
Citation: Wang, J.; Ouyang, R.; Wen,

W.; Wan, X.; Wang, W.; Tolba, A.;

Zhang, X. A Post-Evaluation System

for Smart Grids Based on

Microservice Framework and Big

Data Analysis. Electronics 2023, 12,

1647. https://doi.org/10.3390/

electronics12071647

Academic Editor: Ahmed F. Zobaa

Received: 30 January 2023

Revised: 25 March 2023

Accepted: 28 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Post-Evaluation System for Smart Grids Based on
Microservice Framework and Big Data Analysis
Jie Wang 1, Ruiqi Ouyang 1, Wu Wen 1,*, Xin Wan 1, Wei Wang 2, Amr Tolba 3,* and Xingguo Zhang 4

1 School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

2 School of Software, Dalian University of Technology, Dalian 116024, China
3 Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia
4 Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology,

Nakacho Koganei, Tokyo 184-8588, Japan
* Correspondence: wenwu@cqupt.edu.cn (W.W.); atolba@ksu.edu.sa (A.T.)

Abstract: Wind energy, as a clean energy source, has been experiencing rapid development in recent
years. However, there is often a significant difference between the designed electricity generation
capacity and the actual electricity generation capacity during the construction of wind farms, making
it difficult to assess the economic benefits of wind farms. Therefore, the development post-evaluation
technology is required to support the renovation of old wind farms. In addition, traditional data
analysis techniques are unable to handle and analyze massive data in a timely manner. Therefore, big
data technology must be developed to improve processing efficiency. To address these issues and meet
actual business needs, this paper designs an intelligent grid electricity generation post-evaluation
platform for wind farms based on a microservice framework and big data analysis technology. The
platform evaluates the operating status of wind farms by analyzing their operational and design
data and visualizes relevant big data information. It provides technical support and improvement
solutions for wind farm renovation and new wind farm construction. The platform has been tested
and proven to meet the requirements for processing and analyzing massive data, post-evaluating
electricity generation, and visualization.

Keywords: micro-services framework; grid big data assessment; supervisory control and data
acquisition; nacelle transfer function; smart grid

1. Introduction

In recent years, due to the growing global demand for energy and increasing awareness
of the need for environmental protection, wind energy has become a popular clean energy
source. More and more countries and regions are investing in wind farms to meet their
energy needs and promote sustainable development. However, as the number of wind
farms continues to increase, the efficient management and monitoring of these distributed
wind power facilities have become major challenges. These wind farms usually consist
of hundreds of wind turbines, each of which needs to be monitored and maintained.
Additionally, the instability of wind energy also makes wind farm management more
challenging, as changes in wind speed and direction can have a significant impact on the
performance and output of wind turbines.

In this context, big data technology can play an important role. By monitoring and
collecting large amounts of wind farm data, such as wind speed, wind direction, turbine
output, and power load, management personnel can better understand the operational
status of wind farms. In addition, big data technology can also be used for making
predictions and optimizing wind farms, such as optimizing turbine output by predicting
changes in weather and wind speed and adjusting the load balance of the power grid.

Electronics 2023, 12, 1647. https://doi.org/10.3390/electronics12071647 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071647
https://doi.org/10.3390/electronics12071647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3439-6413
https://orcid.org/0000-0001-8390-642X
https://doi.org/10.3390/electronics12071647
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071647?type=check_update&version=2


Electronics 2023, 12, 1647 2 of 19

1.1. Motivation

Post-evaluation of wind farm power generation is the process of evaluating the per-
formance of wind turbines and determining their electricity generation capabilities. With
the increasing number and size of wind farms, the demand for power post-evaluation has
also been on the rise. In the current era of rapid technological development, it is necessary
to continuously apply new technologies to practical business matters and innovate con-
tinuously based on this principle to maintain a competitive advantage in the wind power
industry. However, wind farm researchers currently only rely on manual analysis software
to evaluate a large amount of wind farm data. As data volumes increase and delay-sensitive
applications continue to develop, the need for ubiquitous connectivity and high-accuracy
analysis continues to rise, and traditional manual analysis methods have become inefficient.
In this context, it is necessary to develop a digital platform for post-evaluation of wind farm
power generation based on big data technology in order to promote the modernization
and intelligence of wind farm platforms and complete the overall planning of enterprise
wind farms.

1.2. Research Challenge

The continuous development of big data technology has brought new opportunities
for assessing wind farm power output. The application of big data technology to evaluate
wind farm power generation post-operation can enable more precise assessments of wind
turbine performance and output, thereby improving the operational efficiency and power
generation capacity of wind farms. However, such assessments typically involve a large
amount of data processing and analysis, and thus pose certain challenges.

• Incomplete or missing data: In the post-evaluation of wind farm power, the collected
data may be incomplete or missing, which can reduce the accuracy and reliability of
the assessment results.

• Inconsistent data quality: The data generated during the operation of wind turbines
may contain noise or errors, which can impact the accuracy of data analysis. Addition-
ally, due to the distributed nature of wind turbines, data may originate from different
sources, each of which may have different standards for data quality.

• Difficult to establish accurate benchmarks: To accurately determine the performance
of wind turbines, it is necessary to compare them with data from other similar turbines.
However, establishing accurate benchmarks can be challenging due to differences in
turbine models, environmental conditions, and service life.

• Difficult to predict future power generation: Environmental factors such as wind
speed and direction can affect the performance and output of wind turbines, making
the evaluation of their future power generation capacity uncertain.

• Large-scale data analysis and processing: Wind farms generate a vast amount of data,
which requires a large amount of analysis and processing to extract valuable informa-
tion. This necessitates the use of advanced algorithms and analytical techniques to
process and analyze a large volume of data.

1.3. Contributions

This article presents a platform for the post-evaluation of wind farm power generation,
which utilizes big data processing and analysis techniques along with a distributed software
architecture to address relevant issues. The main contributions of this paper are as follows:

• This study employs big data processing technology to enhance the efficiency of post-
evaluation computation and processing while integrating specific post-evaluation
business content related to wind farm power generation. To ensure the professional-
ism and reliability of post-evaluation assessments, the study utilizes monitoring and
control mechanisms, data acquisition, and nacelle transfer functions for the quantita-
tive evaluation of power generation.

• The system incorporates a distributed software architecture. This can significantly
enhance the overall throughput of the system compared to traditional centralized



Electronics 2023, 12, 1647 3 of 19

application systems, thereby reducing system coupling and latency. This results in
efficient system operation, improved system reliability, and greater system stability.

• The system incorporates big data visualization technology into the smart grid to
achieve the visualization of massive data processing results. The use of big data
processing results in more intuitive and readable calculation outcomes. This aids wind
resource engineers in making informed judgments about the operational status of
wind farms, thus improving the operating efficiency and power generation efficiency
of the system.

• This article presents a comprehensive solution based on big data for the construction
of a post-evaluation system for power generation in wind farms. The system described
in this article offers valuable insights and references for the creation of future post-
evaluation platforms for power generation based on big data.

The remainder of this article is organized as follows: Section 2 provides a summary
of related research on smart grids and associated fields. Section 3 presents the system
design for post-evaluating wind resources in wind farms. Section 4 details the system’s
implementation. Section 5 discusses the system testing and presents the resulting data.
Finally, Section 6 provides a discussion and summary of the article.

2. Related Work

In the past, software applications for intelligent grid power generation assessment
received little attention, and many data analysis and processing tasks were performed
by individual engineers using primitive methods such as Excel, which were not only
time-consuming but also prone to errors. However, with the emergence of automation tech-
nology, intelligent grid power generation assessment platforms have adopted automation
technologies, such as automatic meter-reading and smart meter technologies, to reduce
manual data entry and improve data accuracy and real-time performance [1]. Currently,
intelligent grid power generation assessment platforms rely heavily on intelligent solutions
based on power grid big data, cloud computing, and artificial intelligence technologies.
These platforms can monitor and analyze power grid data in real-time, detect abnormal
situations and problems, and provide predictions and warnings [2,3]. Furthermore, these
platforms have enhanced their data processing and analysis capabilities, leading to more
scientific and accurate evaluation results. At this stage, assessment platforms also support
visual data presentation and interactive analysis tools to facilitate user understanding and
utilization of evaluation results, leading to better management and optimization of the
power grid.

The McKinsey Global Institute (MGI) [4] proposed the revolutionary concept of “elec-
tric power big data” in 2011. The ultimate goal of electric power big data is to achieve
innovative patterns and application improvements for typical business scenarios. By em-
ploying key technologies such as data integration management, storage, computation,
analysis, and mining, electric power big data can facilitate business trend prediction and
data value mining. Researchers [5] have investigated the relationship between big data,
cloud computing, and smart grids and have presented a comprehensive framework for
electric power big data platforms in the literature. Mayer [6] underscores the critical im-
portance of electric power big data for smart grids. Through the transmission of vital
information such as users’ electricity consumption habits to the information center of
electric power companies, network analysis and processing can significantly impact the
planning, construction, and service aspects of the electric power grid.

In the realm of electric power, the application of big data is not solely a technological
advancement, but also involves significant changes in the development concept, manage-
ment system, and technical route of the entire power system in the era of big data. This
transformative shift represents a leap in the value-form of the next generation of intelligent
power systems in the era of big data [7]. Smart grids offer numerous advantages over
traditional power grids by integrating the production, transmission, distribution, and safety
protection of electricity with advanced information technology [8,9]. The large-scale smart



Electronics 2023, 12, 1647 4 of 19

grids of the future will operate on the energy internet, with data sets sent along power
routers to specific destinations. To address the challenge of large-scale computation in smart
grids, Hou et al. [10] have designed a spatiotemporal big data computation framework
for large-scale smart grids to improve computation efficiency and save path bandwidth.
Moreover, through data analysis and artificial intelligence algorithms, prediction and rec-
ommendation functions can be achieved [11]. For instance, in reference [12], a neural
network was utilized to construct a prediction model for generator bearing temperature,
with the component state being judged based on the deviation between the actual value
and the predicted value. Reference [13] completed the prediction of wind turbine output
power by combining various machine learning algorithms, and proposed the use of an
edge AI-based prediction framework to enhance the efficiency of intelligent micro-grids.
To improve the accuracy of wind power prediction, Lv et al. [14] combined different deep
learning algorithms with edge computing [15,16] to analyze and process the distributed
renewable energy generation and consumer power data in intelligent micro-grids, thereby
improving information transmission and processing efficiency in the power system.

The applications of big data in the electricity industry involve two central themes:
reshaping the fundamental value of electricity and transforming its development. For
traditional centralized power grid systems, integrating and coordinating a vast and contin-
ually expanding number of connections can present significant challenges. Consequently,
smart grids are shifting from their centralized configuration to a decentralized topol-
ogy. Furthermore, research related to big data mainly focuses on combining distributed
technology [17] and edge computing to achieve decentralization. Distributed computing
can boost computation efficiency, enhance overall system performance, provide comput-
ing resources to end-users, and ensure low latency. To achieve the intelligent allocation
and scheduling of distributed computing resources and edge computing resources [18],
Kong et al. [19] considered simultaneously the energy cost of computation and caching.
They used deep reinforcement learning to minimize the energy cost of mobile network
operators. In distributed computing tasks, the distributed alternating direction method
of multipliers algorithm [20] can select task computing modes in a distributed manner
in order to benefit the industry. While distributed systems bring convenience, they also
come with corresponding security issues. To address security issues in distributed systems,
Ning [21], Gai [22], Wang [23], and others have combined edge computing, distributed
technology, and blockchain technology to optimize data security, user utility, and system
latency under limited resources.

The control system is an automated system designed to remotely monitor and con-
trol wind turbines. As a vital component of the intelligent grid assessment platform, the
monitoring system is computer network-based and capable of achieving functions like
remote data collection and regional management. In theoretical research, Huang et al. [24]
used archived customer instrument intervals and supervisory control and data acquisition
(SCADA) with the same timestamp to construct quasi-dynamic models offline and predict
the state and measurement values of feeder busbars, thus enhancing the system operation
model and network efficiency. The power big data platform is the practical application of
IoT technology, big data concepts, technologies, and methods in the power industry [25,26].
Big data covers all aspects of power generation, transmission, transformation, distribution,
consumption, and scheduling [27], and involves the collection of massive business data
generated from power monitoring, production operation, marketing management, and
customer service. It requires cross-unit, cross-disciplinary, and cross-business data collec-
tion [28], storage, management, analysis, and visualization. The introduction of big data
technology into smart grids [29] can make the grid system more intelligent and efficient [30].

3. System Design
3.1. Requirements Analysis

The main function of this platform is to analyze and calculate the operating conditions
of existing wind farms, monitor the distribution of wind farms nationwide, and evaluate



Electronics 2023, 12, 1647 5 of 19

their operating conditions by comparing statistical indicators of different wind farms. The
operating conditions of individual wind farms are evaluated by analyzing their unit, wind
measurement tower, and fault data. Corresponding wind resource assessment reports
are issued based on this information. To meet these requirements, the system is divided
into project module, monitoring and control module, data collection module, wind mea-
surement tower module, nacelle transfer function module, operation analysis module,
model validation module, and report module. The project module is used to manage
projects created by users, such as searching, modifying, creating, and deleting by region.
It also displays evaluation indicators for individual wind farms, such as the power-based
approach (PBA) score and discount score.

The monitoring and data acquisition module is designed to perform statistical analysis
on the raw measurement data of wind turbines, assess the quality of the data, and analyze
its impact on subsequent calculation results. The wind measurement tower module is
used to display the operational data of individual wind measurement towers. The nacelle
transfer function module selects an appropriate nacelle transfer function by considering
various wind measurement towers and units. The operation analysis module displays the
wind farm’s operational status after processing the raw data, including power generation,
PBA, average wind speed, and other indicators. The model verification module compares
the design and actual operational conditions, analyzes the differences between the two
periods, and identifies the reasons for those differences.

The report module is used to publish corresponding evaluation reports based on the
operating conditions of the wind farm.

• Security

Security is a necessary requirement for any system. Without security, a system cannot
be put into use. This responsibility not only lies with the software itself, but also with the
users who use it. To ensure high security, the entire system is deployed on Amazon servers,
which ensures the high availability of its services. Additionally, since the system is currently
only used within the company, access permissions are restricted to the internal network to
avoid any external attacks. At the code level, measures such as gateway interception and
token verification are implemented to ensure the security of interfaces and data.

• Computational accuracy

The system is designed for wind resource engineers and does not require high con-
currency computing. Therefore, the main focus is on ensuring accurate calculation, dif-
ferentiated service [31], and the efficient allocation of network resources [32]. Since each
calculation program takes a long time and consumes many resources, the system only
needs to ensure that correct data produce accurate calculation results without considering
real-time performance [33] and service performance, which is not feasible. To decouple
computation from the system, a message queue is used to notify the back-end to perform
the calculation. The back-end completes the specific calculation, and the result of the
calculation success or failure is returned after the back-end completes the calculation.

• Scalability

To ensure the sustainable development of the system, iteration and secondary develop-
ment are essential processes. In these processes, ensuring quick deployment and program
availability to improve network performance and provide high-quality services to users
is a critical issue that must be considered [34]. To ensure the scalability of the system, a
micro-service architecture has been adopted. The back-end has been encapsulated into
different API, which are provided to the front-end to enable calling according to the module.
At the same time, a circuit breaker mechanism and a load balancer have also been added to
the system. All API have been deployed on Docker, which means that when a service has a
problem, it will not affect the normal operation of other services. Additionally, using Docker
is also conducive to service deployment and version management. During the iteration
process, new services can be developed and deployed based on the original services.



Electronics 2023, 12, 1647 6 of 19

3.2. System Function and Overall Design
3.2.1. Function Module Design

According to the actual functional requirements, the system modules are divided as
shown in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 20 
 

 

To ensure the sustainable development of the system, iteration and secondary devel-
opment are essential processes. In these processes, ensuring quick deployment and pro-
gram availability to improve network performance and provide high-quality services to 
users is a critical issue that must be considered [34]. To ensure the scalability of the system, 
a micro-service architecture has been adopted. The back-end has been encapsulated into 
different API, which are provided to the front-end to enable calling according to the mod-
ule. At the same time, a circuit breaker mechanism and a load balancer have also been 
added to the system. All API have been deployed on Docker, which means that when a 
service has a problem, it will not affect the normal operation of other services. Addition-
ally, using Docker is also conducive to service deployment and version management. Dur-
ing the iteration process, new services can be developed and deployed based on the orig-
inal services. 

3.2. System Function and Overall Design 
3.2.1. Function Module Design 

According to the actual functional requirements, the system modules are divided as 
shown in Figure 1. 

 
Figure 1. Function Module Diagram. 

This project comprises four modules: post-assessment project management, list dis-
play, project creation, and project overview. The project management module shows the 
geographic distribution of wind farms across the country, allowing users to view wind 
farms by region and owner. The project list displays information such as project name, 
address, owner information, installed capacity, turbine model, project creator, and more 
kinds. The project creation module allows users to input project information and upload 
wind farm operation data. The project overview module displays important indicators 
after the wind farm assessment is completed. 

The SCADA module is used for analyzing and processing the raw operating data of 
turbines, which include wind direction normalization, quality statistics, and interpolation. 
The met mast module displays the operating data of the met mast in the wind farm, which 
are divided into four groups: overview, time-series plot, parameter calculation, and sta-
tistics. 

The Nacelle transfer function (NTF) module is the core calculation module of the en-
tire platform, which includes NTF calculation, NTF check, and NTF application. The NTF 
calculation includes displaying the thermodynamic map of the turbine cabin, comparing 
the wind speed time-series plots between the cabin and the met mast, and the distribution 
of the free flow sector of the met mast and matching turbine. The NTF application includes 
comparing the cabin wind speed and the corrected wind speed. The operating analysis 
module displays the operating status of the wind farm, which includes five parts: over-
view, power curve, PBA, control strategy viewing, and fault analysis. 

The model verification module is designed to compare pre-design and post-opera-
tion data in order to view and analyze the differences between the two periods. It is 

Figure 1. Function Module Diagram.

This project comprises four modules: post-assessment project management, list dis-
play, project creation, and project overview. The project management module shows the
geographic distribution of wind farms across the country, allowing users to view wind
farms by region and owner. The project list displays information such as project name,
address, owner information, installed capacity, turbine model, project creator, and more
kinds. The project creation module allows users to input project information and upload
wind farm operation data. The project overview module displays important indicators
after the wind farm assessment is completed.

The SCADA module is used for analyzing and processing the raw operating data of
turbines, which include wind direction normalization, quality statistics, and interpolation.
The met mast module displays the operating data of the met mast in the wind farm,
which are divided into four groups: overview, time-series plot, parameter calculation,
and statistics.

The Nacelle transfer function (NTF) module is the core calculation module of the entire
platform, which includes NTF calculation, NTF check, and NTF application. The NTF
calculation includes displaying the thermodynamic map of the turbine cabin, comparing
the wind speed time-series plots between the cabin and the met mast, and the distribution
of the free flow sector of the met mast and matching turbine. The NTF application includes
comparing the cabin wind speed and the corrected wind speed. The operating analysis
module displays the operating status of the wind farm, which includes five parts: overview,
power curve, PBA, control strategy viewing, and fault analysis.

The model verification module is designed to compare pre-design and post-operation
data in order to view and analyze the differences between the two periods. It is divided
into two parts: pre–post difference comparison and pre–post difference analysis. The
pre–post difference comparison includes a comparison of power generation hours and
average wind speed, wind frequency and corresponding electricity production, as well as
the reduction factor of electricity generation and the software simulation error between the
two periods. The pre–post difference analysis includes representative year analysis, met
mast representativeness analysis, and power generation deviation analysis.

The operation data are calculated and analyzed to determine the operating status
of the wind farm and generate an evaluation report. Users can read the report to obtain
information on the wind farm’s operating status.

3.2.2. System Architecture Design

To facilitate the rapid development of this project, we adopted a front-end and back-
end separation architecture. The front-end and back-end are independently developed
based on predefined interfaces, and debugging is performed after both the front-end and



Electronics 2023, 12, 1647 7 of 19

back-end of a certain module are completed. This is followed by the debugging of the
entire project. The architecture of the system is shown in Figure 2 [35].

Electronics 2023, 12, x FOR PEER REVIEW 7 of 20 
 

 

divided into two parts: pre–post difference comparison and pre–post difference analysis. 
The pre–post difference comparison includes a comparison of power generation hours 
and average wind speed, wind frequency and corresponding electricity production, as 
well as the reduction factor of electricity generation and the software simulation error be-
tween the two periods. The pre–post difference analysis includes representative year anal-
ysis, met mast representativeness analysis, and power generation deviation analysis. 

The operation data are calculated and analyzed to determine the operating status of 
the wind farm and generate an evaluation report. Users can read the report to obtain in-
formation on the wind farm’s operating status. 

3.2.2. System Architecture Design 
To facilitate the rapid development of this project, we adopted a front-end and back-

end separation architecture. The front-end and back-end are independently developed 
based on predefined interfaces, and debugging is performed after both the front-end and 
back-end of a certain module are completed. This is followed by the debugging of the 
entire project. The architecture of the system is shown in Figure 2 [35]. 

 
Figure 2. System Architecture. 

To achieve the separation and decoupling of the front-end and back-end, the system 
adopts a front-end and back-end separation architecture pattern. The front-end uses tech-
nologies such as h5 [36], Echart [37], and Node.js [38] to access the system, transmit data, 
and display, beautify, and render results by accessing predefined API interfaces. To en-
sure the stability and consistency of the interfaces, all API developed by the back-end are 
forwarded by NGINX [39]. All requests are received and processed by the gateway layer, 
and only requests that meet the requirements are sent to the API layer to be accessed and 
calculated. To ensure the decoupling and independent development of modules, each 
module is rendered as a service, and all services are deployed on Docker [40] for ease of 
version iteration and redeployment. 

Most API only involve data creation, retrieval, updating, and deletion, and they di-
rectly access DynamoDB [41] for the corresponding operations. Some API involve file 
transmission and computation, and these API need to store files in a simple storage service 
(S3) or send messages to a simple queue service (SQS) [42]. The back-end receives and 
consumes these messages, and launches different calculation scripts according to the type 
and content of the message, finally writing the calculation results into DynamoDB and S3 
and notifying the system when the computation is completed. 

3.2.3. System Storage Structure Design 
The system involves a large number of computational files. To ensure the security 

and availability of these files, all files are stored in Amazon S3, and the storage directory 
structure is shown in Figure 3. 

Figure 2. System Architecture.

To achieve the separation and decoupling of the front-end and back-end, the system
adopts a front-end and back-end separation architecture pattern. The front-end uses
technologies such as h5 [36], Echart [37], and Node.js [38] to access the system, transmit
data, and display, beautify, and render results by accessing predefined API interfaces. To
ensure the stability and consistency of the interfaces, all API developed by the back-end
are forwarded by NGINX [39]. All requests are received and processed by the gateway
layer, and only requests that meet the requirements are sent to the API layer to be accessed
and calculated. To ensure the decoupling and independent development of modules, each
module is rendered as a service, and all services are deployed on Docker [40] for ease of
version iteration and redeployment.

Most API only involve data creation, retrieval, updating, and deletion, and they
directly access DynamoDB [41] for the corresponding operations. Some API involve file
transmission and computation, and these API need to store files in a simple storage service
(S3) or send messages to a simple queue service (SQS) [42]. The back-end receives and
consumes these messages, and launches different calculation scripts according to the type
and content of the message, finally writing the calculation results into DynamoDB and S3
and notifying the system when the computation is completed.

3.2.3. System Storage Structure Design

The system involves a large number of computational files. To ensure the security
and availability of these files, all files are stored in Amazon S3, and the storage directory
structure is shown in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 3. S3 Storage Structure. 

The “Bucket” is the storage container in S3, “user_id” represents the user’s ID, and 
all project data files for that user are stored in this directory. “project_id” represents the 
project’s ID, and all calculated input and output data files for the project are stored in this 
directory. The “terrain” directory stores the topography files, the “long” directory stores 
the long-term wind speed files, the “fault” directory stores the fault data files, the “basic” 
directory stores the basic information files, and the “NTF” directory stores the SCADA-
corrected files generated by the NTF application. 

To achieve system decoupling, a message queue is designed to send messages from 
the API and process them in the background. As there are seven calculations, seven mes-
sage queues have been designed, with each queue responsible for completing a specific 
task. The seven message queues are: wind tower calculation, SCADA pre-processing, 
SCADA interpolation, NTF pre-processing, NTF application, operational analysis and 
model verification, and terrain verification. 

4. System Implementation 
Due to the adoption of a front-end and back-end separation architecture, the pro-

gramming languages used for the front-end and back-end do depend on each other, but 
instead are determined based on the system’s design and implementation. As the system 
involves a large amount of chart display, the front-end uses the h5 + Echart style to achieve 
optimal rendering effects. Additionally, the front-end and back-end interact through rest-
ful interfaces named by Node.js. 

4.1. System Front-End 
The system front-end is mainly divided into the following modules: 

• Project Module 
The project module, shown in Figure 4, contains all basic information related to the 

project. The project overview page displays the overview of all projects, where users can 
view, create, delete, edit, and calculate project information. This module covers the geo-
graphic distribution and four statistical indicators of a wind farm in a specific region. 
These include wind speed–power generation statistics, PBA–curtailment rate statistics, ac-
tual curtailment coefficient statistics, and software simulation error statistics. Apart from 
these four statistical indicators, the module also includes geographic distribution infor-
mation of the wind farm in that region. The map provides a visual layout of the wind farm 
and the position of each wind turbine. Users can zoom and drag the map as per their 
requirements to better understand the geographic distribution of the wind farm. 

Figure 3. S3 Storage Structure.

The “Bucket” is the storage container in S3, “user_id” represents the user’s ID, and
all project data files for that user are stored in this directory. “project_id” represents the
project’s ID, and all calculated input and output data files for the project are stored in
this directory. The “terrain” directory stores the topography files, the “long” directory



Electronics 2023, 12, 1647 8 of 19

stores the long-term wind speed files, the “fault” directory stores the fault data files, the
“basic” directory stores the basic information files, and the “NTF” directory stores the
SCADA-corrected files generated by the NTF application.

To achieve system decoupling, a message queue is designed to send messages from
the API and process them in the background. As there are seven calculations, seven
message queues have been designed, with each queue responsible for completing a specific
task. The seven message queues are: wind tower calculation, SCADA pre-processing,
SCADA interpolation, NTF pre-processing, NTF application, operational analysis and
model verification, and terrain verification.

4. System Implementation

Due to the adoption of a front-end and back-end separation architecture, the pro-
gramming languages used for the front-end and back-end do depend on each other, but
instead are determined based on the system’s design and implementation. As the system
involves a large amount of chart display, the front-end uses the h5 + Echart style to achieve
optimal rendering effects. Additionally, the front-end and back-end interact through restful
interfaces named by Node.js.

4.1. System Front-End

The system front-end is mainly divided into the following modules:

• Project Module

The project module, shown in Figure 4, contains all basic information related to the
project. The project overview page displays the overview of all projects, where users
can view, create, delete, edit, and calculate project information. This module covers the
geographic distribution and four statistical indicators of a wind farm in a specific region.
These include wind speed–power generation statistics, PBA–curtailment rate statistics,
actual curtailment coefficient statistics, and software simulation error statistics. Apart
from these four statistical indicators, the module also includes geographic distribution
information of the wind farm in that region. The map provides a visual layout of the wind
farm and the position of each wind turbine. Users can zoom and drag the map as per their
requirements to better understand the geographic distribution of the wind farm.

1 
 

 

 

Figure 1 

 

Figure 2 

 

Figure 3 
 

 

 
Figure 4 
 

 
Figure 5 
 

Figure 4. Project Module.

• Detection Control and Data Acquisition Module

The interface of the detection control and data acquisition module is shown in Figure 5
and is primarily used for the statistical analysis of raw data from wind turbines to verify
their rationality and effectiveness, ensuring the accuracy of calculation files. This module
includes a wind direction normalization page, which is used to display the comparison
information from before and after wind direction normalization. In a wind farm, due to



Electronics 2023, 12, 1647 9 of 19

the close distance between different turbine locations, wind speed and wind direction are
almost the same. However, inaccurate wind direction measurement instruments in turbines
can cause a large difference in the wind direction between them, making them unsuitable
for statistical analysis of the wind direction time series in the wind farm. Therefore, wind
direction normalization must be performed to correct the wind direction of all turbines
to the same relative position. After correction, the trend of the time series tends to be
consistent. If the trend is inconsistent after correction, it may be due to problems with
the input data, and the input data should be checked; otherwise, it may cause calculation
failure later on.

1 
 

 

 

Figure 1 

 

Figure 2 

 

Figure 3 
 

 

 
Figure 4 
 

 
Figure 5 
 

Figure 5. Detection Control and Data Acquisition Module.

This module also includes a quality statistics page, which includes the overall data
completeness rate of the unit, the monthly data completeness rate of the unit, and statis-
tics of wind speed, wind direction, and rotational speed of the unit. Due to equipment
failures, extreme weather, data transmission loss, and other reasons, a certain amount of
measurement time series will be lost, which is acceptable in actual calculations. When the
actual amount of data reaches or exceeds 90% of the theoretical amount of data, it can be
considered that the result will not have a significant impact on the calculation result.

• Wind Measurement Tower Module

The user interface of the wind measurement tower module is shown in Figure 6,
which includes basic information on the operation of the tower. This module provides a
wind shear diagram showing the variation in wind speed with the measurement height, a
16-wind-rose diagram for different height levels (showing the frequency of data statistics
in each directional range), a graph showing the variation in wind speed with month, and a
graph showing the variation in wind speed with time. In addition, statistical results for air
density and temperature variation per month are also provided. By viewing these statistical
results, users can understand the operation of the wind measurement tower.

• Cabin Transfer Function Module

The cabin transfer function module is shown in Figure 7. The main function of this
module is to match the time series of cabin wind speed and wind tower wind speed,
calculate the NTF parameters, and correct and calculate the wind measurement data. Then,
suitable cabin transfer functions are used for operational analysis and model validation.
This module displays the information processed by NTF, including the comparison of wind
speed–time series between selected units and wind towers, as well as the free flow fan
area. In addition, scatter plots and fitting curves of cabin wind speed and wind tower wind
speed during operation and shutdown are also displayed.



Electronics 2023, 12, 1647 10 of 19

 

2 

 

Figure 6 
 

 

Figure 7 
 

Figure 6. Wind Measurement Tower Module.

 

2 

 

Figure 6 
 

 

Figure 7 
 

Figure 7. Cabin Transfer Function Module.

• Operation Analysis Module

The operational analysis module, as shown in Figure 8, covers the overall operational
status of the wind farm, including wind speed statistics, power generation statistics, fault
statistics, and more. Specifically, the operational analysis overview displays the power
generation hours and wind speed statistics of the wind farm. This includes a comparison
of the annual average wind speed and annual power generation hours of a single unit, a
monthly wind speed and power generation comparison, a contribution of power generation
hours in each wind speed interval, the determination of cumulative power generation
hours in each wind speed interval, and the wind frequency distribution and turbulence
changes of a single unit.



Electronics 2023, 12, 1647 11 of 19

 

3 

 
Figure 8 
 

 
Figure 9 
 

Figure 8. Operation Analysis Module.

• Model Validation Module

The model validation module, as shown in Figure 9, is mainly used to compare the
preliminary design data with actual operational data, check the conformity between the
design and operation, and analyze the reasons for the differences. This module includes a
comparison of the pre- and post-construction hours and average wind speeds, a comparison
of the pre- and post-construction wind frequency and corresponding power generation,
a comparison of the power generation reduction coefficient, and software simulation
errors. Specifically, the difference analysis between the pre- and post-construction periods
shows the representative annual analysis, representative analysis of the wind measurement
tower, and analysis of power generation deviation. The pre-construction reduction items
include wake correction, air density correction, control and turbulence reduction, blade
contamination reduction, unit availability reduction, field electricity and line loss reduction,
climate-induced downtime reduction, uncertainty, and other power generation losses.

 

3 

 
Figure 8 
 

 
Figure 9 
 

Figure 9. Model Validation Module.

• Report module

After completing a project, the system will publish a corresponding post-evaluation
report based on the project’s operation status. The report includes an introduction, basic



Electronics 2023, 12, 1647 12 of 19

project information, reference standards, data collection checklist, SCADA data statistics,
wind measurement tower evaluation, and operational analysis assessment. The report can
be viewed online or downloaded locally. The report module will be based on the six basic
modules mentioned above for analysis, and the specific process is shown in Figure 10.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 10. Report Module. 

4.2. System Back-end 
The main role of the back-end is to receive messages sent by the API and perform 

tasks such as downloading and verifying files, invoking calculation scripts, and writing 
the calculation results into a database, depending on the requirements. These calculations 
involve diverse file formats and complex logical judgments, requiring scripts written in 
languages such as Python and R [43]. Thus, multiple languages need to be combined and 
SQS messages polled. Therefore, in practical development, we used the Spring Boot 
framework in Java. 

The back-end structure is shown in Figure 11 and is divided into web layer, parse 
layer, domain layer, and util layer. The web layer is responsible for consuming messages 
from the message queue, downloading and uploading files from S3, and calling corre-
sponding methods in the parse layer based on the message content. The parse layer con-
tains methods for processing business logic specific to each message, calling different 
scripts based on the message body, and writing the processing results into the database. 
The domain layer is the entity relationship layer, which stores the database mapping of 
all back-end entities and entity message mappings. The util layer is a general-purpose tool 
package, which includes database connection, storage, message queue, and some general 
methods. 

Figure 10. Report Module.

4.2. System Back-End

The main role of the back-end is to receive messages sent by the API and perform
tasks such as downloading and verifying files, invoking calculation scripts, and writing the
calculation results into a database, depending on the requirements. These calculations involve
diverse file formats and complex logical judgments, requiring scripts written in languages
such as Python and R [43]. Thus, multiple languages need to be combined and SQS messages
polled. Therefore, in practical development, we used the Spring Boot framework in Java.

The back-end structure is shown in Figure 11 and is divided into web layer, parse layer,
domain layer, and util layer. The web layer is responsible for consuming messages from
the message queue, downloading and uploading files from S3, and calling corresponding
methods in the parse layer based on the message content. The parse layer contains methods
for processing business logic specific to each message, calling different scripts based on the
message body, and writing the processing results into the database. The domain layer is the
entity relationship layer, which stores the database mapping of all back-end entities and



Electronics 2023, 12, 1647 13 of 19

entity message mappings. The util layer is a general-purpose tool package, which includes
database connection, storage, message queue, and some general methods.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 11. Background Structure. 

• Web Layer 
The method used in this layer is polling. Polling is performed every 10 s without 

querying the message. Once the message is queried, it is removed from the message queue 
and processed accordingly based on the message content, as shown in Figure 12. The pro-
cess is divided into the following steps and instructions: 

Firstly, extract message body information. Extract the value of each parameter in the 
message body for later use. 

Secondly, create a server folder. Due to the large size of the computed files and the 
potential consequences of storing them on the server in case of failure, store all files in S3 
and download as needed. Therefore, create a directory similar to the S3 storage structure 
in the server to download the corresponding files. 

Thirdly, verify the file. Even if the existence of the file has been verified before the 
API sends the message, there is no guarantee that the file is absolutely safe in the process 
of use. Therefore, the checksum must be performed in the background. Additionally, 
some calculations need to rely on the calculation results of the previous message queue. 
If not queried, the system also needs to perform the corresponding processing, such as 
message call back, throwing exceptions, etc. 

Fourthly, download the files. Download the corresponding files from S3 after all 
checks have been completed, which can take longer if the file is larger. 

Fifthly, start the calculation. Choose the appropriate processing method with which 
to calculate the file and then write the result into the database. 

Finally, upload files. Some intermediate files are generated during the computation, 
which will be used in the following computations, and so they need to be uploaded to S3 
for downloading when other computations are started. Since the background server does 
not store files, all downloaded files and files generated during computation are deleted 
after all computations are completed in order to reduce the server’s hard disk footprint 
and ensure high file availability. 

The entire polling method involves only sending, consuming, and receiving mes-
sages, in addition to checking, downloading, and uploading files, and overall does not 
involve specific business processing logic. All processing is performed using the parse 
layer processing methods. 

 

Figure 11. Background Structure.

• Web Layer

The method used in this layer is polling. Polling is performed every 10 s without
querying the message. Once the message is queried, it is removed from the message queue
and processed accordingly based on the message content, as shown in Figure 12. The
process is divided into the following steps and instructions:

Firstly, extract message body information. Extract the value of each parameter in the
message body for later use.

Secondly, create a server folder. Due to the large size of the computed files and the
potential consequences of storing them on the server in case of failure, store all files in S3
and download as needed. Therefore, create a directory similar to the S3 storage structure in
the server to download the corresponding files.

Thirdly, verify the file. Even if the existence of the file has been verified before the API
sends the message, there is no guarantee that the file is absolutely safe in the process of
use. Therefore, the checksum must be performed in the background. Additionally, some
calculations need to rely on the calculation results of the previous message queue. If not
queried, the system also needs to perform the corresponding processing, such as message
call back, throwing exceptions, etc.

Fourthly, download the files. Download the corresponding files from S3 after all
checks have been completed, which can take longer if the file is larger.

Fifthly, start the calculation. Choose the appropriate processing method with which to
calculate the file and then write the result into the database.

Finally, upload files. Some intermediate files are generated during the computation,
which will be used in the following computations, and so they need to be uploaded to S3
for downloading when other computations are started. Since the background server does
not store files, all downloaded files and files generated during computation are deleted
after all computations are completed in order to reduce the server’s hard disk footprint and
ensure high file availability.

The entire polling method involves only sending, consuming, and receiving messages, in
addition to checking, downloading, and uploading files, and overall does not involve specific
business processing logic. All processing is performed using the parse layer processing methods.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 11. Background Structure. 

• Web Layer 
The method used in this layer is polling. Polling is performed every 10 s without 

querying the message. Once the message is queried, it is removed from the message queue 
and processed accordingly based on the message content, as shown in Figure 12. The pro-
cess is divided into the following steps and instructions: 

Firstly, extract message body information. Extract the value of each parameter in the 
message body for later use. 

Secondly, create a server folder. Due to the large size of the computed files and the 
potential consequences of storing them on the server in case of failure, store all files in S3 
and download as needed. Therefore, create a directory similar to the S3 storage structure 
in the server to download the corresponding files. 

Thirdly, verify the file. Even if the existence of the file has been verified before the 
API sends the message, there is no guarantee that the file is absolutely safe in the process 
of use. Therefore, the checksum must be performed in the background. Additionally, 
some calculations need to rely on the calculation results of the previous message queue. 
If not queried, the system also needs to perform the corresponding processing, such as 
message call back, throwing exceptions, etc. 

Fourthly, download the files. Download the corresponding files from S3 after all 
checks have been completed, which can take longer if the file is larger. 

Fifthly, start the calculation. Choose the appropriate processing method with which 
to calculate the file and then write the result into the database. 

Finally, upload files. Some intermediate files are generated during the computation, 
which will be used in the following computations, and so they need to be uploaded to S3 
for downloading when other computations are started. Since the background server does 
not store files, all downloaded files and files generated during computation are deleted 
after all computations are completed in order to reduce the server’s hard disk footprint 
and ensure high file availability. 

The entire polling method involves only sending, consuming, and receiving mes-
sages, in addition to checking, downloading, and uploading files, and overall does not 
involve specific business processing logic. All processing is performed using the parse 
layer processing methods. 

 
Figure 12. Polling Method.



Electronics 2023, 12, 1647 14 of 19

• Parse Layer

The method in this layer is to perform SCADA interpolation. Once all files and
parameters have been prepared in the previous step, the next method calls for researchers
to start the computation. The computation scripts are written in R and Python and are
executed using the command line. All scripts write the results of the computation to
multiple CSV files. If an error occurs during the computation, the method throws an
exception and handles it accordingly. If the computation is completed successfully, the
method reads the corresponding file, organizes all the results in the database format, and
writes the data into DynamoDB.

• Domain Layer

The domain layer stores a large number of entity–relationship mappings and message–
relationship mappings, some of which are shown in Table 1.

Table 1. Domain Entity.

Name Introduction

Mast Msg Body Wind tower calculation news
NTF Pre Msg Body NTF pre-processing information
RAMA Msg Body Run analysis and model validation messages

Project Info Project Information
SCADA Data Minute SCADA minute time series

SCADA Data summary SCADA overall statistics
Mast Summary Overall statistics of wind measurement towers

Mast Data Minute Wind measurement tower minute time series
Wind Rose Wind Attack Speed
Wind shear Wind shear

NTF Summary NFT Overall Statistics
Terrain Check Summary Overall statistics of terrain calibration

RAMA Summary Overall statistics for run analysis and model validation

• Util Layer

The Util layer stores a large number of generic methods that can be called by other
modules in order to optimize the code structure and improve code readability. Some
examples of method names and functions are shown in Table 2.

Table 2. Util Method.

Method Introduction

Connect DynamoDB Connecting to DynamoDB Databases
Delete Object Delete the file object on S3

Delete By Folder Prefix Delete file objects on S3 by prefix matching
Upload Or Update Upload or update files to S3

Get And Del Message Get and delete messages in SQS
Send Message Sending messages to the SQS

Pre-Input DynamoDB Throughput Pre-Processing
Post-Input DynamoDB Throughput Post-Processing

String To Double String to double with null handling
Parse Date Format Date format standardization

Get Fitting Arr By Fitting Code Returns an array of fit types based on the fit type designator
Get Classify Type By Fitting Code Returns the classification type based on the fit type code

Get Wind By Id and Number Generate standardized unit number based on wind farm id and
unit number

5. Test and Discussion

System testing is conducted to evaluate the entire system, including hardware, soft-
ware, and operators, in order to identify any deviations from the system design. This



Electronics 2023, 12, 1647 15 of 19

type of testing can help to detect errors in system analysis and design, such as whether
adequate security measures are in place to prevent illegal intrusions into the system, as well
as whether the system can function normally under both normal and overload conditions.

For this system, we have divided testing into two parts: interface testing and message
testing. Interface testing focuses mainly on whether all published restful API are available
and whether they handle exceptions properly. On the other hand, message testing mainly
checks whether messages sent through the API can be processed correctly and whether the
system can respond appropriately when errors occur.

This system comprises seven modules with over a hundred API and rich functionalities.
During testing, we will focus only on the main API, and will not present the testing of other
functionalities here.

• Home API Test Cases
• The test cases for the Home API are shown in Table 3.

Table 3. Home Page API Test Cases.

No. Test Sub-Items Implementation Steps Expected Results Actual Results

1 Generate project ID
Pass in the user ID to generate the

project ID

Generate a new project ID, in the
format of username plus time plus the
number of items created on that day

Same as expected results

After a user has created 99 items in a
day, continue passing in the user ID

to generate

Failed to create, reached the day’s
creation limit Same as expected results

2 Obtain a list of projects Pass in the user ID to obtain all the
items visible to that user

Search for information on all items that
meet the criteria Same as expected results

3 Add projects Enter the item name, item description
and item Create project successfully Same as expected results

4 Delete projects Pass in the ID of the deleted item for
item deletion

Pseudo-deletion of items in
database successful Same as expected results

5 Modify projects Pass in the modified item information
for modification Modified successfully Same as expected results

6 Access to owners
and areas

Call the interface to obtain all owners
and areas of the business

Obtain json strings of owners and
regions successfully Same as expected results

7 Access to wind
farm information

Pass in the correct wind farm ID and
obtain the details of that wind farm

Successful acquisition of wind
farm information Same as expected results

Obtain wind farm details after passing
in a non-existent wind farm ID No access to wind farm information Same as expected results

8 Start SCADA interpolation

SCADA interpolation is carried out
after uploading the appropriate files

and passing in the parameters for
starting the interpolation

Successfully sends the message
initiating SCADA interpolation to the

appropriate message queue
Same as expected results

9 Obtain wind speed
statistics for all projects

Pass in the user ID and obtain the wind
speed statistics for the project

Obtain wind speed statistics for all
projects that the user can view Same as expected results

10 Obtain full TBA-PBA
information for all projects

Obtain the TBA-PBA information of
the project after passing in the user ID

Obtain TBA-PBA information for all
the projects that the user has access to Same as expected results

• Wind Measurement Tower API Test Cases
• An example of a test case for Wind Measurement Tower API is shown in Table 4.

Table 4. Mast API Test Cases.

No. Test Subsets Execution Steps Expected Results Actual Results

1 Obtain project wind
tower information

Pass in the correct project ID to
obtain all the wind
tower information

Obtain information on all wind
towers for the project Same as expected results

2
Obtain basic information

about wind
measurement towers

Pass in a non-existent project ID to
obtain information about all the

wind measurement towers
No information available Same as expected results

3 Obtain wind
shear information

Pass in the tower ID to obtain the
wind shear information of the

wind tower

Obtain the basic information of the
corresponding wind
measurement tower

Same as expected results

4 Obtain monthly average
wind speed distribution

Pass in the tower ID to obtain the
monthly average distribution
information of the wind tower

Obtain the corresponding monthly
average distribution information Same as expected results

• Message Testing Cases



Electronics 2023, 12, 1647 16 of 19

Message test refers to whether the back-end can perform the corresponding calcu-
lations for the messages sent by the API, and whether the corresponding errors can be
handled and returned correctly, etc. A total of seven message queues are designed accord-
ing to the business requirements, and each message queue is tested accordingly, and the
test cases are shown in Table 5.

Table 5. SQS Test Cases.

No. Test Sub-Items Implementation Steps Expected Results Actual Results

1 Wind measurement towers

Upload the right file and send the
right message

Calculations are completed correctly,
and the results are written into

the database
Same as expected results

File not uploaded but message sent Calculation failed, return file not
uploaded error Same as expected results

Message sent in wrong format or
with wrong message content

Calculation failed; message
error returned Same as expected results

Document content or
formatting errors

Calculation failed, an error in the file
format returned Same as expected results

2 SCADA pre-processing

Upload the right file and send the
right message

Calculations are completed correctly,
and the results are written into

the database
Same as expected results

File not fully uploaded but
message sent

The calculation was partially
successful because only a part of the
file was uploaded and only a part of

the file could be processed

Same as expected results

Message sent in wrong format or
with wrong message content

Calculation failed; message
error returned Same as expected results

Document content or
formatting errors

Calculation failed, an error in the file
format returned Same as expected results

3 Terrain calibration

Upload the right file and send the
right message

Calculations are completed correctly,
and the results are written into

the database
Same as expected results

File not uploaded but message sent Calculation failed, an error that the
file did not exist returned Same as expected results

Message sent in wrong format or
with wrong message content

Calculation failed; message
error returned Same as expected results

Wrong file content or format, or
mismatch between terrain file and

coordinate file

Calculation failed, an error in the file
format returned Same as expected results

4 SCADA interpolation

Upload the right file and send the
right message

Calculations are completed correctly,
and the results are written into

the database
Same as expected results

File not uploaded but message sent Calculation failed, an error that the
file did not exist returned Same as expected results

Message sent in wrong format or
with wrong message content

Calculation failed; message
error returned Same as expected results

Document content or
formatting errors

Calculation failed, an error in the file
format returned Same as expected results

5 NTF pre-processing

Upload the right file and send the
right message

Calculations are completed correctly,
and the results are written into

the database
Same as expected results

File not uploaded but message sent Calculation failed, an error that the
file did not exist returned Same as expected results

Message sent in wrong format or
with wrong message content

Calculation failed; message
error returned Same as expected results

Document content or
formatting errors

Calculation failed, an error in the file
format returned Same as expected results

The test results indicate that the back-end is able to successfully retrieve the necessary
parameters and files for computation based on the message content sent by the front-end.
The system is able to write the correct results into the database and storage, and handle
errors or messages that require waiting in a proper manner, which aligns with the intended
design goals and fulfills the system requirements.

6. Conclusions

In this paper, we propose an intelligent grid power generation post-evaluation plat-
form based on a micro-service framework and big data analysis in an effort to solve the
problems of traditional grid power generation post-evaluation. We use a micro-service
architecture to build this platform, which has good scalability and maintainability, and
utilize big data analysis technology to visually display and analyze power generation data



Electronics 2023, 12, 1647 17 of 19

from multiple dimensions, thereby improving the accuracy and efficiency of grid power
generation post-evaluation.

Through the implementation and testing of the platform, we found that it can quickly
and accurately perform post-evaluation of power generation, and provide real-time mon-
itoring and warning services for power companies. The main features of the system are
as follows:

• By getting rid of traditional offline mode and client software mode, wind resource
engineers no longer need to perform post-assessment calculations manually or install
client software, greatly improving the efficiency of post-assessment of wind farm
power generation.

• The uniformity of the evaluation method and the determination of evaluation stan-
dards are no longer based on personal experience, but are determined by the platform’s
back-end algorithm, ensuring the professionalism and reliability of the analysis results.

• The results display is clear. Unlike traditional methods that only view massive raw
data, the use of a large number of charts and graphs makes the calculation results
more obvious and easier to read, and helps to make reasonable judgments about the
operation status of the wind farm.

• The iteration speed is improved. Due to the stability of input and output, only contin-
uously iterating the back-end algorithm can improve the accuracy of calculations.

• By developing such an evaluation platform, bold attempts have been made to mi-
croservices, big data, and other technologies, providing a solution for the application
of big data technology in the smart grid and accumulating experience in developing
big data digital platforms in other fields.

However, there were still some problems encountered in the construction of the system
platform. For example, using too many programming languages made it difficult to inte-
grate multiple languages and handle exceptions. Additionally, the calls between multiple
micro-service modules were not connected. Additionally, since the system platform was de-
signed only for professionals, the demands for multi-user and high-concurrency scenarios
have not been considered [44]. Therefore, in future research, we plan to further improve the
functionality and performance of the platform, increase the system’s concurrency, introduce
blockchain technology to improve the system’s security, and apply it to more intelligent
grid systems to achieve more accurate and secure grid management and optimization.

Author Contributions: Methodology, W.W. (Wu Wen) and A.T.; Software, W.W. (Wei Wang); Valida-
tion, X.W.; Writing—original draft, J.W. and R.O.; Writing—review & editing, W.W. (Wu Wen) and
X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Researchers Supporting Project number (RSPD2023R681)
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: No public data sets were used to support this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miao, H.; Chen, G.; Zhao, Z.; Zhang, F. Evolutionary Aggregation Approach for Multihop Energy Metering in Smart Grid for

Residential Energy Management. IEEE Trans. Ind. Inform. 2021, 17, 1058–1068. [CrossRef]
2. Chung, H.-M.; Maharjan, S.; Zhang, Y.; Eliassen, F. Distributed Deep Reinforcement Learning for Intelligent Load Scheduling in

Residential Smart Grids. IEEE Trans. Ind. Inform. 2021, 17, 2752–2763. [CrossRef]
3. Su, Z.; Wang, Y.; Luan, T.H.; Zhang, N.; Li, F.; Chen, T.; Cao, H. Secure and Efficient Federated Learning for Smart Grid with

Edge-Cloud Collaboration. IEEE Trans. Ind. Inform. 2022, 18, 1333–1344. [CrossRef]
4. Manyika, J.; Chui, M.; Brown, B. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute

Report; McKinsey Global Institute: New York, NY, USA, 2011; Available online: https://www.researchgate.net/publication/3125
96137_Big_data_The_next_frontier_for_innovation_competition_and_productivity (accessed on 20 January 2023).

5. Zhan, J.; Huang, J.; Niu, L.; Peng, X.; Deng, D.; Cheng, S. Study of the key technologies of electric power big data and its
application prospects in smart grid. In Proceedings of the 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference
(APPEEC), Hong Kong, China, 7–10 December 2014; pp. 1–4. [CrossRef]

http://doi.org/10.1109/TII.2020.3007318
http://doi.org/10.1109/TII.2020.3007167
http://doi.org/10.1109/TII.2021.3095506
https://www.researchgate.net/publication/312596137_Big_data_The_next_frontier_for_innovation_competition_and_productivity
https://www.researchgate.net/publication/312596137_Big_data_The_next_frontier_for_innovation_competition_and_productivity
http://doi.org/10.1109/APPEEC.2014.7066162


Electronics 2023, 12, 1647 18 of 19

6. Mayer-Schnberger, V.; Cukier, K. BigData: A Revolution That Will Transform How We Live, Work, and Think; JohnMurray: London,
UK, 2013; p. 17.

7. Liang, H.; Hua, H.; Qin, Y.; Ye, M.; Zhang, S.; Cao, J. Stochastic Optimal Energy Storage Management for Energy Routers Via
Compressive Sensing. IEEE Trans. Ind. Inform. 2022, 18, 2192–2202. [CrossRef]

8. Hu, J.; Vasilakos, A.V. Energy Big Data Analytics and Security: Challenges and Opportunities. IEEE Trans. Smart Grid 2016, 7,
2423–2436. [CrossRef]

9. Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge Computing in Industrial Internet of Things: Architecture,
Advances and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [CrossRef]

10. Hou, W.; Ning, Z.; Guo, L.; Zhang, X. Temporal, Functional and Spatial Big Data Computing Framework for Large-Scale Smart
Grid. IEEE Trans. Emerg. Top. Comput. 2019, 7, 369–379. [CrossRef]

11. Ning, Z.; Hu, X.; Chen, Z.; Zhou, M.; Hu, B.; Cheng, J.; Obaidat, M.S. A Cooperative Quality-Aware Service Access System for
Social Internet of Vehicles. IEEE Internet Things J. 2018, 5, 2506–2517. [CrossRef]

12. Kusiak, A.; Verma, A. Analyzing bearing faults in wind turbines: A data-mining approach. Renew. Energy 2012, 48, 110–116.
[CrossRef]

13. Kusiak, A.; Verma, A. Prediction, operations, and condition monitoring in wind energy. Energy 2013, 60, 1–12. [CrossRef]
14. Lv, L.; Wu, Z.; Zhang, L.; Gupta, B.B.; Tian, Z. An Edge-AI Based Forecasting Approach for Improving Smart Microgrid Efficiency.

IEEE Trans. Ind. Inform. 2022, 18, 7946–7954. [CrossRef]
15. Kong, X.; Chen, Q.; Hou, M.; Rahim, A.; Ma, K.; Xia, F. RMGen: A Tri-Layer Vehicular Trajectory Data Generation Model

Exploring Urban Region Division and Mobility Pattern. IEEE Trans. Veh. Technol. 2022, 71, 9225–9238. [CrossRef]
16. Ning, Z.; Dong, P.; Wang, X.; Hu, X.; Guo, L.; Hu, B.; Guo, Y.; Qiu, T.; Kwok, R.Y.K. Mobile Edge Computing Enabled 5G Health

Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach. IEEE J. Sel. Areas Commun. 2021, 39,
463–478. [CrossRef]

17. Barbierato, L.; Estebsari, A.; Pons, E.; Pau, M.; Salassa, F.; Ghirardi, M.; Patti, E. A Distributed IoT Infrastructure to Test and
Deploy Real-Time Demand Response in Smart Grids. IEEE Internet Things J. 2019, 6, 1136–1146. [CrossRef]

18. Wang, X.; Li, J.; Ning, Z.; Song, Q.; Guo, L.; Guo, S.; Obaidat, M. Wireless Powered Mobile Edge Computing Networks: A Survey.
ACM Comput. Surv. 2023. [CrossRef]

19. Kong, X.; Duan, G.; Hou, M.; Shen, G.; Wang, H.; Yan, X.; Collotta, M. Deep Reinforcement Learning-Based Energy-Efficient Edge
Computing for Internet of Vehicles. IEEE Trans. Ind. Inform. 2022, 18, 6308–6316. [CrossRef]

20. Ning, Z.; Sun, S.; Wang, X.; Guo, L.; Guo, S.; Hu, X.; Hu, B.; Kwok Ricky, Y.K. Blockchain-Enabled Intelligent Transportation
Systems: A Distributed Crowdsensing Framework. IEEE Trans. Mob. Comput. 2022, 21, 4201–4217. [CrossRef]

21. Ning, Z.; Chen, H.; Wang, X.; Wang, S.; Guo, L. Blockchain-Enabled Electrical Fault Inspection and Secure Transmission in 5G
Smart Grids. IEEE J. Sel. Top. Signal Process. 2022, 16, 82–96. [CrossRef]

22. Gai, K.; Wu, Y.; Zhu, L.; Xu, L.; Zhang, Y. Permissioned Blockchain and Edge Computing Empowered Privacy-Preserving Smart
Grid Networks. IEEE Internet Things J. 2019, 6, 7992–8004. [CrossRef]

23. Wang, X.; Ning, Z.; Guo, L.; Guo, S.; Gao, X.; Wang, G. Mean-Field Learning for Edge Computing in Mobile Blockchain Networks.
IEEE Trans. Mob. Comput. 2022, 1–17. [CrossRef]

24. Huang, S.-C.; Lu, C.-N.; Lo, Y.-L. Evaluation of AMI and SCADA Data Synergy for Distribution Feeder Modeling. IEEE Trans.
Smart Grid 2015, 6, 1639–1647. [CrossRef]

25. Yu, W.; Liu, Y.; Dillon, T.; Rahayu, W.; Mostafa, F. An Integrated Framework for Health State Monitoring in a Smart Factory
Employing IoT and Big Data Techniques. IEEE Internet Things J. 2022, 9, 2443–2454. [CrossRef]

26. Kaur, K.; Garg, S.; Kaddoum, G.; Bou-Harb, E.; Choo, K.-K.R. A Big Data-Enabled Consolidated Framework for Energy Efficient
Software Defined Data Centers in IoT Setups. IEEE Trans. Ind. Inform. 2020, 16, 2687–2697. [CrossRef]

27. Ning, Z.; Huang, J.; Wang, X.; Rodrigues, J.J.P.C.; Guo, L. Mobile Edge Computing-Enabled Internet of Vehicles: Toward
Energy-Efficient Scheduling. IEEE Netw. 2019, 33, 198–205. [CrossRef]

28. Huang, J.; Zhou, Y.; Ning, Z.; Gharavi, H. Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects.
IEEE Wirel. Commun. 2019, 26, 163–169. [CrossRef]

29. Ketter, W.; Collins, J.; Saar-Tsechansky, M.; Marom, O. Information Systems for a Smart Electricity Grid: Emerging Challenges
and Opportunities. ACM Trans. Manag. Inf. Syst 2018, 9, 22. [CrossRef]

30. Bansal, M.; Chana, I.; Clarke, S. A Survey on IoT Big Data: Current Status, 13 V’s Challenges, and Future Directions. ACM Comput.
Surv. 2020, 53, 59. [CrossRef]

31. Wang, X.; Ning, Z.; Guo, S.; Wen, M.; Guo, L.; Poor, H.V. Dynamic UAV Deployment for Differentiated Services: A Multi-Agent
Imitation Learning Based Approach. IEEE Trans. Mob. Comput. 2023, 22, 2131–2146. [CrossRef]

32. Ning, Z.; Zhang, K.; Wang, X.; Obaidat, M.S.; Guo, L.; Hu, X.; Hu, B.; Guo, Y.; Sadoun, B.; Kwok, R.Y.K. Joint Computing and
Caching in 5G-Envisioned Internet of Vehicles: A Deep Reinforcement Learning-Based Traffic Control System. IEEE Trans. Intell.
Transp. Syst. 2021, 22, 5201–5212. [CrossRef]

33. Ning, Z.; Chen, H.; Ngai, E.C.H.; Wang, X.; Guo, L.; Liu, J. Lightweight Imitation Learning for Real-Time Cooperative Service
Migration. IEEE Trans. Mob. Comput. 2023, 1–18. [CrossRef]

34. Ning, Z.; Zhang, K.; Wang, X.; Guo, L.; Hu, X.; Huang, J.; Hu, B.; Kwok, R.Y.K. Intelligent Edge Computing in Internet of Vehicles:
A Joint Computation Offloading and Caching Solution. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2212–2225. [CrossRef]

http://doi.org/10.1109/TII.2021.3095141
http://doi.org/10.1109/TSG.2016.2563461
http://doi.org/10.1109/COMST.2020.3009103
http://doi.org/10.1109/TETC.2017.2681113
http://doi.org/10.1109/JIOT.2017.2764259
http://doi.org/10.1016/j.renene.2012.04.020
http://doi.org/10.1016/j.energy.2013.07.051
http://doi.org/10.1109/TII.2022.3163137
http://doi.org/10.1109/TVT.2022.3176243
http://doi.org/10.1109/JSAC.2020.3020645
http://doi.org/10.1109/JIOT.2018.2867511
http://doi.org/10.1145/3579992
http://doi.org/10.1109/TII.2022.3155162
http://doi.org/10.1109/TMC.2021.3079984
http://doi.org/10.1109/JSTSP.2021.3120872
http://doi.org/10.1109/JIOT.2019.2904303
http://doi.org/10.1109/TMC.2022.3186699
http://doi.org/10.1109/TSG.2015.2408111
http://doi.org/10.1109/JIOT.2021.3096637
http://doi.org/10.1109/TII.2019.2939573
http://doi.org/10.1109/MNET.2019.1800309
http://doi.org/10.1109/MWC.2019.1800378
http://doi.org/10.1145/3230712
http://doi.org/10.1145/3419634
http://doi.org/10.1109/TMC.2021.3116236
http://doi.org/10.1109/TITS.2020.2970276
http://doi.org/10.1109/TMC.2023.3239845
http://doi.org/10.1109/TITS.2020.2997832


Electronics 2023, 12, 1647 19 of 19

35. Lai, C.F.; Chien, W.C.; Yang, L.T.; Qiang, W. LSTM and Edge Computing for Big Data Feature Recognition of Industrial Electrical
Equipment. IEEE Trans. Ind. Inform. 2019, 15, 2469–2477. [CrossRef]

36. Wang, L.; Wang, H.; Xue, B.; Zhou, M. H5-Bridge-Based Single-Input–Dual-Output LLC Converter with Wide Output Voltage
Range. IEEE Trans. Ind. Electron. 2022, 69, 7008–7018. [CrossRef]

37. Zeng, X.; Zhong, X.; E, Z.; Luo, M.; Zhang, X. Research on data visualization design of poverty alleviation achievements based on
echarts. In Proceedings of the CIBDA 2022, 3rd International Conference on Computer Information and Big Data Applications,
Wuhan, China, 25–27 March 2022; pp. 1–6.

38. Sterling, A. NodeJS and Angular Tools for JSON-LD. In Proceedings of the 2019 IEEE 13th International Conference on Semantic
Computing (ICSC), Newport Beach, CA, USA, 30 January–1 February 2019; pp. 392–395. [CrossRef]

39. Wang, Z.; Lin, J.; Cai, Q.; Wang, Q.; Zha, D.; Jing, J. Blockchain-Based Certificate Transparency and Revocation Transparency.
IEEE Trans. Dependable Secur. Comput. 2022, 19, 681–697. [CrossRef]

40. Krasnov, A.; Maiti, R.R.; Wilborne, D.M. Data Storage Security in Docker. In Proceedings of the 2020 SoutheastCon, Raleigh, NC,
USA, 28–29 March 2020; p. 1. [CrossRef]

41. Sivasubramanian, S. Amazon dynamoDB: A seamlessly scalable non-relational database service. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, Scottsdale, WDC, USA, 20–24 May 2012; pp. 729–730. [CrossRef]

42. Sadeghi, A.; Sheikholeslami, F.; Marques, A.G.; Giannakis, G.B. Reinforcement Learning for Adaptive Caching with Dynamic
Storage Pricing. IEEE J. Sel. Areas Commun. 2019, 37, 2267–2281. [CrossRef]

43. Redondo, J.M.; Ortin, F. A Comprehensive Evaluation of Common Python Implementations. IEEE Softw. 2015, 32, 76–84.
[CrossRef]

44. Ning, Z.; Yang, Y.; Wang, X.; Guo, L.; Gao, X.; Guo, S.; Wang, G. Dynamic Computation Offloading and Server Deployment for
UAV-Enabled Multi-Access Edge Computing. IEEE Trans. Mob. Comput. 2021; Early Access. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TII.2019.2892818
http://doi.org/10.1109/TIE.2021.3097597
http://doi.org/10.1109/ICOSC.2019.8665625
http://doi.org/10.1109/TDSC.2020.2983022
http://doi.org/10.1109/SoutheastCon44009.2020.9249757
http://doi.org/10.1145/2213836.2213945
http://doi.org/10.1109/JSAC.2019.2933780
http://doi.org/10.1109/MS.2014.104
http://doi.org/10.1109/TMC.2021.3129785

	Introduction 
	Motivation 
	Research Challenge 
	Contributions 

	Related Work 
	System Design 
	Requirements Analysis 
	System Function and Overall Design 
	Function Module Design 
	System Architecture Design 
	System Storage Structure Design 


	System Implementation 
	System Front-End 
	System Back-End 

	Test and Discussion 
	Conclusions 
	References

