients with similar distances to the same center are divided into groups. The
clients in the group train the same model. The authors of [13] propose a novel clustering
approach where the process of clustering does not require the participation of all clients to
avoid the additional communication overhead added during clustering. The literature [14]
proposed FedAMP, an attention-based FL algorithm. Different from the previous approach,
FedAMP does not put the client into a specified certain cluster. By introducing the attention
mechanism, a client can maintain multiple cluster models at the same time. These methods
can perform well in Non-IID; clients with different data distributions do not interfere with
each other. However, in a real-world application setting, multiple models do not generalize
for all clients. Our goal is to train an FL model that is shared by all clients.

2.3. Adaptive Optimization

The literature [2] proposed adding proximal terms on the client side. The proximal
term is used to limit the gap between the global model and the local models. The authors
of [3] proposed an FL framework based on gradient correction. The gradient correction
term is used to limit the extent of model updates. The study [4] proposed to estimate
the global device knowledge separately using local control variables and server control
variables. The literature [15] found that when only a small number of devices are involved
in the training, the model accuracy decreases significantly; they also proposed that the
momentum-based algorithm FedAvgM improves the accuracy. FedAvgM speeds up the
model training process and improves model accuracy by adjusting the gradient. These
methods perform well in improving FL model convergence. However, these methods are
difficult to adjust the ratio parameter of the proximal term.

Electronics 2023, 12, 1660 4 of 18

2.4. Personalized Federated Learning

The literature [16] introduced the concept of life-long learning. This method treats
clients with different distributions as different tasks. After training several rounds, all the
tasks are combined into a global task. The authors of [17] introduced the FL of taskonomy
to efficiently aggregate heterogeneous data by learning task correlations between clients.
The study [18] proposed a delayed aggregation method. After the training of local clients is
completed, the server collects all model parameters. Then, the server sends these model
parameters to other clients for further training. This algorithm uses multiple clients to
train the same model to mitigate the impact of heterogeneous data. The literature [19]
proposed the ARUBA framework. It is based on online learning to implement adaptive
meta-learning under FL. When used in combination with FedAvg, it can improve model
generalization performance.

In this work, we propose an FL algorithm based on a two-tier caching mechanism
called FedTCM. FedTCM clusters similar clients, and clients within the same cluster per-
form local training synchronously. Clusters send model parameters to the server asyn-
chronously to overcome the heterogeneity of the system. On the server side, we propose a
caching mechanism to solve the impact of heterogeneous data on the model. Therefore,
FedTCM is a combination of centralized and decentralized federated learning methods.

3. The Principle of FedTCM

To reduce the impact of Non-IID data on the performance of the FL model, we design
an FL algorithm based on a two-tier cache mechanism (FedTCM). The main parameters of
the system are summarized in Table 1.

Table 1. Notion and definitions.

Notation Definition

FL federated learning
Non-IID non-identically and non-independently distributed

m first-tier cache list
m[k] kth position of list m

n second-tier cache list
n[k] kth position of list n
Vi the label count vector of clients i
vi,h the components of the vectors Vi
q the cosine similarity between clients
lk loss function
d the number of dataset labels
ad the one-hot vector of the model output

{xk, yk} the characteristics and label of the data sample
yd the one-hot vector of yk
F the local empirical risk of the client

Pb,j the dataset of client j in cluster b
nb the number of datasets in cluster b
nb,j the number of datasets of client j in cluster b

ωt+1
b,j the model parameters of client j in cluster b at t + 1

ωt+1
b the aggregation parameters of cluster b at t + 1

Wt+1
b the aggregation parameters of first-tier cache at t + 1
η learning rate
e epoch
p the threshold value of cosine similarity
C all clusters
S the number of clusters

Na the number of clients
α the degree of heterogeneity of the data distribution
B batch size
ct delay time parameter

Electronics 2023, 12, 1660 5 of 18

Figure 1 shows the structure of FedTCM. Although we cannot rearrange the data
for each client, we can rearrange each client. In FedTCM, we first cluster all the clients.
The clustering is based on the similarity of the client data distribution. A model trained
commonly by clients with similar data distribution is better than a model trained by a
single client. Additionally, the degree of heterogeneity between clients in the cluster is
reduced. Clients in the same cluster can optimize their models and reduce the number
of communications with the server during the training process, ensuring system stability.
After the clustering is complete, the server sends an initial model to each cluster. The
cluster mediators share the initial model with each client within the cluster, and the local
clients start training. Local clients send the model parameters to the cluster mediator
after the training is complete. The cluster mediators aggregate model parameters of
all clients within the cluster and send the model to the server through asynchronous
communication. Asynchronous communication will effectively alleviate the problem of
system heterogeneity.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18

𝑁 the number of clients 𝛼 the degree of heterogeneity of the data distribution 𝐵 batch size 𝑐 delay time parameter

Figure 1 shows the structure of FedTCM. Although we cannot rearrange the data for
each client, we can rearrange each client. In FedTCM, we first cluster all the clients. The
clustering is based on the similarity of the client data distribution. A model trained com-
monly by clients with similar data distribution is better than a model trained by a single
client. Additionally, the degree of heterogeneity between clients in the cluster is reduced.
Clients in the same cluster can optimize their models and reduce the number of commu-
nications with the server during the training process, ensuring system stability. After the
clustering is complete, the server sends an initial model to each cluster. The cluster medi-
ators share the initial model with each client within the cluster, and the local clients start
training. Local clients send the model parameters to the cluster mediator after the training
is complete. The cluster mediators aggregate model parameters of all clients within the
cluster and send the model to the server through asynchronous communication. Asyn-
chronous communication will effectively alleviate the problem of system heterogeneity.

Figure 1. Structure of FedTCM. FedTCM mainly includes clusters and a server. Clients with differ-
ent colors denote that the clients have different data distributions. The cluster consists of clients and
a cluster mediator. The server contains a first-tier cache list 𝑚 and a second-level cache list 𝑛.

At the same time, we design a two-tier caching mechanism on the server side. Each
cluster corresponds to one location in the first-tier cache and one in the second-tier cache,
respectively. When the cluster calculation is completed, the model is sent to the server.
The server updates the corresponding locations in the first-tier cache and the second-tier
cache. The first-tier cache is used to store the latest model for each cluster, and it is used
to solve the problem of difficulty in adjusting aggregation weights in asynchronous com-
munication. In traditional asynchronous communication, the server requires aggregation
of a single model parameter with the model parameters in the server, but the aggregation
weights affect the performance of the model. Since FedTCM set up the first-tier cache, after
the cluster computation is completed, FedTCM only needs to aggregate all the models in
the first-tier cache. In this way, FedTCM avoids aggregation of single model parameters
with server model parameters. The second-tier cache stores the aggregated model param-
eters corresponding to the first-tier cache, and it uses a model random distribution strat-
egy to mitigate the impact of Non-IID data on the model. Inspired by the literature [18],
we believe that a model trained on all the clustered data will be more reliable than a model
from a single cluster if the order of training of the data is not considered. Therefore,
FedTCM let the models in the second-tier cache be trained with data from different

Figure 1. Structure of FedTCM. FedTCM mainly includes clusters and a server. Clients with different
colors denote that the clients have different data distributions. The cluster consists of clients and a
cluster mediator. The server contains a first-tier cache list m and a second-level cache list n.

At the same time, we design a two-tier caching mechanism on the server side. Each
cluster corresponds to one location in the first-tier cache and one in the second-tier cache,
respectively. When the cluster calculation is completed, the model is sent to the server. The
server updates the corresponding locations in the first-tier cache and the second-tier cache.
The first-tier cache is used to store the latest model for each cluster, and it is used to solve
the problem of difficulty in adjusting aggregation weights in asynchronous communication.
In traditional asynchronous communication, the server requires aggregation of a single
model parameter with the model parameters in the server, but the aggregation weights
affect the performance of the model. Since FedTCM set up the first-tier cache, after the
cluster computation is completed, FedTCM only needs to aggregate all the models in the
first-tier cache. In this way, FedTCM avoids aggregation of single model parameters with
server model parameters. The second-tier cache stores the aggregated model parameters

Electronics 2023, 12, 1660 6 of 18

corresponding to the first-tier cache, and it uses a model random distribution strategy to
mitigate the impact of Non-IID data on the model. Inspired by the literature [18], we believe
that a model trained on all the clustered data will be more reliable than a model from a
single cluster if the order of training of the data is not considered. Therefore, FedTCM let
the models in the second-tier cache be trained with data from different clusters. In this way,
the models in the second-tier cache carry more information about the data of the cluster.
The degree of model heterogeneity in the second-tier cache will be lower than that of the
models trained in a single cluster. Therefore, the second-tier cache is used to mitigate the
impact of Non-IID on the model.

3.1. Clustering the Clients Based on the Distribution of Local Data

Various existing methods [12,20–22] use the model or the computational speed of the
device in the process of clustering. However, all these methods need to be pre-trained
before clustering. We propose to use the number of sample labels from the client for
clustering. The client counts the amount of local data before local training begins. Calculate
the percentage of each type of label according to the number of labels in the sample data.
We call it the label count vector. FedTCM cluster is based on the similarity of the label
count vector. The approach has two advantages. One is that sending a label count vector to
an honest server does not leak data from the client, and the other is that we do not need
to pre-train before clustering compared to previous clustering methods. The label count
vector is one-dimensional, and the size of the label count vector is negligible compared to
the model. Before the training starts, clients send the local label count vector to the server.
The server clusters all clients according to the cosine similarity of the label count vector.
The cosine similarity is calculated using Equation (1).

q =
Vi·Vj

||Vi||
∣∣∣∣Vj

∣∣∣∣ = ∑n
k=1 vi,h × vj,h√

∑n
h=1(vi.h)

2 ×
√

∑n
h=1

(
vj,h

)2
, (1)

where Vi and Vj represent the label count vector of clients i and j, respectively. vi,h and
vj,h represent the components of the vectors Vi and Vj, q denotes the cosine similarity
between clients.

The server calculates the cosine similarity between all clients. If the cosine similarity
of the label count vector of several clients exceeds a set threshold, then they are in the same
cluster. Data within a cluster approximately conforms to the same data distribution.

3.2. The Process of Training on Clients

In the training process, the main tasks of the client are receiving the initial model
from the cluster mediator, training the model using local data, and uploading the model
parameters to the cluster mediator.

In the process of local client training, the target of the local clients is defined as follows:

minF =
1

nb,j
∑k∈Pb,j

lk(xk, yk; ω), (2)

where lk is the loss function for data sample {xk, yk}, xk is the characteristics of the data
sample, and yk is the label of the data sample. The subscript b, j represents the client j in
cluster b. Pb,j is the dataset of client j. Let nb,j =

∣∣∣Pb,j

∣∣∣. F is the local empirical risk of the
device in the local data Pb,j. The loss function lk uses the cross-entropy loss function, which
is defined as follows:

lk = −∑d ydlog ad, (3)

Electronics 2023, 12, 1660 7 of 18

where d is the number of dataset labels, yd is the one-hot vector of yk, and ad is the one-hot
vector of the model output. To minimize the loss in the client training process, the local
client iteration phase (the stochastic gradient method as an example) is interpreted as:

ωt+1
b,j = Wt − η∇F, (4)

where Wt is the model parameters sent by the cluster mediator to client j in round t, ωt+1
b,j

is the local model computed by the local client based on Wt, and η represents the learning
rate. When the local client has finished computing, the local client sends the local model
parameters to the cluster mediator.

3.3. The Major Tasks of Cluster Mediator

The cluster mediator has two main tasks in the process of model training. One task is
to receive the initial model from the server and send the initial model to each client in the
cluster. Another is to receive the model parameters of all clients in the cluster, aggregate
the collected model parameters, and send the aggregated model parameters to the server.
The cluster mediator collects the local models and aggregates them using Equation (5).

ωt+1
b = ∑

nb,j

nb
ωt+1

b,j , (5)

where ωt+1
b,j represents the model parameters for the client j in cluster b at round t + 1,

and ωt+1
b represents the aggregation parameters of cluster b at round t + 1. The cluster

mediators send ωt+1
b to the server after the aggregation is completed. Due to the difference

in the computational speed of the client, the cluster mediator will communicate with the
server asynchronously.

After the client communicates with the cluster mediator, the cluster mediator immedi-
ately aggregates all the received models. The data distribution of all clients in the same
cluster is consistent. It avoids the interference of other clients when aggregating model
parameters. The model parameters of the cluster mediator are more representative of the
overall data distribution of the cluster. Only all cluster mediators need to communicate
with the server to cover all client information, instead of all clients.

We measured the communication performance of FedTCM in terms of the number of
times the parameter is sent and received. FedTCM puts clients with similar data distribution
into the same cluster. The model information of a cluster mediator represents the data
information of all clients within the cluster. The number of cluster mediators is much
smaller than the number of clients. In addition, FedTCM uses asynchronous communication
and the two-tier cache mechanism. When aggregating model parameters, the server does
not need to communicate with all clients, but only with part of all cluster mediators to
complete the calculation. Additionally, each cluster mediator only needs to communicate
with clients in its cluster to complete the local computations. Therefore, with the two-tier
caching mechanism and cluster mediator, FedTCM can reduce the number of times the
server receives and sends model parameters.

3.4. The Major Tasks of the Server

We designed a two-tier caching mechanism on the server side. The first-tier cache
is used to avoid the problem of adjusting the aggregation parameters for asynchronous
communication. The second-tier cache uses a random distribution strategy to mitigate the
impact of Non-IID data on the model.

In the previous section, we mentioned that the cluster communicates with the server
using asynchronous communication methods. However, there is a disadvantage of asyn-
chronous communication: aggregation weights are difficult to adjust when a single model
is aggregated with a model stored on the server. To avoid the impact of aggregation

Electronics 2023, 12, 1660 8 of 18

weights on the model in asynchronous communication, the first-tier cache is used to solve
this problem.

The first-tier cache structure is shown in Figure 2. The cluster mediator of cluster b
sends model parameter ωt+1

b to the server. The server replaces the stale model parameters
ωt

b of cluster b with the latest model parameters ωt+1
b , which means that the first-tier cache

will store the latest models of all clusters. FedTCM uses Equation (6) to aggregate all model
parameters in the first-tier cache and store these aggregation model parameters in the
corresponding location of the second-tier cache.

Wt+1
b =

1
S∑S

i=1 m[i] (6)

where S is the number of clusters, and m is the first-tier cache list. Although FedTCM
uses asynchronous communication, it avoids aggregation of single model parameters with
server model parameters.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18

𝑊 = ∑ 𝑚[𝑖], (6)

where 𝑆 is the number of clusters, and 𝑚 is the first-tier cache list. Although FedTCM uses
asynchronous communication, it avoids aggregation of single model parameters with
server model parameters.

Figure 2. Update principle of the first-tier cache.

The second-tier cache uses a model random distribution strategy. Figure 3 illustrates
the principle of the second-tier cache. After the first-tier cache aggregation is completed,
the aggregation model parameter 𝑊 is stored in the second-tier cache. The server will
randomly select a model parameter in the second-tier cache to send to cluster 𝑏 (the sec-
ond-tier cache model of cluster 𝑆 is selected in Figure 3). Cluster 𝑏 receives the model pa-
rameters and starts the next round of training. We aggregate all the model parameters in
the second-tier cache to obtain the global model. The global model does not participate in
training, and it can be obtained at any time point. This approach allows the models in the
second-tier cache to be trained based on different cluster data. Therefore, the model in the
second-tier cache can carry more information about the data of the cluster. The random
distribution strategy will help to reduce global loss. The model in the second-tier cache
gradually approaches the optimal global model. The heterogeneity of the models in the
second-tier cache is lower compared to the single cluster model. In this way, a simple
aggregation of the model parameters in the second-tier cache can reduce the impact of
Non-IID data on the model.

Figure 3. Update principle of the second-tier cache. The second-tier cache sends the model to cluster 𝑏 using a random distribution.

Figure 2. Update principle of the first-tier cache.

The second-tier cache uses a model random distribution strategy. Figure 3 illustrates
the principle of the second-tier cache. After the first-tier cache aggregation is completed,
the aggregation model parameter Wt+1

b is stored in the second-tier cache. The server
will randomly select a model parameter in the second-tier cache to send to cluster b (the
second-tier cache model of cluster S is selected in Figure 3). Cluster b receives the model
parameters and starts the next round of training. We aggregate all the model parameters in
the second-tier cache to obtain the global model. The global model does not participate in
training, and it can be obtained at any time point. This approach allows the models in the
second-tier cache to be trained based on different cluster data. Therefore, the model in the
second-tier cache can carry more information about the data of the cluster. The random
distribution strategy will help to reduce global loss. The model in the second-tier cache
gradually approaches the optimal global model. The heterogeneity of the models in the
second-tier cache is lower compared to the single cluster model. In this way, a simple
aggregation of the model parameters in the second-tier cache can reduce the impact of
Non-IID data on the model.

Electronics 2023, 12, 1660 9 of 18

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18

𝑊 = ∑ 𝑚[𝑖], (6)

where 𝑆 is the number of clusters, and 𝑚 is the first-tier cache list. Although FedTCM uses
asynchronous communication, it avoids aggregation of single model parameters with
server model parameters.

Figure 2. Update principle of the first-tier cache.

The second-tier cache uses a model random distribution strategy. Figure 3 illustrates
the principle of the second-tier cache. After the first-tier cache aggregation is completed,
the aggregation model parameter 𝑊 is stored in the second-tier cache. The server will
randomly select a model parameter in the second-tier cache to send to cluster 𝑏 (the sec-
ond-tier cache model of cluster 𝑆 is selected in Figure 3). Cluster 𝑏 receives the model pa-
rameters and starts the next round of training. We aggregate all the model parameters in
the second-tier cache to obtain the global model. The global model does not participate in
training, and it can be obtained at any time point. This approach allows the models in the
second-tier cache to be trained based on different cluster data. Therefore, the model in the
second-tier cache can carry more information about the data of the cluster. The random
distribution strategy will help to reduce global loss. The model in the second-tier cache
gradually approaches the optimal global model. The heterogeneity of the models in the
second-tier cache is lower compared to the single cluster model. In this way, a simple
aggregation of the model parameters in the second-tier cache can reduce the impact of
Non-IID data on the model.

Figure 3. Update principle of the second-tier cache. The second-tier cache sends the model to cluster 𝑏 using a random distribution.
Figure 3. Update principle of the second-tier cache. The second-tier cache sends the model to cluster
b using a random distribution.

3.5. The Process of FedTCM

FedTCM is illustrated in Figure 4. The clients in cluster b send the model parameters to
the cluster mediator (step 1). The cluster mediator aggregates the received parameters. The
cluster mediator sends the aggregated model parameters ωt+1

b to the server. Asynchronous
uploading is used here (step 2). The server updates the model parameters in the first-tier
cache (step 3). The server aggregates all model parameters in the first-tier cache and stores
the aggregated results Wt+1

b in the corresponding second-tier cache (step 4). The server will
randomly select a model in the second-tier cache and send the model to cluster b (step 5).
The cluster mediator sends the model to the client. Intuitively, cluster b is trained based on
model parameters from different clusters (step 6).

Electronics 2023, 12, x FOR PEER REVIEW 9 of 18

3.5. The Process of FedTCM
FedTCM is illustrated in Figure 4. The clients in cluster 𝑏 send the model parameters

to the cluster mediator (step 1). The cluster mediator aggregates the received parameters.
The cluster mediator sends the aggregated model parameters 𝜔 to the server. Asyn-
chronous uploading is used here (step 2). The server updates the model parameters in the
first-tier cache (step 3). The server aggregates all model parameters in the first-tier cache
and stores the aggregated results 𝑊 in the corresponding second-tier cache (step 4).
The server will randomly select a model in the second-tier cache and send the model to
cluster 𝑏 (step 5). The cluster mediator sends the model to the client. Intuitively, cluster 𝑏
is trained based on model parameters from different clusters (step 6).

Figure 4. The process of FedTCM.

The pseudocode of FedTCM is shown in Algorithm 1. Line 3 represents our cluster-
ing method based on cosine similarity. Lines 6–7 represent the update and aggregation
process of the first-tier cache, where 𝑚 represents the list of first-tier cache, and 𝑚 is used
to store the latest model for each cluster. Lines 8–9 represent our random distribution
strategy, where 𝑛 denotes the list of the second-tier cache, and 𝑛 is used to store the ag-
gregation model parameters from the first-tier cache. Lines 13–16 represent the process of
receiving and sending models by cluster mediators. Lines 18–22 represent the training
process of the local client.

Algorithm 1. FedTCM.
Input: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟() is the cosine similarity clustering algorithm
Output: global model 𝑔
 1: server process:
 2: Before training starts, receive label count vector 𝑣
 3: 𝐶 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑣)
 4: for 𝑡=0,1…,𝑇 do:
 5: Receive model 𝜔 from cluster 𝑏
 6: 𝑚[𝑏] = 𝜔
 7: 𝑊 = ∑ 𝑚[𝑖]
 8: 𝑛[𝑏] = 𝑊
 9: Send 𝑛[𝑘] to cluster 𝑏, 𝑘 ∈ 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝑆)
10: end for
11: 𝑔 = ∑ 𝑛[𝑖]
12: cluster mediator:
13: Receive 𝑊 from server, send 𝑊 to clients in the cluster
14: Receive 𝜔 , from clients in cluster
15: Aggregate the collected parameters: 𝜔 = , 𝜔 ,

Figure 4. The process of FedTCM.

The pseudocode of FedTCM is shown in Algorithm 1. Line 3 represents our clustering
method based on cosine similarity. Lines 6–7 represent the update and aggregation process
of the first-tier cache, where m represents the list of first-tier cache, and m is used to store
the latest model for each cluster. Lines 8–9 represent our random distribution strategy,

Electronics 2023, 12, 1660 10 of 18

where n denotes the list of the second-tier cache, and n is used to store the aggregation
model parameters from the first-tier cache. Lines 13–16 represent the process of receiving
and sending models by cluster mediators. Lines 18–22 represent the training process of the
local client.

Algorithm 1. FedTCM.

Input: cluster() is the cosine similarity clustering algorithm
Output: global model gt

1: server process:
2: Before training starts, receive label count vector vi
3: C = cluster(vi)
4: for t = 0,1 . . . ,T do:
5: Receive model ωt+1

b from cluster b
6: m[b] = ωt+1

b
7: Wt+1

b = 1
S ∑S

i=0 m[i]
8: n[b] = Wt+1

b
9: Send n[k] to cluster b, k ∈ random(0, S)
10: end for
11: gt = 1

S ∑S
i=0 n[i]

12: cluster mediator:
13: Receive Wt from server, send Wt to clients in the cluster
14: Receive ωt+1

b,j from clients in cluster

15: Aggregate the collected parameters: ωt+1
b =

nb,j
nb

ωt+1
b,j

16: Send ωt+1
b to server

17: client device:
18: Receive Wt from cluster mediator
19: for local iteration do:
20: local update ωt+1

b,j ⇐Wt − η∇F
21: end for
22: Send update model ωt+1

b,j to cluster mediator

4. Experiment and Results

In this section, we introduce the experiments and analyze the simulation results to
verify the performance of the FedTCM. In our experiments, there are Na clients, S mediators,
and one central server. The data similarity of the clients is used to divide the Na clients
into different clusters. S mediators will be chosen randomly by the clients in each cluster.
We present the results of our experiments on user shopping behavior data and user sports
behavior data.

For every experiment on user shopping behavior data, we repeated the following
hyperparameters. SGD was used as the optimization method (learning rate, η = 0.1; epoch,
e = 5; and the number of clients participating in training, Na = 20). Cosine similarity
is used to describe the degree of similarity of client data. The threshold value of cosine
similarity is p = 0.98.

For every experiment on user sports behavior data, we repeated the following hyper-
parameters. SGD was used as the optimization method (learning rate, η = 0.03; epoch,
e = 5; batch size, B = 3; and the number of clients, Na = 10). The threshold value of cosine
similarity is p = 0.98.

4.1. Dataset and Pre-Processing

In recent years, online shopping has become the most convenient way to shop. The
huge amount of user behavior data can support various large training tasks. Exploring the
hidden information can reduce the recommendation cost of an e-commerce platform, and
it will provide a great convenience for online shopping in practical applications. The data
we selected contains multiple user characteristics and shopping behaviors. After removing
the null and error values in the dataset, we select 10 categories of items. This dataset is

Electronics 2023, 12, 1660 11 of 18

highly heterogeneous and non-uniform. In this dataset, users have four types of behavior:
browse, like, add to cart, and buy. We need to use known features to forecast the behavior
of the user.

Moreover, we evaluated the results of our experiments on the user sports behavior
dataset. The smart devices that users carry around with them contain various sensors. It
does not require active user settings and can record various sports behaviors (including
walking, running, etc.). The data we selected contains a variety of user characteristics and
exercise habits, so we will use the user sports behavior data to predict the user’s physical
fitness. The physical condition of the user reflects the lifestyle habits of the user; smart
devices can send exercise reminders and customize personalized exercise programs to users
based on their physical fitness. Hence, user sports behavior analysis will be of relevance.

4.2. Federated Data Splitting

The goal of FedTCM is to mitigate the impact of Non-IID data on the model. Therefore,
we will set up Non-IID data to represent this problem when dividing the dataset. We use
the Dirichlet distribution to generate Non-IID data for each client. The Dirichlet distribution
is also known as the multivariate Beta distribution. The density function of Dirichlet is
Equation (7):

Dir(X|α) = 1
B(α)∏

d
i=1 Xαi−1

i (7)

where α = {α1, . . . , αd} > 0, B(α) = ∏d
i=1 Γ(αi)

Γ(∑d
i=1 αi)

. We can sample the dataset according to

the Dirichlet distribution. The parameter α of the Dirichlet distribution can control the
sampling probability of each class of labels in the dataset. In this way, the data amount of
each client can calculate the number of each label.

4.3. Baseline Algorithm

We choose the following algorithm as the baseline algorithm:
NonFed: supervised learning tasks will be executed on 20 devices, but the federation

framework will not be deployed on these clients.
FedAvg: an FL algorithm with SGD is executed. Additionally, the aggregation of

global models uses a weighted average algorithm.

4.4. Results and Discussion

First, compared with the NonFed and FedAvg on user shopping behavior data, we
analyze the accuracy of FedTCM. As the FedTCM is an asynchronous framework, we
cannot compare the three methods in the same round. Therefore, we must set a time basis.
We utilize system time on the central server. Additionally, the time baseline is the time
consumed by FedAvg running 220 rounds. When the FedAvg ran 220 rounds, it almost has
been of convergence. Additionally, the FedTCM and NonFed will run with the same time
slice. To simulate the real-world situation, we assume that the clients compute at different
speeds. Hence, we assign each client a different training speed via a delay time. The delay
time is controlled by parameters ct. In the other words, the delay time parameter ct will
control the calculation time of the slowest device, and the calculation time of other devices
is t ∈ [1, ct]. FedTCM and FedAvg consider the effect of device computational speed. In
NonFed, we do not consider the effect of device computation speed, as it will be executed
on a single client. In our experiment, FedAvg runs the least number of rounds in fixed time,
followed by FedTCM, and finally by NonFed.

Figure 5 shows the accuracy of 3 methods with different degrees of data heterogeneity
when batch size B = 3 and ct = 2. In Figure 5a, when α = 10, the data are lower in
heterogeneity, and the model is less affected. The accuracy of NonFed fluctuates slightly
from start to finish, and FedTCM is 10.1% more accurate than NonFed. In contrast, the
federated method performs better in the case of low heterogeneity, and their accuracy
curves are smooth with almost no fluctuations. Additionally, FedTCM is more accurate

Electronics 2023, 12, 1660 12 of 18

than FedAvg by 1.2%. In Figure 5b, the degree of heterogeneity of the data is increased,
and the accuracy curves of the three methods fluctuate to different degrees, especially
the fluctuation of NonFed is the most obvious. Hence, NonFed is more sensitive to the
degree of heterogeneity of the data. In the federated method, FedAvg converges slower and
with a slight decrease in accuracy. FedTCM is not affected by Non-IID in the convergence
phase, although the accuracy fluctuation is more obvious in the initial training phase.
Additionally, the accuracy of FedTCM is 10.3% and 1.1% higher than NonFed and FedAvg,
respectively. In Figure 5c, the degree of data heterogeneity further is increased. Affected by
the heterogeneous data, the accuracy of NonFed becomes significantly reduced. Federated
methods are also significantly impacted: the accuracy of FedTCM is still 10.4% higher than
NonFed. Comparing the two federated methods, the accuracy fluctuations of FedAvg are
more obvious and slightly reduced accuracy. However, FedTCM performs better than
FedAvg: the accuracy of FedTCM is 1.1% higher than FedAvg. Additionally, whatever the
degree of heterogeneity is, FedTCM always can achieve the highest accuracy among the
three methods.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

Figure 5. Comparing FedTCM with the baseline algorithms on the shopping behavior dataset at
batch size 𝐵 = 3, 𝑐 = 2. (a) FedTCM and baseline algorithms are all set 𝛼 = 10. (b) FedTCM and
baseline algorithms are all set 𝛼 = 5. (c) FedTCM and baseline algorithms are all set 𝛼 = 3.

With changes in the degree of data heterogeneity, NonFed does not converge. The
accuracy of FedTCM is on average 10.2% higher than NonFed. As the NonFed can only
utilize the dataset of one client, the generalization ability of NonFed is the worst one. Thus,
the federated methods mitigate the impact of Non-IID data better than NonFed. FedTCM
and FedAvg use data from 20 devices under the federation framework. FedTCM con-
verges in 350 system times, and FedAvg converges in 380 system times. Due to the simple
parameter aggregation method of FedAvg, FedAvg is susceptible to the effects of non-IID
data. Compared with FedAvg, FedTCM is more accurate and converges faster. The exper-
iments verified the effectiveness of the two-tier caching mechanism. FedTCM performs
better than the baseline algorithm in the Non-IID shopping behavior data.

As FedTCM uses a two-tier cache mechanism and asynchronous communication be-
tween the server and cluster mediator, the server does not need to communicate with all
clients but only with part of all cluster mediators. The server is not affected by the speed
of client computing. Hence, FedTCM takes less time to run one round. Compared to Fe-
dAvg, FedTCM shortens the computation time of each round. Correspondingly, FedTCM
ran more rounds than FedAvg in the specified time. As shown in Figure 5, for instance, if
we use 65% as the target accuracy, FedTCM takes 157 system times to achieve the target
accuracy, while FedAvg takes 228 system times when 𝛼 = 10. Additionally, when 𝛼 = 5,
FedTCM takes 172 system time, and FedAvg takes 270 system time. When 𝛼 = 3, FedTCM
requires 254 system time, and FedAvg requires 302 system time. Compared with FedAvg,
FedTCM requires less time to achieve the target accuracy.

Since the user shopping behavior dataset is highly heterogeneous, three methods
would be affected by different batch size 𝐵. The simulation results with batch size 𝐵 = 5
and 𝑐 = 2 are shown in Figure 6. In Figure 6a, compared to the results in Figure 5a, alt-
hough NonFed can achieve higher accuracy, the accuracy fluctuates drastically.

Figure 5. Comparing FedTCM with the baseline algorithms on the shopping behavior dataset at
batch size. B = 3, ct = 2 (a) FedTCM and baseline algorithms are all set α = 10. (b) FedTCM and
baseline algorithms are all set α = 5. (c) FedTCM and baseline algorithms are all set α = 3.

With changes in the degree of data heterogeneity, NonFed does not converge. The
accuracy of FedTCM is on average 10.2% higher than NonFed. As the NonFed can only
utilize the dataset of one client, the generalization ability of NonFed is the worst one.
Thus, the federated methods mitigate the impact of Non-IID data better than NonFed.
FedTCM and FedAvg use data from 20 devices under the federation framework. FedTCM
converges in 350 system times, and FedAvg converges in 380 system times. Due to the
simple parameter aggregation method of FedAvg, FedAvg is susceptible to the effects of
non-IID data. Compared with FedAvg, FedTCM is more accurate and converges faster.

Electronics 2023, 12, 1660 13 of 18

The experiments verified the effectiveness of the two-tier caching mechanism. FedTCM
performs better than the baseline algorithm in the Non-IID shopping behavior data.

As FedTCM uses a two-tier cache mechanism and asynchronous communication
between the server and cluster mediator, the server does not need to communicate with all
clients but only with part of all cluster mediators. The server is not affected by the speed of
client computing. Hence, FedTCM takes less time to run one round. Compared to FedAvg,
FedTCM shortens the computation time of each round. Correspondingly, FedTCM ran
more rounds than FedAvg in the specified time. As shown in Figure 5, for instance, if
we use 65% as the target accuracy, FedTCM takes 157 system times to achieve the target
accuracy, while FedAvg takes 228 system times when α = 10. Additionally, when α = 5,
FedTCM takes 172 system time, and FedAvg takes 270 system time. When α = 3, FedTCM
requires 254 system time, and FedAvg requires 302 system time. Compared with FedAvg,
FedTCM requires less time to achieve the target accuracy.

Since the user shopping behavior dataset is highly heterogeneous, three methods
would be affected by different batch size B. The simulation results with batch size B = 5
and ct = 2 are shown in Figure 6. In Figure 6a, compared to the results in Figure 5a, although
NonFed can achieve higher accuracy, the accuracy fluctuates drastically. Additionally, the
federated method has a slower convergence rate. The federated method is more stable
than the NonFed, and the accuracy of FedTCM is 7.5% higher than NonFed. Moreover, the
accuracy of FedTCM is 1% higher than that of FedAvg. Especially in Figure 6b, the degree
of heterogeneity of the data increases, and the accuracy of NonFed is reduced significantly.
Hence, NonFed is more sensitive to changes in parameters. At the same time, the accuracy
of the federated methods decreased, especially the FedAvg accuracy decreased more.
FedTCM is still the best performer among the three methods. The accuracy of FedTCM was
11.2% and 1% higher than NonFed and FedAvg, respectively. In Figure 6c, three methods
are affected to different degrees as the data heterogeneity increases. The fluctuation of
NonFed accuracy was severe. Although the accuracy of the federated method slightly
decreases, the accuracy of the federated method is still higher than NonFed, especially
FedTCM. FedTCM is 10.8% more accurate than NonFed. The federated method is affected
drastically before 100 system time. Comparing the two federated methods, the accuracy of
FedTCM is 1.2% higher than that of FedAvg.

The adjustment of batch size has an impact on all three methods. When increasing the
value of batch size, the model will probably fall into local minima, which will affect the
experimental results. In all experiments, as the degree of data heterogeneity increases, we
note that NonFed still does not converge, and the accuracy of NonFed fluctuates drastically.
NonFed is sensitive to parameter changes and has the worst generalization performance.
FedTCM starts converging at 380 system times and FedAvg starts converging at 400 system
times. Hence, the federated method still performs better than NonFed. Compared to
Figure 5, although the convergence rate of the federated method is significantly lower,
FedTCM performs better than FedAvg in both convergence speed and accuracy. FedTCM
is most suited to process Non-IID data and it has excellent generalization capability.

Same as Figure 5, FedTCM takes less time to run one round. FedTCM ran more rounds
than FedAvg in the specified time. In Figure 6, using 65% as the target accuracy, FedTCM
takes 257 system time to achieve the target accuracy, while FedAvg takes 304 system time
when α = 10. When α = 5, FedTCM takes 312 system time, and FedAvg takes 396 system
time. When α = 3, FedTCM requires 358 system time, and FedAvg requires 410 system time.
Although we adjusted the experimental parameters, compared with FedAvg, FedTCM still
requires less time to achieve the target accuracy.

To verify the influence of the client training speed on the experimental results, we
design a group of experiments with different values of ct. Figure 7 shows the comparison of
FedTCM with the baseline method for different degrees of heterogeneity with ct = 4. Since
NonFed does not consider the effect of device computation speed between clients, we do
not list the results of NonFed. As concluded in the previous section, even after considering
the computational speed of the device, FedTCM outperforms FedAvg both in terms of

Electronics 2023, 12, 1660 14 of 18

convergence speed and accuracy. The computational speed of the device does not affect the
effectiveness of FedTCM.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18

Additionally, the federated method has a slower convergence rate. The federated method
is more stable than the NonFed, and the accuracy of FedTCM is 7.5% higher than NonFed.
Moreover, the accuracy of FedTCM is 1% higher than that of FedAvg. Especially in Figure
6b, the degree of heterogeneity of the data increases, and the accuracy of NonFed is re-
duced significantly. Hence, NonFed is more sensitive to changes in parameters. At the
same time, the accuracy of the federated methods decreased, especially the FedAvg accu-
racy decreased more. FedTCM is still the best performer among the three methods. The
accuracy of FedTCM was 11.2% and 1% higher than NonFed and FedAvg, respectively. In
Figure 6c, three methods are affected to different degrees as the data heterogeneity in-
creases. The fluctuation of NonFed accuracy was severe. Although the accuracy of the
federated method slightly decreases, the accuracy of the federated method is still higher
than NonFed, especially FedTCM. FedTCM is 10.8% more accurate than NonFed. The fed-
erated method is affected drastically before 100 system time. Comparing the two federated
methods, the accuracy of FedTCM is 1.2% higher than that of FedAvg.

Figure 6. Comparing FedTCM with the baseline algorithm with different 𝛼 at batch size 𝐵 = 5, 𝑐 =2. (a) FedTCM and baseline algorithms are all set 𝛼 = 10. (b) FedTCM and baseline algorithms are
all set 𝛼 = 5. (c) FedTCM and baseline algorithms are all set 𝛼 = 3.

The adjustment of batch size has an impact on all three methods. When increasing
the value of batch size, the model will probably fall into local minima, which will affect
the experimental results. In all experiments, as the degree of data heterogeneity increases,
we note that NonFed still does not converge, and the accuracy of NonFed fluctuates dras-
tically. NonFed is sensitive to parameter changes and has the worst generalization perfor-
mance. FedTCM starts converging at 380 system times and FedAvg starts converging at
400 system times. Hence, the federated method still performs better than NonFed. Com-
pared to Figure 5, although the convergence rate of the federated method is significantly
lower, FedTCM performs better than FedAvg in both convergence speed and accuracy.
FedTCM is most suited to process Non-IID data and it has excellent generalization capa-
bility.

Figure 6. Comparing FedTCM with the baseline algorithm with different α at batch size B = 5, ct = 2.
(a) FedTCM and baseline algorithms are all set α = 10. (b) FedTCM and baseline algorithms are all
set α = 5. (c) FedTCM and baseline algorithms are all set α = 3.

In Figure 7 for the same reasons, FedTCM requires less time to achieve the target
accuracy than FedAvg.

Figure 8 shows the accuracy of the 3 methods with different degrees of data het-
erogeneity when ct = 2 in user sports behavior data. In Figure 8a, when α = 10, the
highest accuracy is achieved by all three methods. However, the accuracy curve of NonFed
fluctuates drastically and does not converge. The accuracy of FedTCM is 14.4% higher
than NonFed. In contrast, the federated methods can perform better with heterogeneous
data, both in terms of accuracy and convergence speed. Compared to the typical federated
algorithm FedAvg, the accuracy of FedTCM is 1.6% higher than it. In Figure 8b, as the
degree of data heterogeneity rises, the accuracy of all three methods is affected, and the
accuracy curve fluctuates more significantly, especially NonFed. The accuracy of FedTCM
is 15.8% higher than NonFed. Additionally, in the federated method, despite the impact of
heterogeneous data on FedTCM, the accuracy of FedTCM is 2.3% higher than FedAvg. In
Figure 8c, the degree of data heterogeneity continues to rise, and the accuracy of all three
methods is drastically affected. Nevertheless, the accuracy of FedTCM is still the highest
among the three methods. The accuracy of FedTCM is 15.6% higher than NonFed and 2.2%
higher than FedAvg.

In user sports behavior data, as the degree of data heterogeneity increases, NonFed
has the largest drop in accuracy. Hence, NonFed is more sensitive to data changes. In
Figure 8, the accuracy of the federated methods is much higher than NonFed, and the
federated method is more suitable for heterogeneous data than NonFed. In contrast, the
accuracy of FedTCM was, on average, 2.0% higher than FedAvg, and the fluctuations of the
accuracy curve of FedTCM were the slightest. FedTCM performs better than the baseline
algorithm in the Non-IID sports behavior data.

Electronics 2023, 12, 1660 15 of 18

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Same as Figure 5, FedTCM takes less time to run one round. FedTCM ran more
rounds than FedAvg in the specified time. In Figure 6, using 65% as the target accuracy,
FedTCM takes 257 system time to achieve the target accuracy, while FedAvg takes 304
system time when 𝛼 = 10. When 𝛼 = 5, FedTCM takes 312 system time, and FedAvg takes
396 system time. When 𝛼 = 3, FedTCM requires 358 system time, and FedAvg requires
410 system time. Although we adjusted the experimental parameters, compared with Fe-
dAvg, FedTCM still requires less time to achieve the target accuracy.

To verify the influence of the client training speed on the experimental results, we
design a group of experiments with different values of 𝑐 . Figure 7 shows the comparison
of FedTCM with the baseline method for different degrees of heterogeneity with 𝑐 = 4.
Since NonFed does not consider the effect of device computation speed between clients,
we do not list the results of NonFed. As concluded in the previous section, even after con-
sidering the computational speed of the device, FedTCM outperforms FedAvg both in
terms of convergence speed and accuracy. The computational speed of the device does
not affect the effectiveness of FedTCM.

Figure 7. Comparing FedTCM with FedAvg with different 𝛼 at batch size 𝐵 = 3, 𝑐 = 4. (a) FedTCM
and FedAvg are all set 𝛼 = 10. (b) FedTCM and FedAvg are all set 𝛼 = 5. (c) FedTCM and FedAvg
are all set 𝛼 = 3.

In Figure 7 for the same reasons, FedTCM requires less time to achieve the target
accuracy than FedAvg.

Figure 8 shows the accuracy of the 3 methods with different degrees of data hetero-
geneity when 𝑐 = 2 in user sports behavior data. In Figure 8a, when 𝛼 = 10, the highest
accuracy is achieved by all three methods. However, the accuracy curve of NonFed fluc-
tuates drastically and does not converge. The accuracy of FedTCM is 14.4% higher than
NonFed. In contrast, the federated methods can perform better with heterogeneous data,
both in terms of accuracy and convergence speed. Compared to the typical federated al-
gorithm FedAvg, the accuracy of FedTCM is 1.6% higher than it. In Figure 8b, as the de-
gree of data heterogeneity rises, the accuracy of all three methods is affected, and the ac-
curacy curve fluctuates more significantly, especially NonFed. The accuracy of FedTCM

Figure 7. Comparing FedTCM with FedAvg with different α at batch size B = 3, ct = 4. (a) FedTCM
and FedAvg are all set α = 10. (b) FedTCM and FedAvg are all set α = 5. (c) FedTCM and FedAvg
are all set α = 3.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

is 15.8% higher than NonFed. Additionally, in the federated method, despite the impact
of heterogeneous data on FedTCM, the accuracy of FedTCM is 2.3% higher than FedAvg.
In Figure 8c, the degree of data heterogeneity continues to rise, and the accuracy of all
three methods is drastically affected. Nevertheless, the accuracy of FedTCM is still the
highest among the three methods. The accuracy of FedTCM is 15.6% higher than NonFed
and 2.2% higher than FedAvg.

Figure 8. Comparing FedTCM with the baseline algorithms on the sports behavior dataset at 𝑐 = 2.
(a) FedTCM and baseline algorithms are all set 𝛼 = 10. (b) FedTCM and baseline algorithms are all
set 𝛼 = 5. (c) FedTCM and baseline algorithms are all set 𝛼 = 3.

In user sports behavior data, as the degree of data heterogeneity increases, NonFed
has the largest drop in accuracy. Hence, NonFed is more sensitive to data changes. In
Figure 8, the accuracy of the federated methods is much higher than NonFed, and the
federated method is more suitable for heterogeneous data than NonFed. In contrast, the
accuracy of FedTCM was, on average, 2.0% higher than FedAvg, and the fluctuations of
the accuracy curve of FedTCM were the slightest. FedTCM performs better than the base-
line algorithm in the Non-IID sports behavior data.

Additionally, the comparison of computational time between FedTCM and FedAvg,
which is based on the sports behavior data, has a similar result with experiences on the
shopping behavior data. FedTCM requires less time than FedAvg to achieve the same tar-
get accuracy.

Tables 2 and 3 show the number of model parameters sent/received by the client and
server with different degrees of heterogeneity and different device computation speeds
on user shopping behavior data. As the degree of heterogeneity increases, the number of
model parameters sent/received by the server rises significantly. This occurs because
changing the degree of heterogeneity of the data will affect the number of clusters. The
number of clusters is highest in 𝛼 = 3 compared to 𝛼 = 5 and 𝛼 = 10. The more clusters
there are, the less the cluster will be affected by slow computing clients and the more
frequently the cluster will communicate with the server. Moreover, the number of servers
sent/received in Table 2 is significantly less than in Table 3 because the computational

Figure 8. Comparing FedTCM with the baseline algorithms on the sports behavior dataset at ct = 2.
(a) FedTCM and baseline algorithms are all set α = 10. (b) FedTCM and baseline algorithms are all
set α = 5. (c) FedTCM and baseline algorithms are all set α = 3.

Electronics 2023, 12, 1660 16 of 18

Additionally, the comparison of computational time between FedTCM and FedAvg,
which is based on the sports behavior data, has a similar result with experiences on the
shopping behavior data. FedTCM requires less time than FedAvg to achieve the same
target accuracy.

Tables 2 and 3 show the number of model parameters sent/received by the client and
server with different degrees of heterogeneity and different device computation speeds
on user shopping behavior data. As the degree of heterogeneity increases, the number
of model parameters sent/received by the server rises significantly. This occurs because
changing the degree of heterogeneity of the data will affect the number of clusters. The
number of clusters is highest in α = 3 compared to α = 5 and α = 10. The more clusters
there are, the less the cluster will be affected by slow computing clients and the more
frequently the cluster will communicate with the server. Moreover, the number of servers
sent/received in Table 2 is significantly less than in Table 3 because the computational
speed of the device affects the overall experiment time. The slower the computation speed
of the device, the longer the time it takes for the model to converge. The faster device
does not wait for the slower device, so the faster device can communicate with the server
more frequently. Therefore, when ct increases, the number of servers sending/receiving
increases. The number of models sent/received by local clients depends on the speed of
computation of all clients in the cluster, Tables 2 and 3 show the average number of devices
sent/received.

Table 2. Number of sent/received model parameters with different degrees of heterogeneity in
FedTCM (ct = 2), * denotes the result of averaging.

Device α = 10 α = 5 α = 3

Central server 1981 2294 2521
Local client 260 * 287 * 256 *

Table 3. Number of sent/received model parameters with different degrees of heterogeneity in
FedTCM (ct = 4), * denotes the result of averaging.

Device α = 10 α = 5 α = 3

Central server 2295 2690 3368
Local client 341 * 338 * 336 *

Table 4 illustrates the number of model parameters sent/received by FedTCM and Fe-
dAvg during a fixed experimental time on user shopping behavior data. The sent/received
numbers of FedTCM in Table 4 are an average value of the sent/received numbers shown
in Tables 2 and 3. Compared to FedAvg, although FedTCM has increased the number of
sent/received on the local clients, it has significantly reduced the number of sent/received
on the server. For local clients, the increase in the number of local training rounds is not
catastrophically burdensome. However, for central servers in large network structures,
reducing the communication burden can effectively reduce data congestion and increase
the efficiency of communication and computation. Hence, the FedTCM can provide more
excellent communication performance than FedAvg, too.

Table 4. Number of model parameters sent/received by different methods, * denotes the result
of averaging.

Device FedAvg FedTCM (ct = 2) FedTCM (ct = 4)

Central server 4400 2262 * 2784 *
Local client 220 268 * 338 *

From the client’s perspective, FedTCM runs more rounds than FedAvg in the same
amount of time. This demonstrates the effectiveness of our designed clustering mechanism

Electronics 2023, 12, 1660 17 of 18

and asynchronous communication. Under the same conditions, FedTCM is more robust
to device computation speed than FedAvg. As a result, FedTCM can fully utilize local
computing resources and execute them more efficiently. From the server’s perspective,
FedTCM dramatically reduces the number of communications with the server. FedTCM
differs from the typical FL algorithm which does not require all clients to communicate with
the server. Since each cluster trains the model parameters independently, the aggregated
model of the cluster mediator can represent the data information of all clients in the cluster.
FedTCM can reduce the communication burden on the server while improving the accuracy
of the model.

5. Conclusions

In this work, we proposed an FL algorithm, FedTCM, based on the two-tier cache
mechanism. FedTCM can reduce the impact of Non-IID on user behavior modeling.
Although the method without the federated framework can be trained, it cannot converge
on the Non-IID data set. Compared to the method without the federated framework,
FedTCM exhibits outstanding performance on Non-IID data. In the user shopping behavior
dataset, the accuracy of FedTCM is 11.2% higher than NonFed at the maximum, 7.5% higher
than NonFed at the minimum, and 10% higher than NonFed at the average under different
degrees of data heterogeneity. In the user sports behavior dataset, the accuracy of FedTCM
is 15.8% higher than NonFed at the maximum, 14.4% higher than NonFed at the minimum,
and 15.2% higher than NonFed at the average for different degrees of data heterogeneity.
Therefore, FedTCM has better generalization ability on Non-IID data. In the user shopping
behavior dataset, the accuracy of FedTCM is 1.2% higher than FedAvg at maximum, 1%
higher than FedAvg at minimum, and 1.1% higher than FedAvg at an average under
different degrees of data heterogeneity. In the user sports behavior dataset, the accuracy of
FedTCM is 2.3% higher than FedAvg at maximum, 1.6% higher than FedAvg at minimum,
and 2% higher than FedAvg at an average under different degrees of data heterogeneity.
Meanwhile, FedTCM converged faster than FedAvg, and FedTCM can provide more
excellent communication performance than FedAvg. At the same time, in the convergence
phase, the accuracy of the baseline algorithm is more volatile with decreasing the α, and in
contrast, FedTCM maintained a smoother accuracy.

The goal of our proposed approach is to use a single model to mitigate the impact
of Non-IID data on the model. A potential limitation is that a single model is an optimal
solution for the global task, but with Non-IID data, it is not optimal for every client task.
Even though the global model achieves the highest accuracy in the global data, it may not
be suitable for each client because the local client data distribution is different from the
global data distribution. In the future, we will consider federated learning approaches that
generate multiple personalized models. Personalized models are created for each client
through both the public knowledge from the other clusters and the specific knowledge
of the current client, enhancing the generalizability of personalized models on different
data distributions.

Author Contributions: Conceptualization, J.Z. and Z.L.; methodology, J.Z. and Z.L.; software, Z.L.;
validation, J.Z. and Z.L.; formal analysis, J.Z. and Z.L.; investigation, J.Z. and Z.L.; resources, J.Z. and
Z.L.; data curation, J.Z. and Z.L.; writing—original draft preparation, J.Z. and Z.L.; writing—review
and editing, J.Z. and Z.L.; visualization, J.Z. and Z.L.; supervision, J.Z.; project administration, J.Z.
and Z.L.; funding acquisition, J.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper is supported by the project “User Behavior Features Oriented Research on
Analysis of Multi-Source Data in CDN” (20200401082GX), which is financially supported by the
Science and Technology Development Program of Jilin Province, China.

Data Availability Statement: Due to the nature of this research, participants of this study did not
agree for their data to be shared publicly, so supporting data is not available.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1660 18 of 18

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks

from decentralized data. In Proceedings of the Artificial Intelligence and Statistics Conference, Fort Lauderdale, FL, USA,
20–22 April 2017; pp. 1273–1282.

2. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. In
Proceedings of the Machine Learning and Systems, Austin, TX, USA, 2–4 March 2020; Volume 2, pp. 429–450.

3. Gao, L.; Fu, H.; Li, L.; Chen, Y.; Xu, M.; Xu, C.-Z. Feddc: Federated learning with non-iid data via local drift decoupling and
correction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 10112–10121.

4. Karimireddy, S.P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.; Suresh, A.T. SCAFFOLD: Stochastic Controlled Averaging for Federated
Learning. In Proceedings of the Machine Learning Research, 37th International Conference on Machine Learning, Vienna, Austria,
12–18 July 2020; pp. 5132–5143.

5. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated learning with non-IID data. arXiv 2018, arXiv:1806.00582.
6. Yao, X.; Huang, T.; Zhang, R.-X.; Li, R.; Sun, L. Federated learning with unbiased gradient aggregation and controllable meta

updating. arXiv 2019, arXiv:1910.08234.
7. Younis, R.; Fisichella, M. FLY-SMOTE: Re-balancing the non-IID iot edge devices data in federated learning system. IEEE Access

2022, 10, 65092–65102. [CrossRef]
8. Duan, M.; Liu, D.; Chen, X.; Tan, Y.; Ren, J.; Qiao, L.; Liang, L. Astraea: Self-balancing federated learning for improving

classification accuracy of mobile deep learning applications. In Proceedings of the 2019 IEEE 37th International Conference on
Computer Design (ICCD), Abu Dhabi, United Arab Emirates, 17–20 November 2019; pp. 246–254.

9. Xie, C.; Koyejo, S.; Gupta, I. Asynchronous federated optimization. arXiv 2019, arXiv:1903.03934.
10. Hu, C.-H.; Chen, Z.; Larsson, E.G. Device scheduling and update aggregation policies for asynchronous federated learning.

In Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Lucca Italy, 27–30 September 2021; pp. 281–285.

11. Jeong, E.; Oh, S.; Kim, H.; Park, J.; Bennis, M.; Kim, S.-L. Communication-efficient on-device machine learning: Federated
distillation and augmentation under non-IID private data. arXiv 2018, arXiv:1811.11479.

12. Long, G.; Xie, M.; Shen, T.; Zhou, T.; Wang, X.; Jiang, J. Multi-center federated learning: Clients clustering for better personalization.
World Wide Web 2023, 26, 481–500. [CrossRef]

13. Duan, M.; Liu, D.; Ji, X.; Liu, R.; Liang, L.; Chen, X.; Tan, Y. Fedgroup: Efficient federated learning via decomposed
similarity-based clustering. In Proceedings of the 2021 IEEE Intl Conf on Parallel & Distributed Processing with Appli-
cations, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), New York, NY, USA, 30 September–3 October 2021; pp. 228–237.

14. Huang, Y.; Chu, L.; Zhou, Z.; Wang, L.; Liu, J.; Pei, J.; Zhang, Y. Personalized cross-silo federated learning on non-IID data. In
Proceedings of the AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021; pp. 7865–7873.

15. Hsu, T.-M.H.; Qi, H.; Brown, M. Measuring the effects of non-identical data distribution for federated visual classification. arXiv
2019, arXiv:1909.06335.

16. Kopparapu, K.; Lin, E. Fedfmc: Sequential efficient federated learning on non-iid data. arXiv 2020, arXiv:2006.10937.
17. Jamali-Rad, H.; Abdizadeh, M.; Singh, A. Federated learning with taskonomy for non-IID data. IEEE Trans. Neural Netw Learn

Syst. 2022, 1–12. [CrossRef] [PubMed]
18. Xue, Y.; Klabjan, D.; Luo, Y. Aggregation delayed federated learning. In Proceedings of the 2022 IEEE International Conference on

Big Data (Big Data), Osaka, Japan, 17–20 December 2022; pp. 85–94.
19. Khodak, M.; Balcan, M.-F.F.; Talwalkar, A.S. Adaptive gradient-based meta-learning methods. In Proceedings of the 33rd

International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 8–14 December 2019; pp. 5917–5928.
20. Shi, G.; Li, L.; Wang, J.; Chen, W.; Ye, K.; Xu, C. HySync: Hybrid federated learning with effective synchronization. In Proceedings

of the 2020 IEEE 22nd International Conference on High Performance Computing and Communications (HPCC), Yanuca Island,
Cuvu, Fiji, 14–16 December 2020; pp. 628–633.

21. Ghosh, A.; Hong, J.; Yin, D.; Ramchandran, K. Robust federated learning in a heterogeneous environment. arXiv 2019,
arXiv:1906.06629.

22. Ghosh, A.; Chung, J.; Yin, D.; Ramchandran, K. An efficient framework for clustered federated learning. Adv. Neur. Inf. Process.
Syst. 2020, 33, 19586–19597. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ACCESS.2022.3184309
http://doi.org/10.1007/s11280-022-01046-x
http://doi.org/10.1109/TNNLS.2022.3152581
http://www.ncbi.nlm.nih.gov/pubmed/35316193
http://doi.org/10.1109/TIT.2022.3192506

	Introduction
	Related Work
	Data Augmentation
	Cluster-Based Multi-Model Learning
	Adaptive Optimization
	Personalized Federated Learning

	The Principle of FedTCM
	Clustering the Clients Based on the Distribution of Local Data
	The Process of Training on Clients
	The Major Tasks of Cluster Mediator
	The Major Tasks of the Server
	The Process of FedTCM

	Experiment and Results
	Dataset and Pre-Processing
	Federated Data Splitting
	Baseline Algorithm
	Results and Discussion

	Conclusions
	References

