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Abstract: Methods of image quality assessment are widely used for ranking computer vision algo-
rithms or controlling the perceptual quality of video and streaming applications. The ever-increasing
number of digital images has encouraged the research in this field at an accelerated pace in recent
decades. After the appearance of convolutional neural networks, many researchers have paid at-
tention to different deep architectures to devise no-reference image quality assessment algorithms.
However, many systems still rely on handcrafted features to ensure interpretability and restrict the
consumption of resources. In this study, our efforts are focused on creating a quality-aware feature
vector containing information about both global and local image features. Specifically, the research
results of visual physiology indicate that the human visual system first quickly and automatically
creates a global perception before gradually focusing on certain local areas to judge the quality of
an image. Specifically, a broad spectrum of statistics extracted from global and local image features
is utilized to represent the quality-aware aspects of a digital image from various points of view.
The experimental results demonstrate that our method’s predicted quality ratings relate strongly
with the subjective quality ratings. In particular, the introduced algorithm was compared with
16 other well-known advanced methods and outperformed them by a large margin on 9 accepted
benchmark datasets in the literature: CLIVE, KonIQ-10k, SPAQ, BIQ2021, TID2008, TID2013, MDID,
KADID-10k, and GFIQA-20k, which are considered de facto standards and generally accepted in
image quality assessment.

Keywords: no-reference image quality assessment; quality-aware features; multi-feature fusion

1. Introduction

Objective image quality assessment (IQA) aims at devising mathematical and com-
putational models which can predict digital images’ perceptual quality consistently with
human judgment. This field is traditionally divided into three distinct areas in relation
to the availability of reference (distortion-free) images for the IQA algorithms [1]. Specif-
ically, full-reference methods possess all information about the reference images, while
reduced-reference ones have some partial knowledge about them. On the other hand,
no-reference IQA (NR-IQA) algorithms have only the distorted images in their input. In the
literature, this third type of IQA is considered the most difficult one, since no information
is available about the distortion-free counterpart of a distorted image whose quality has
to be estimated [2]. Moreover, NR-IQA is also considered the most useful branch of IQA
because access to reference images is impossible in many practical applications [3].

According to the research results of visual physiology, the human visual system (HVS)
first quickly and automatically creates a global perception before gradually focusing on
certain local areas to judge the quality of an image [4–7]. Therefore, we need to take
both local and global information into account in order to more accurately imitate how
the HVS perceives image quality. Based on the above observation, this study proposes
a novel method by integrating the statistics of the global and local image features for
NR-IQA. Unlike previous methods [5,7–9], the selected local and global features are not
simply fused together or concatenated, since this process quickly results in a long feature

Electronics 2023, 12, 1615. https://doi.org/10.3390/electronics12071615 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071615
https://doi.org/10.3390/electronics12071615
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3265-5047
https://doi.org/10.3390/electronics12071615
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071615?type=check_update&version=1


Electronics 2023, 12, 1615 2 of 22

vector. Instead, a broad spectrum of statistics is extracted from them to represent the
quality-aware aspects of a digital image from various points of view in a compact feature
vector. Experimental results for nine benchmark IQA databases (CLIVE [10], KonIQ-
10k [11], SPAQ [12], BIQ2021 [13], TID2008 [14], MDID [15], TID2013 [16], KADID-10k [17],
and GFIQA-20k [18]) show that the proposed method is consistent with the subjective
ratings, able to surpass the state of the art’s efficiency, and balances effectiveness and
computation time.

The rest of this study is organized as follows. Section 2 describes previous studies
and papers on NR-IQA briefly. Section 3 provides the details of the proposed model. In
Section 4, our experimental results are presented and analyzed. Finally, a conclusion is
drawn and future works are stated in Section 5.

2. Literature Review

As already remarked, IQA methods are organized in the literature based on how
much information is available about the reference images [19]. In the case of NR-IQA, no
information about the reference images can be obtained.

Many NR-IQA methods rely on natural scene statistics (NSS) features. NSS builds
on the assumption that natural scenes have some kind of statistical regularities which
are influenced by noise or distortions [20,21]. For example, BLIINDS [22] and its later
extension BLIINDS-II [23] decompose a digital image into the discrete cosine transform
(DCT) domain. Next, the authors fit a generalized Gaussian distribution (GGD) on the
extracted DCT coefficients. Moreover, the authors chose the parameters of the GGD as
quality-aware features and used them in a regression process to estimate perceptual quality.
Later, this method was extended to the domain of video quality assessment [23,24]. In
contrast, BRISQUE [25] extracts NSS in the spatial domain. First, local mean subtraction
and divisive normalization are applied to the image. Next, the NSS are extracted, which
results in the mean subtracted contrast-normalized (MSCN) coefficients. A GGD model is
fitted onto the MSCN coefficients, and its parameters are used as quality-aware features.
Finally, the image quality is estimated with the help of a trained support vector regressor
(SVR). BRISQUE [25] was developed further in [26] by introducing L moment-based robust
parameter estimators [27]. In contrast, Bagade et al. [28] introduced the shape-adaptive
discrete wavelet transform to capture quality-aware features more effectively and trained a
neural network based on them.

In recent years, convolutional neural networks (CNNs) have been proven to be capable
of learning image representation effectively and have provided excellent results in a number
of computer vision tasks [29]. After the appearance of CNNs, many researchers have paid
attention to different deep learning techniques for NR-IQA. However, many systems still
rely on handcrafted features to ensure interpretability and restrict the consumption of
resources [30,31].

The method of Kang et al. [32] was among the first ones which utilized a CNN for
NR-IQA. Specifically, the authors decomposed training images into a set of 32× 32 local
contrast-normalized image patches. Based on them, a CNN with a depth of five and a
linear regression layer was trained to predict the perceptual quality of image patches.
Finally, the authors considered the arithmetic average of the image patches’ quality ratings
as the whole input image’s estimated quality. This approach was developed further by
the authors of [33] by applying 64× 64 image patches and a CNN with a depth of seven
and three fully connected layers. Similar to [32] and [33], Kim and Lee [34] presented a
solution based on a CNN trained on image patches. The important difference compared
with [32] and [33] was that the patches’ target qualities were determined by applying a
traditional FR-IQA metric [35] instead of simply taking the original image’s quality. Due to
the usage of a traditional FR-IQA method, this approach can be applied on images with
artificial distortions and not authentic ones. In [36], the authors improved this approach
by applying a nonlinear bilateral smoothing filtering technique and a nearest neighbor
sampling approach [37]. Prior to deep feature extraction, Ryu [38] introduced a static
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saliency detection module first to identify those regions which humans tend to pay more
attention to. In contrast, Celona and Schettini [39] devised a deep architecture which
handles images at different scales. Moreover, it was trained simultaneously by formulating
NR-IQA as regression, classification, and pairwise ranking. Ryu [40] applied the ImageNet
pretrained Inception-ResNet-V2 [41] CNN and SpinalNet [42] for perceptual quality es-
timation. Specifically, the image patches were introduced step by step and over regular
intervals to this architecture. Aside from CNNs, some researchers have explored the usage
of transformers [43] in NR-IQA [44]. For example, Ke et al. [45] introduced a multi-scale
transformer-based architecture to manage digital images with different resolutions. The
descriptions of other transformer-based methods can be found in [46–48].

For a general analysis of the current state of NR-IQA, we recommend the PhD disser-
tations of Jenadeleh [49] and Men [50] and the book by Xu et al. [51]

3. Proposed Method

A broad overview of the proposed NR-IQA method is depicted in Figure 1. As this
illustration suggests, the statistics of the global and local image features are extracted from
the images in the training database to train a machine learning model which is applied
afterward in the testing stage. The process of feature extraction is shown in Figure 2. As
already indicated, we apply a broad spectrum of statistics extracted from the different
global and local features of an image. In this way, a more compact feature vector can be
obtained rather than fusing global and local features together directly as in [7].

Figure 1. High-level flowchart of our proposed method which can be divided into training and test
steps. In the training phase, the statistics of global and local image features extracted from the labeled
training images are used to train the quality model, which is later used in the testing phase to assess
previously unseen images.
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Figure 2. Process of feature extraction. To characterize an image from various points of view, different
global and local feature vectors are extracted first. Next, statistics are extracted from them and fused
together to avoid a long quality-aware feature vector.

3.1. Statistics of Global Image Features

In recent decades, many quality-aware feature vectors have been proposed which
describe digital images globally. In this work, we chose seven different ones: BRISQUE [25],
CurveletQA [52], GM-LOG-BIQA [53], GWH-GLBP [54], HIGRADE [55], OG-IQA [56],
and SSEQ [57]. The main motivation was to chose feature vectors which had low compu-
tational complexity and characterized images from different points of view. Specifically,
BRISQUE [25] derives features from the spatial domain, relying on mean subtracted nor-
malized coefficients. CurveletQA [52] considers log histograms of the curvelet coefficients
and the energy distributions of orientation and scale in the curvelet domain [58]. In con-
trast, GM-LOG-BIQA [53] and GWH-GLBP [54] characterize image quality by texture
degradation. In particular, GM-LOG-BIQA [53] utilizes the normalized joint statistics of
the gradient and Laplacian features, while GWH-GLBP [54] applies the local binary pat-
tern [59] operator to quantify texture degradation. HIGRADE [55] describes log-derivative,
spatial domain, and gradient domain scene statistics by fitting GGDs onto them. Next,
the parameters of the GGDs were considered to be quality-aware features. OG-IQA [56]
considers the histogram variances of the gradient, relative orientation, and relative gradient
maps to be quality-aware features. SSEQ [57] uses the spatial entropies of block DCT
coefficients. Aside from these global quality-aware features, the histogram of oriented
gradients [60] of the input image’s Y, Cb, and Cr color channels was also determined, since
gradient orientations are seriously distorted in the presence of noise [61]. As illustrated
in Figure 2, certain statistics are extracted from each global and local feature to compile a
new, compact, quality-aware feature. Specifically, we considered the mean, the median, the
standard deviation, the skewness, and the kurtosis of each feature. Skewness characterizes
the asymmetry of the data around the mean. The skewness of a vector x can be determined
as follows:

s =
1
n ∑n

i=1(xi − x̄)3(√
1
n ∑n

i=1(xi − x̄)2
)3 , (1)
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where xi is the ith element of x and x̄ denotes the mean of x. Kurtosis characterizes how
outlier-prone a distribution is and can be determined in the case of a vector x as follows:

k =
1
n ∑n

i=1(xi − x̄)4(
1
n ∑n

i=1(xi − x̄)2
)2 . (2)

As a result, a vector 10× 5 = 50 in length can be obtained from the statistics of the global
features.

3.2. Statistics of Local Image Features

Motivated by our previous work [62], the statistics of local feature descriptors were
used as quality-aware features. Specifically, several HVS-inspired filters (Bilaplacian, high-
boost, and derivative) were applied first to the color channels (YCbCr color space) of the
input image. Next, the features from the accelerated segment test (FAST) keypoints [63]
were detected on all resulting feature maps. Moreover, each detected keypoint was de-
scribed by a vector wiht a length of 25 containing the values of its 5× 5 neighborhood.
As already mentioned, YCbCr, which is defined by ITU-R BT.601 [64], is utilized in this
paper because it is the preferred format for video broadcasting, with its efficient use of
the channel bandwidth. Furthermore, the luma and chroma components are separate in
YCbCr [65]. For conversion from to the RGB to YCbCr color space, the following matrix
equation was used [66]: Y

Cb
Cr

 =

 0.2568 0.5041 0.0979
−0.1482 −0.2910 0.4392
0.4392 −0.3678 −0.0714

R
G
B

. (3)

The main motivation of Bilaplacian filters comes from the work of Ghosh et al. [67,67],
who pointed out that the nature of retinal ganglion cells’ extended classical receptive field
can be described by a combination of three zero-mean Gaussians at three different scales,
which corresponds to the Bilaplacian of the Gaussian filter. In this study, the following
Laplacian kernels were applied:

L1 =

0 1 0
1 −4 1
0 1 0

, L2 =

 1 −2 1
−2 4 −2
1 −2 1

, L3 =

1 0 1
0 −4 0
1 0 1

, (4)

L4 =

−2 1 −2
1 4 1
−2 1 −2

, L5 =

−1 −1 −1
−1 8 −1
−1 −1 −1

. (5)

As the terminology suggests, the convolution of two Laplacian kernels results in a
Bilaplacian kernel:

L2
ij = Li ∗ Lj. (6)

In this paper, the L2
11, L2

22, L2
33, L2

44, L2
55, L2

13, and L2
24 kernels were used.

HVS is sensitive to the high-frequency regions of a natural scene [68], and a high-
boost filter can be used to enhance the high-frequency components [69]. In this study, the
following high-boost filter kernel was applied:

H =

−1 −1 −1
−1 9 −1
−1 −1 −1

. (7)

Aside from the filter given by Equation (7), H2, H3, and H4 were also applied, since
image noise or distortion can occur at different scales.
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First, Li et al. [54] applied derivative filters to extract statistical regularities from a
natural scene for NR-IQA. In our study, we apply the following derivative kernel:

D1 =

−1 1 −1
1 0 1
−1 1 −1

 ∗
 1 −1 1
−1 0 −1
1 −1 1

. (8)

Moreover, D2, D3, D4, and D5 with sizes of 5× 5, 7× 7, and 11× 11 were also used
because image noise or distortion can occur at different scales.

To sum up, a 3 × 7 × 50 × 5 = 5250 dimensional vector from the Bilaplacian maps,
3× 4× 50× 5 = 3000 dimensional vector from the high-boost maps, and 3× 5× 50× 5 = 3750
dimensional vector from the derivative maps can be extracted. As in the case of global
features, the mean, median, standard deviaton, skewness, and kurtosis were extracted from
the local features, which resulted in a 3× 5 = 15 dimensional quality-aware feature. When
considering the statistics of global and local features together, a 50 + 15 = 65 dimensional
quality-aware feature can be compiled.

4. Results

This section introduces our obtained experimental results and their analysis. First, the
applied benchmark IQA databases are introduced in Section 4.1. Afterward, in Section 4.2, the
assessment conventions and evaluation metrics are specified. To explain the design choices of
the proposed method, an ablation study is presented in Section 4.3. Finally, a comparison
to the state of the art is presented in Section 4.4.

4.1. Datasets

To empirically corroborate the efficiency of the proposed method, nine publicly available
benchmark databases which contain digital images of a quality annotated by human observers,
were applied in our experiments. Since quality ratings obtained from humans may not directly
express the visual quality due to other image characteristics (i.e., aesthetics) [70], a profound
evaluation of NR-IQA algorithms must involve tests on multiple benchmark databases [71,72]:

• CLIVE [10]: This database contains 1162 individual high-resolution scenes with au-
thentic distortions. Specifically, the images were captured by everyday users with
different types of mobile devices. Furthermore, quality annotations were obtained
from 8100 observers under a crowd-sourcing experiment.

• KonIQ-10k [11]: Similar to CLIVE [10], this database contains individual scenes
exhibiting authentic distortions. The images were collected from a very large mul-
timedia database [73] and assessed in a crowd-sourcing experiment. On the whole
10,073 digital images can be found in this database.

• SPAQ [12]: This database contains 11,125 individual high-resolution scenes captured
by 66 smartphones. Furthermore, the images were evaluated under a laboratory
environment by 600 observers.

• BIQ2021 [13]: This database contains 8000 images with authentic distortions col-
lected by various imaging devices. Furthermore, the images were evaluated in
a laboratory environment, calculating image quality scores obtained from at least
20 human observers.

• TID2008 [14]: This database contains 1700 distorted images which were generated
from 25 reference images using 17 distortion types at 4 degradation levels.

• MDID [15]: This database contains 1600 distorted images which were produced from
20 reference images. From each reference image, 80 distorted images were generated
by applying 4 different distortion types, such as Gaussian blur, a change in contrast,
compression noise, and Gaussian noise. Furthermore, each distortion level was randomly
chosen to be one of the four levels.

• TID2013 [16]: This database contains 3000 distorted images which were generated from
25 reference images, applying 25 different noise types at 5 different levels of degradation.
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Quality annotations were obtained from approximately 524,000 ratings under a laboratory
environment.

• KADID-10k [17]: This database contains 10,125 distorted images which were generated
from 81 reference images using 25 distortion types (i.e., blurs, compression noise,
color distortions, changes in brightness, changes in contrast, sharpening, and spatial
distortions) at 5 different distortion levels. The authors collected approximately
30,400 quality ratings in a crowd-sourcing experiment [74] for the annotation of the
distorted images.

• GFIQA-20k [18]: This database consists of 20,000 512×512 quality annotated face
images of individuals sampled from the YFCC100M [73] multimedia database.

Table 1 provides an overview of the main attributes of the utilized benchmark datasets.
In addition to this, the quality ratings’ empirical distributions are depicted in Figures 3 and 4.

(a) (b)

(c) (d)

(e) (f)
Figure 3. The empirical distributions of quality ratings in the considered IQA benchmark databases:
(a) CLIVE [10], (b) KonIQ-10k [11], (c) SPAQ [12], (d) BIQ2021 [13], (e) TID2008 [14], and (f) MDID [15].



Electronics 2023, 12, 1615 8 of 22

(a) (b)

(c)
Figure 4. The empirical distributions of quality ratings in the considered IQA benchmark databases:
(a) TID2013 [16], (b) KADID-10k [17], and (c) GFIQA-20k [18].

Table 1. Summary of the used benchmark IQA databases. The symbol # denotes the number of sign.

Database No. of Reference
Images

No. of Distorted
Images Distortion Type Resolution Environment

CLIVE [10] - 1162 authentic 500× 500 crowd-sourcing
KonIQ-10k [11] - 10,073 authentic 1024× 768 crowd-sourcing

SPAQ [12] - 11,125 authentic varied laboratory
BIQ2021 [13] - 8000 authentic 512× 512 laboratory
TID2008 [14] 25 1700 artificial 512× 384 laboratory
MDID [15] 20 1600 artificial 512× 384 laboratory

TID2013 [16] 25 3000 artificial 512× 384 laboratory
KADID-10k [17] 81 10,125 artificial 512× 384 crowd-sourcing
GFIQA-20k [18] - 20,000 authentic 512× 512 laboratory

4.2. Evaluation Metrics and Protocol

In general, the NR-IQA methods’ efficiencies are given by the intensity of the correla-
tion between the estimated and ground truth quality ratings measured on a benchmark
database. In the research field of NR-IQA, Pearson’s linear correlation coefficient (PLCC),
Spearman’s rank order correlation coefficient (SROCC), and Kendall’s rank order correla-
tion coefficient (KROCC) are often applied as evaluation metrics.

PLCC between vectors s ∈ Rn and q ∈ Rn is defined as

PLCC =
∑n

i=1(qi − q̄)(si − s̄)√
∑n

i=1(qi − q̄)2 ∑n
i=1(si − s̄)2

, (9)
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where q̄ and s̄ are the arithmetic means of vectors q and s, respectively. Before the com-
putation of PLCC, the predicted scores were mapped using a five-parameter nonlinear
regression, as recommended in [75]. SROCC between vectors s ∈ Rn and q ∈ Rn is
described as follows:

SROCC = 1−
6 ∑n

i=1 d2
i

N(N2 − 1)
, (10)

where di denotes the difference between the ranks of the ith entry in vectors q and s.
KROCC is computed as follows:

KROCC =
nc − nd

1
2 n(n− 1)

, (11)

where nc and nd denote the number of concordant and discordant pairs between s and q,
respectively.

In this paper, the median of the PLCC, SROCC, and KROCC values obtained was
measured in 100 random train-test splits of a dataset. In particular, a database was randomly
separated into a training (circa 80% of images) and a test (circa 20% of images) set. Next,
PLCC, SROCC, and KROCC were computed on the test set. Databases with artificial
distortions, such as TID2008 [14], MDID [15], TID2013 [16], and KADID-10k [17], were
divided into training and test sets with respect to the reference images to avoid any semantic
overlapping in these sets. On the other hand, databases with authentic distortions, such as
CLIVE [10], KonIQ-10k [11], SPAQ [12], BIQ2021 [13], and GFIQA-20k [18], were divided
with respect to all images, since they contained individual scenes.

Table 2 summarizes the main characteristics of the computer configuration which was
applied in the experiments.

Table 2. Hardware configuration applied in experiments.

Computer model Z590 D
CPU Intel(R) Core(TM) i7-11700F CPU 2.50 GHz (8 cores)

Memory 31.9 GB
GPU Nvidia GeForce RTX 3090

4.3. Ablation Study

To find a near-optimal regression algorithm for the proposed quality-aware feature ex-
traction, a parameter study was carried out on CLIVE [10] using several different regression
methods, such as Gaussian process regression (GPR) using the rational quadratic kernel
function [76], radial basis function support vector regressor (RBF SVR) [77], generalized
additive model (GAM) [78], extra tree [79], binary decision tree (BDT) [80], and LSBoost
algorithm [81]. The obtained results are summarized in Figure 5. From these numerical
results, we may draw the conclusion that GPR with the rational quadratic kernel function
provided the highest outcomes, slightly outperforming the RBF SVR and significantly
exceeding the other examined techniques. This is why GPR with the rational quadratic
kernel function was applied in our proposed method, which is codenamed SGL-IQA in the
following, emphasizing the fact that it relies on the statistics of the global and local image
features. Figure 6 depicts scatter plots showing the ground truth versus predicted quality
scores on a CLIVE [10] test set for each regression algorithm.
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(a) (b)

(c)
Figure 5. Comparison of different regression techniques (GPR, RBF SVR, GAM, extra tree, BDT, and
LSBoost) in terms of median (a) PLCC, (b) SROCC, and (c) KROCC. Measured on CLIVE [10] over
100 random train-test splits.

(a) (b)

(c) (d)
Figure 6. Cont.



Electronics 2023, 12, 1615 11 of 22

(e) (f)
Figure 6. Scatter plots of the ground truth versus the predicted quality scores on a CLIVE [10] test set for
different regression algorithms: (a) GPR, (b) RBF SVR, (c) GAM, (d) extra tree, (e) BDT, and (f) LSBoost.

4.4. Comparison to the State of the Art

In this subsection, the proposed method is compared to the state of the art on nine
benchmark databases (CLIVE [10], KonIQ-10k [11], SPAQ [12], BIQ2021 [13], TID2008 [14],
MDID [15], TID2013 [16], KADID-10k [17], and GFIQA-20k [18]) using the evaluation
metrics and protocol given in the previous subsection for the considered learning-based
NR-IQA methods. On the other hand, opinion-unaware methods, such as IL-NIQE [82],
NIQE [83], and PIQE [84], were assessed directly on the entire databases since they do
not require any training steps. Furthermore, the source codes of all considered NR-IQA
algorithms, i.e. BIQI (https://github.com/utlive/BIQI, accessed on 12 January 2023),
BLIINDS-II (https://github.com/utlive/bliinds2, accessed on 12 January 2023), BMPRI
(https://drive.google.com/file/d/1C_NxTLvnBOJDGhqqtixCkra0LIMP6loF/view, ac-
cessed on 12 January 2023), BRISQUE (https://github.com/utlive/brisque, accessed
on 12 January 2023), CurveletQA (https://github.com/utlive/curveletqa, accessed on
12 January 2023), DIIVINE (https://github.com/utlive/DIIVINE, accessed on 12 January
2023), ENIQA (https://github.com/jacob6/ENIQA, accessed on 12 January 2023), GM-
LOG-BIQA (http://ipl.xjtu.edu.cn/ftp/xqmou/GM-LOG-BIQA.zip, accessed on 12 Jan-
uary 2023), GWH-GLBP (https://github.com/JianjunXiang/PVRI/tree/master/GWH-
GLBP-BIQA/GWH-GLBP-BIQA, accessed on 12 January 2023), IL-NIQE (http://www4
.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm, accessed on 12 January 2023),
NBIQA (https://github.com/GZHU-Image-Lab/NBIQA, accessed on 12 January 2023),
NIQE (https://github.com/utlive/niqe, accessed on 12 January 2023), OG-IQA (https://
github.com/utlive/og-iqa, accessed on 12 January 2023), PIQE (https://www.mathworks.
com/help/images/ref/piqe.html, accessed on 12 January 2023), Robust BRISQUE (https:
//github.com/utlive/robustbrisque, accessed on 12 January 2023), and SSEQ (https://
github.com/utlive/sseq, accessed on 12 January 2023), are publicly available online.

The results obtained on the individual databases are summarized in Tables 3–7. From
the presented results, one can unambiguously see that the proposed SGL-IQA method
was proven to be the best-performing algorithm on all considered benchmark databases
which are de facto standards in NR-IQA. In Table 8, the results measured on the individual
databases are summarized by taking their direct and weighted averages, where the weights
correspond to the number of distorted images. From the numerical results, it can be seen
that the proposed SGL-IQA gave higher performance indices in the case with weighted
averages than in the case with direct averages. This suggests that the proposed method
provides better performance on large databases than on smaller ones. For a visual com-
petitive analysis between the proposed and other existing methods, radar graphs of the
median SROCC values are depicted in Figure 7. As one can see in this figure, the proposed
SGL-IQA method was able to achieve higher spikes than the other examined methods.

https://github.com/utlive/BIQI
https://github.com/utlive/bliinds2
https://drive.google.com/file/d/1C_NxTLvnBOJDGhqqtixCkra0LIMP6loF/view
https://github.com/utlive/brisque
https://github.com/utlive/curveletqa
https://github.com/utlive/DIIVINE
https://github.com/jacob6/ENIQA
http://ipl.xjtu.edu.cn/ftp/xqmou/GM-LOG-BIQA.zip
https://github.com/JianjunXiang/PVRI/tree/master/GWH-GLBP-BIQA/GWH-GLBP-BIQA
https://github.com/JianjunXiang/PVRI/tree/master/GWH-GLBP-BIQA/GWH-GLBP-BIQA
http://www4.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm
http://www4.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm
https://github.com/GZHU-Image-Lab/NBIQA
https://github.com/utlive/niqe
https://github.com/utlive/og-iqa
https://github.com/utlive/og-iqa
https://www.mathworks.com/help/images/ref/piqe.html
https://www.mathworks.com/help/images/ref/piqe.html
https://github.com/utlive/robustbrisque
https://github.com/utlive/robustbrisque
https://github.com/utlive/sseq
https://github.com/utlive/sseq
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Table 3. Comparison to other state-of-the-art algorithms using CLIVE [10] and KonIQ-10k [11]
databases. Median PLCC, SROCC, and KROCC values were measured over 100 random train-test
splits. The best results are given in bold, the second-best results are underlined, and the third-best
results are given in italics.

CLIVE [10] KonIQ-10k [11]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.519 0.488 0.329 0.688 0.662 0.471
BLIINDS-II [23] 0.473 0.442 0.291 0.574 0.575 0.414

BMPRI [86] 0.541 0.487 0.333 0.637 0.619 0.421
BRISQUE [25] 0.524 0.497 0.345 0.707 0.677 0.494

CurveletQA [52] 0.636 0.621 0.421 0.730 0.718 0.495
DIIVINE [87] 0.617 0.580 0.405 0.709 0.693 0.471
ENIQA [88] 0.596 0.564 0.376 0.761 0.745 0.544

GM-LOG-BIQA [53] 0.607 0.604 0.383 0.705 0.696 0.501
GWH-GLBP [54] 0.584 0.559 0.395 0.723 0.698 0.507

IL-NIQE [82] 0.487 0.415 0.280 0.463 0.447 0.306
NBIQA [89] 0.629 0.604 0.427 0.771 0.749 0.515
NIQE [83] 0.328 0.299 0.200 0.319 0.400 0.272

OG-IQA [56] 0.545 0.505 0.364 0.652 0.635 0.447
PIQE [84] 0.172 0.108 0.081 0.208 0.246 0.172

Robust BRISQUE [26] 0.522 0.484 0.330 0.718 0.668 0.477
SSEQ [57] 0.487 0.436 0.309 0.589 0.572 0.423

SGL-IQA 0.704 0.667 0.478 0.815 0.794 0.596

Table 4. Comparison to other state-of-the-art algorithms using SPAQ [12] and BIQ2021 [13] databases.
Median PLCC, SROCC, and KROCC values were measured over 100 random train-test splits. The
best results are given in bold, the second-best results are underlined, and the third-best results are
given in italics.

SPAQ [12] BIQ2021 [13]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.783 0.776 0.566 0.644 0.564 0.399
BLIINDS-II [23] 0.676 0.675 0.486 0.555 0.496 0.346

BMPRI [86] 0.739 0.734 0.506 0.633 0.494 0.345
BRISQUE [25] 0.726 0.720 0.518 0.669 0.555 0.392

CurveletQA [52] 0.793 0.774 0.503 0.698 0.630 0.453
DIIVINE [87] 0.774 0.756 0.514 0.684 0.617 0.442
ENIQA [88] 0.813 0.804 0.603 0.703 0.634 0.456

GM-LOG-BIQA [53] 0.786 0.782 0.572 0.699 0.617 0.443
GWH-GLBP [54] 0.801 0.796 0.542 0.664 0.602 0.431

IL-NIQE [82] 0.374 0.348 0.297 0.541 0.461 0.317
NBIQA [89] 0.802 0.793 0.539 0.718 0.642 0.463
NIQE [83] 0.264 0.310 0.206 0.301 0.356 0.240

OG-IQA [56] 0.726 0.724 0.594 0.403 0.371 0.253
PIQE [84] 0.211 0.156 0.091 0.255 0.213 0.142

Robust BRISQUE [26] 0.735 0.731 0.524 0.683 0.605 0.432
SSEQ [57] 0.745 0.742 0.549 0.603 0.528 0.369

SGL-IQA 0.866 0.859 0.661 0.770 0.710 0.522

Table 5. Comparison to other state-of-the-art algorithms using TID2008 [14] and MDID [15] databases.
Median PLCC, SROCC, and KROCC values were measured over 100 random train-test splits carried
out with respect to the reference images. The best results are given in bold, the second-best results
are underlined, and the third-best results are given in italics.

TID2008 [14] MDID [15]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.496 0.424 0.301 0.708 0.700 0.508
BLIINDS-II [23] 0.693 0.603 0.440 0.694 0.683 0.488

BMPRI [86] 0.770 0.681 0.500 0.770 0.755 0.555
BRISQUE [25] 0.602 0.451 0.317 0.632 0.624 0.442

CurveletQA [52] 0.607 0.539 0.393 0.692 0.682 0.484
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Table 5. Cont.

DIIVINE [87] 0.546 0.537 0.381 0.727 0.724 0.518
ENIQA [88] 0.615 0.564 0.406 0.771 0.766 0.553

GM-LOG-BIQA [53] 0.698 0.686 0.508 0.640 0.650 0.450
GWH-GLBP [54] 0.368 0.375 0.258 0.724 0.753 0.551

IL-NIQE [82] 0.476 0.420 0.292 0.733 0.690 0.491
NBIQA [89] 0.751 0.676 0.507 0.779 0.775 0.565
NIQE [83] 0.195 0.186 0.125 0.460 0.420 0.285

OG-IQA [56] 0.663 0.583 0.426 0.754 0.718 0.515
PIQE [84] 0.427 0.327 0.235 0.280 0.253 0.175

Robust BRISQUE [26] 0.696 0.586 0.425 0.753 0.743 0.532
SSEQ [57] 0.704 0.640 0.470 0.747 0.738 0.537

SGL-IQA 0.776 0.722 0.549 0.818 0.815 0.614

Table 6. Comparison to other state-of-the-art algorithms using TID2013 [16] and KADID-10k [17]
databases. Median PLCC, SROCC, and KROCC values were measured over 100 random train-
test splits carried out with respect to the reference images. The best results are given in bold, the
second-best results are underlined, and the third-best results are given in italics.

TID2013 [16] KADID-10k [17]

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.468 0.296 0.207 0.302 0.294 0.206
BLIINDS-II [23] 0.521 0.490 0.342 0.553 0.534 0.379

BMPRI [86] 0.692 0.583 0.422 0.555 0.534 0.382
BRISQUE [25] 0.565 0.411 0.289 0.426 0.398 0.276

CurveletQA [52] 0.560 0.471 0.337 0.471 0.442 0.316
DIIVINE [87] 0.521 0.487 0.340 0.429 0.436 0.307
ENIQA [88] 0.596 0.545 0.385 0.637 0.641 0.466

GM-LOG-BIQA [53] 0.662 0.627 0.454 0.590 0.570 0.415
GWH-GLBP [54] 0.315 0.357 0.245 0.302 0.285 0.196

IL-NIQE [82] 0.516 0.456 0.317 0.588 0.630 0.453
NBIQA [89] 0.695 0.628 0.459 0.646 0.615 0.446
NIQE [83] 0.263 0.277 0.184 0.302 0.338 0.228

OG-IQA [56] 0.564 0.452 0.321 0.527 0.447 0.314
PIQE [84] 0.491 0.364 0.255 0.289 0.237 0.201

Robust BRISQUE [26] 0.487 0.315 0.218 0.375 0.301 0.209
SSEQ [57] 0.615 0.520 0.373 0.454 0.434 0.304

SGL-IQA 0.713 0.656 0.487 0.782 0.774 0.583

Table 7. Comparison to other state-of-the-art algorithms using GFIQA-20k [18] database. Median
PLCC, SROCC, and KROCC values were measured over 100 random train-test splits. The best results
are given in bold, the second-best results are underlined, and the third-best results are given in italics.

Method PLCC SROCC KROCC

BIQI [85] 0.794 0.790 0.599
BLIINDS-II [23] 0.685 0.674 0.491

BMPRI [86] 0.673 0.662 0.481
BRISQUE [25] 0.721 0.718 0.527

CurveletQA [52] 0.799 0.779 0.591
DIIVINE [87] 0.822 0.823 0.632
ENIQA [88] 0.834 0.838 0.647

GM-LOG-BIQA [53] 0.740 0.732 0.543
GWH-GLBP [54] 0.831 0.822 0.633

IL-NIQE [82] 0.728 0.714 0.518
NBIQA [89] 0.829 0.830 0.640
NIQE [83] 0.191 0.183 0.127

OG-IQA [56] 0.747 0.735 0.546
PIQE [84] 0.207 0.095 0.066

Robust BRISQUE [26] 0.817 0.816 0.625
SSEQ [57] 0.715 0.690 0.509

SGL-IQA 0.866 0.862 0.663



Electronics 2023, 12, 1615 14 of 22

Table 8. PLCC , SROCC, and KROCC direct and weighted averages. The best results are given in
bold, the second-best results are underlined, and the third-best results are given in italics.

Direct Average Weighted Average

Method PLCC SROCC KROCC PLCC SROCC KROCC

BIQI [85] 0.600 0.555 0.398 0.655 0.627 0.459
BLIINDS-II [23] 0.603 0.575 0.409 0.621 0.603 0.433

BMPRI [86] 0.668 0.617 0.438 0.659 0.624 0.442
BRISQUE [25] 0.619 0.561 0.400 0.653 0.617 0.445

CurveletQA [52] 0.665 0.628 0.444 0.705 0.675 0.482
DIIVINE [87] 0.648 0.628 0.446 0.668 0.680 0.490
ENIQA [88] 0.703 0.678 0.493 0.752 0.737 0.549

GM-LOG-BIQA [53] 0.681 0.663 0.474 0.705 0.686 0.500
GWH-GLBP [54] 0.590 0.583 0.418 0.668 0.653 0.475

IL-NIQE [82] 0.545 0.509 0.363 0.565 0.545 0.396
NBIQA [89] 0.736 0.701 0.507 0.762 0.738 0.537
NIQE [83] 0.291 0.308 0.207 0.265 0.293 0.198

OG-IQA [56] 0.620 0.574 0.420 0.641 0.610 0.452
PIQE [84] 0.282 0.222 0.158 0.245 0.186 0.131

Robust BRISQUE [26] 0.643 0.583 0.419 0.681 0.640 0.469
SSEQ [57] 0.629 0.589 0.427 0.640 0.610 0.445

SGL-IQA 0.790 0.762 0.573 0.821 0.802 0.608

(a) (b)

(c)
Figure 7. Radar graphs for SROCC comparison to other advanced NR-IQA methods based on
(a) authentic distortions, (b) artificial distortions, and (c) overall performance on the considered
benchmark databases.
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To demonstrate that the performance differences between the proposed and other state-
of-the-art methods on the considered benchmark datasets were significant, significance
tests and a cross-database test were carried out. Specifically, Wilcoxon rank sum tests were
applied [90] for justifying the significance of the results. Specifically, we applied the null
hypothesis that two sets of SROCC values of two different NR-IQA methods were sampled
from continuous distributions which had equal median values. Furthermore, we set the
significance level to 5%. The outcomes of the Wilcoxon rank sum tests are summarized in
Tables 9 and 10. In this table, the symbol ’1’ denotes that SGL-IQA provided significantly
better results than the algorithm shown in the row on the database shown in the column. It
can be seen that the proposed method provided significantly better results than those of
the other considered state-of-the-art methods.

Table 9. Results of the two-sided Wilcoxon rank sum significance tests on CLIVE [10], KonIQ-
10k [11], SPAQ [12], BID2021 [13], and TID2008 [14]. The symbol ’1’ denotes that SGL-IQA provided
significantly better results than the method represented in the row on the database represented in
the column.

Method CLIVE [10] KonIQ-10k [11] SPAQ [12] BID2021 [13] TID2008 [14]

BIQI [85] 1 1 1 1 1
BLIINDS-II [23] 1 1 1 1 1

BMPRI [86] 1 1 1 1 1
BRISQUE [25] 1 1 1 1 1

CurveletQA [52] 1 1 1 1 1
DIIVINE [87] 1 1 1 1 1
ENIQA [88] 1 1 1 1 1

GM-LOG-BIQA [53] 1 1 1 1 1
GWH-GLBP [54] 1 1 1 1 1

NBIQA [89] 1 1 1 1 1
OG-IQA [56] 1 1 1 1 1

Robust BRISQUE [26] 1 1 1 1 1
SSEQ [57] 1 1 1 1 1

Table 10. Results of the two-sided Wilcoxon rank sum significance tests on MDID [15], TID2013 [16],
KADID-10k [17], and GFIQA-20k [18]. The symbol ‘1’ denotes that SGL-IQA provided significantly
better results than the method represented in the row on the database represented in the column.

Method MDID [15] TID2013 [16] KADID-10k [17] GFIQA-20k [18]

BIQI [85] 1 1 1 1
BLIINDS-II [23] 1 1 1 1

BMPRI [86] 1 1 1 1
BRISQUE [25] 1 1 1 1

CurveletQA [52] 1 1 1 1
DIIVINE [87] 1 1 1 1
ENIQA [88] 1 1 1 1

GM-LOG-BIQA [53] 1 1 1 1
GWH-GLBP [54] 1 1 1 1

NBIQA [89] 1 1 1 1
OG-IQA [56] 1 1 1 1

Robust BRISQUE [26] 1 1 1 1
SSEQ [57] 1 1 1 1

In another test, the generalization abilities of the proposed SGL-IQA and the other state-
of-the-art methods were examined. Specifically, a cross-database test was carried out where
all machine learning-based algorithms were trained on the entire KonIQ-10k [11] database
and subsequently tested on the entire CLIVE [10] database. The numerical results of this
cross-database test are outlined in Table 11. From these results, it can be clearly seen that the
proposed SGL-IQA method outperformed the other considered state-of-the-art methods
by a large margin. The difference between the proposed and second-best-performing ones
was approximately 0.09 in terms of PLCC and SROCC.
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To give a comparison of the computational complexities of the proposed and other
state-of-the-art methods, we measured the times for feature extractions on CLIVE [10] and
KonIQ-10k [11]. The applied hardware configuration was already summarized in Table 2. In
Table 12, our numerical results regarding the times for feature extraction are summarized.
To illustrate the execution time and performance simultaneously, SROCC vs. time of
feature extraction scatter plots based on the numerical results obtained from CLIVE [10]
and KonIQ-10k [11] are presented in Figures 8 and 9. The demostrated numerical data
suggest that SGL-IQA can give significantly higher performance metrics than the second-
or third-best-performing methods at lower computational costs.

Table 11. Numerical results of the cross-database test. The considered algorithms were trained on the
entire KonIQ-10k [11] database and tested on the entire CLIVE [10] database. The best results are
given in bold, the second-best results are underlined, and the third-best results are given in italics.

Method PLCC SROCC KROCC

BIQI [85] 0.477 0.424 0.289
BLIINDS-II [23] 0.107 0.090 0.063

BMPRI [86] 0.453 0.389 0.298
BRISQUE [25] 0.509 0.460 0.310

CurveletQA [52] 0.496 0.505 0.347
DIIVINE [87] 0.479 0.434 0.299
ENIQA [88] 0.428 0.386 0.272

GM-LOG-BIQA [53] 0.427 0.384 0.261
GWH-GLBP [54] 0.480 0.479 0.328

NBIQA [89] 0.503 0.509 0.284
OG-IQA [56] 0.442 0.427 0.289

Robust BRISQUE [26] 0.516 0.481 0.327
SSEQ [57] 0.270 0.256 0.170

SGL-IQA 0.608 0.595 0.416

Table 12. Feature extraction times (given in seconds) on CLIVE [10] and KonIQ-10k [11]. The best results
are given in bold, the second-best results are underlined, and the third-best results are given in italics.

Method CLIVE [10] KonIQ-10k [11]

BIQI [85] 0.016 0.041
BLIINDS-II [23] 8.704 28.236

BMPRI [86] 0.200 0.487
BRISQUE [25] 0.027 0.077

CurveletQA [52] 0.324 0.937
DIIVINE [87] 4.500 12.896
ENIQA [88] 2.630 7.324

GM-LOG-BIQA [53] 0.024 0.061
GWH-GLBP [54] 0.036 0.101

IL-NIQE [82] 1.452 1.980
NBIQA [89] 3.770 12.580
NIQE [83] 0.026 0.063

OG-IQA [56] 0.020 0.053
PIQE [84] 0.034 0.072

Robust BRISQUE [26] 0.086 0.273
SSEQ [57] 0.227 0.732

SGL-IQA 1.610 4.783
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Figure 8. SROCC vs. feature extraction time (given in seconds on a logarithmic scale) based on the
results obtained on CLIVE [10].

Figure 9. SROCC vs. feature extraction time (given in seconds on a logarithmic scale) based on the
results obtained on KonIQ-10k [11].
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5. Conclusions

In this paper, we made an effort to predict the perceptual quality of digital images rely-
ing on the rich statistics of global and local image features. Specifically, visual physiology’s
previous research results indicated that the human visual system first constructs a global
perception about a visual scene. Next, it focuses on local areas to judge the perceptual
image quality. Unlike previous studies, we did not simply fuse together certain global
and local features since this process quickly produces a long feature vector, but a broad
spectrum of statistics was extracted from them to characterize the quality-aware aspects
of an image in a compact feature vector. The experimental results demonstrated that the
proposed SGL-IQA method was able to significantly surpass the state of the art in terms of
the correlation strength between the predicted and ground truth quality ratings evaluated
on nine benchmark IQA databases. Furthermore, these findings were also reinformed in
significance and cross-database tests.

To facilitate the reproduction of the presented results, the source code of the pro-
posed SGL-IQA no-reference image quality assessment algorithm can be downloaded at:
https://github.com/Skythianos/SGL-IQA (accessed on 2 March 2023).
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FAST features from the accelerated segment test
GAM generalized additive model
GGD generalized Gaussian distribution
GPR Gaussian process regression
HVS human visual system
IQA image quality assessment
KADID Konstanz artificially distorted image quality database
KROCC Kendall’s rank order correlation coefficient
LIVE laboratory for image and video engineering
MDID multiply distorted image database
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NR-IQA no-reference video quality assessment
NSS natural scene statistics
PLCC Pearson’s linear correlation coefficient
RBF radial basis function
SPAQ smartphone photography attribute and quality
SROCC Spearman’s rank order correlation coefficient
SVR support vector regressor
TID Tampere image database
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