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Abstract: Photovoltaic (PV)–battery hybrid systems, which are composed of PV arrays, batteries, and
bidirectional inverters, can level the loads of traditional utility grids. Their objective is to supply
predetermined active and reactive power to the power grid. This paper presents an operation method
for PV–battery hybrid systems by estimating PV generation. Using the PV installation information,
the maximum PV generation on a clear day was predicted and compared with historical data. The
PV generation was estimated using historical data from 2007 to 2010. The method aims to reduce the
peak load of the power system using the estimated load and PV generation of the next day. With the
given weather information and load pattern for the next day, the charge and discharge set points of
the battery can be determined by considering the initial SoC (State of Charge) and capacity of the
battery. To compensate for the estimation error of the load and PV output, an operational margin was
considered. This method can maximize system operation efficiency by fully utilizing the battery. The
effectiveness of the operation method was validated through simulation studies. It was confirmed
that the peak load could be reduced by 30% using the proposed algorithm.

Keywords: photovoltaic; battery; battery energy storage system (BESS); PV–battery hybrid system;
solar power generation estimation; peak load reduction

1. Introduction

Photovoltaic (PV) generation involves the conversion of solar energy to electric energy
using photovoltaic cells. Owing to its advantages, such as abundant resources, easy
exploitation, cleanliness, and renewable characteristics, PV generation is developing rapidly
as a renewable energy source. However, the disadvantage of PV generation is that it is
intermittent owing to its dependence on weather conditions. Thus, energy storage elements
are necessary to obtain a stable and reliable system output from a PV generation system for
various load conditions and to improve both the steady-state and dynamic behaviors of the
PV generation system [1].

Renewable energy sources, including solar photovoltaic systems and wind power
(WT), are key technologies for carbon-free energy production [2]. Fossil-fuel-based power
plants can provide electrical energy to the market because of their generally lower produc-
tion costs compared with PV and WT [3]. However, they are a source of carbon dioxide, and
the cost of electricity generation is expected to increase as the cost of emission allowances
rises due to the implementation of the EU Emissions Trading Scheme (EU ETS) [4]. The
intermittent nature of renewable energy generators based on solar and wind energy re-
sources makes effective power system control difficult, and the use of these energy sources
in the shared energy mix is expected to increase steadily over the next few decades [5].
Lithium-ion battery research is receiving considerable attention worldwide. Batteries are
becoming safer and cheaper, and the technology needed to use them in power distribution
systems is getting a lot of attention [6,7].

Grid-tied PVs with battery energy systems have been widely studied to simulate and
quantify the optimal benefits of deploying such systems. Some of the system aspects studied
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include the simulation and optimization of PV systems based on energy price and demand
forecasts [8–10]. Recently, the batteries used in grid-connected PV systems have received
considerable attention, especially with regard to their suitability and usage time [11].

Despite high installation costs, domestic solar PV has a high adoption rate which
is driven by energy policies, such as conformity schemes in Europe and other parts of
the world [12–14]. The adoption of batteries in renewable energy systems with high
fluctuations in distributed energy resources can relieve the output fluctuations caused
by specific electricity demands or grid-connected distributed energy systems [15,16]. An
important issue in this context is to justify the need for battery storage systems in electrical
networks. The peak load demand of power systems is increasing, and the high share of
distributed energy resources creates a mismatch between generation and demand [17].
Thus, the utilization of power generation, transmission, and distribution infrastructure is
not suitable for power system operation.

Utility operators can leverage battery storage with PV systems to maximize the use of
existing network capacity and defer network investments. Therefore, the capacity of home
electricity customers to provide an effective response to dynamic electricity prices will be
increasingly valuable for integrating the high penetration of distributed energy resources
such as PV into future electricity networks. In [10], the effects of active demand-side
management and battery storage systems on self-consumption were investigated. The
relationship between the electrical energy flow and battery storage capacity has been shown
to be an important determinant. A study [18] investigated the viability of suitable systems
to enhance the development of renewable energy technologies. Furthermore, batteries have
been used in the campus microgrid field as well as in many other fields [19,20].

A battery energy storage system (BESS) can be integrated into a PV generation system
to form a PV–battery hybrid system, which can be more stable and reliable. A PV–battery
hybrid system is composed of a PV array, battery, power electronic converters, controllers,
and utility grid [21]. A PV–BESS hybrid system can mitigate the intermittence of PV by
controlling the charge and discharge of the ESS and contributes an auxiliary service to the
grid through peak load shaving in the utility grid [22]. Recently, interest has increased in
BESS-based peak shaving, which requires a scheduling strategy based on PV prediction.
The purpose of this system is to supply predetermined or controllable active and reactive
power to the grid. In the industrial field, the linear optimization problems based on demand
and billing systems in industrial applications have allowed BESS to pay back investment
costs in a short period of time [23]. In the distribution system, the load peak shaving
problem has been solved by utilizing BESS in the planning stage. It was defined as an
optimization problem considering time of use (TOU) and load probability distribution
uncertainty, which mitigated the operating cost in the distribution system [24,25]. In most
PV–BESS systems, the problem of load peak shaving brings economic benefits, but the
uncertainty problem of PV must be considered. We have accounted for and solved the
uncertainty problem through statistical methods [26]. In addition, the prediction problem
has been solved through artificial intelligence technologies such as deep learning and
machine learning [27], and through this, the optimal ESS operation plan for load peak
reduction has been derived [28].

The conventional method proposed an ESS operation method with improved perfor-
mance by applying artificial intelligence and stochastic statistical techniques. However, this
method increases the computational burden of the system and is difficult to apply to small
systems. In addition, many factors related to prediction are required and a large amount
of memory is required to store them. The conventional methods mentioned above do not
present methods for application to actual systems, but focus on optimization problems in
consideration of cost. In addition, conventional BESS operation methods for peak shaving
suggest a complex method for stabilizing the PV output. This paper presents a method
for operating a PV cell system using solar power generation estimation to improve and
simplify the PV operation efficiency. The maximum solar power output for each time
period was calculated by the mathematical modeling of the solar power generation output.
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A method for estimating solar energy was proposed by comparing the maximum amount
of power generation and the actual solar output according to the weather. The purpose
of this method is to reduce the peak load of the power system using the estimated load
and estimated solar power generation on the next day. Given the weather information and
the load pattern of the next day, the battery’s initial SoC (State of Charge) and capacity
can be considered to determine the battery’s charge/discharge set point. The operating
margin was considered to compensate for the estimation errors of the load and PV output.
This method can make the most of the battery and maximize the operating efficiency of the
system. The contributions of this paper are as follows:

(1) The PV prediction model was designed based on mathematical modeling and cumulative
data analysis. Historical data is classified as PV output data according to the weather
and expressed as a generation rate, and other factors are not considered. The generation
rate can predict the maximum output of the PV through a simple calculation.

(2) Battery charge/discharge settings are determined based on predicted weather in-
formation and load patterns. In addition, the output error of load and PV can be
compensated for by considering an operating margin. It has been validated as provid-
ing improved performance through simulation.

(3) The method proposed in this paper utilized data from an actual PV–BESS system. The
data of the installed PV was utilized, which is suitable for validating the simulation.

This paper discusses the estimation of PV generation and presents an operation
method that reduces the peak load. If the weather information and load pattern of the next
day are provided, the peak load can be reduced by controlling the system output. The
effectiveness of the operation method was validated through simulation studies. It was
confirmed that the peak load could be reduced by 30% using the proposed algorithm.

2. PV–Battery Hybrid Systems

Figure 1 shows the configuration of a PV–battery hybrid system. The PV system was
first introduced, followed by the BESS [29].
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The PV cell array and batteries are linked to the common DC point via a DC/DC
converter and then interconnected to the AC grid via a DC/AC inverter. The battery energy
storage can charge and discharge to balance the power between PV generation and load
demand. The PV system, BESS, and inverter each has an independent control objective,
and, by controlling each part, the entire system operates safely [30].
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The PV cell is a DC electric source. When the PV system is connected to the grid, power
electronics are used to convert DC to AC power. Meanwhile, to improve the efficiency of
the PV generation system, the PV array should be controlled to generate maximum power
in a particular environment. For a two-stage PV system, maximum power point tracking is
realized by controlling the DC/DC converter [31].

A BESS is composed of a battery, bidirectional DC/DC converter, and control system.
The system should be able to operate in two directions: the battery can store the extra
energy by charging and supply the required energy to loads by discharging [32].

In this study, the BESS is connected to the DC bus through a bidirectional DC/DC
converter. The battery serves as a power source to meet the load demands, which cannot be
fully satisfied by the PV system, particularly during solar fluctuations. Therefore, a battery
is designed to compensate for the PV system.

The PV cell array and batteries are connected to the AC grid via a common DC/AC
inverter. The objective of the inverter is to control the system output power regardless of
the magnitude of the PV power output. A vector-control approach is used, with a reference
frame oriented along the power system voltage vector position, enabling independent
control of the active and reactive power flowing between the power system and inverter
system. The converter system is current controlled, with the direct-axis current used to
regulate the system output power and the quadrature-axis current component used to
control the reactive power [33].

3. Estimation of PV Generation

A method for predicting the solar power output on the next day was proposed. Further-
more, a method for determining the maximum solar power output through the calculation
and determination of the solar power output according to the weather was presented.

On average, pointing the collector towards the equator and tilting it at an angle equal
to the latitude is a good rule of thumb for annual performance. To accentuate the winter
collection, a slightly higher angle can be used, and vice versa for summer efficiency. Drawing
the Earth/solar system, it is easy to determine the main sun angle, that is, the altitude angle
βN of the sun at noon. The elevation angle is the angle between the Sun and the local horizon
below the Sun. In Figure 2, we examine the following relationship, as given in [34]:

βN = 90◦ − L + δ (1)

sinβN = cosL + cosδ + sinLsinδ (2)

H = 15(12 − CT) (3)

CT = 4(local time meridian − local longitude)− E (4)

where H is the hour angle at sunrise, CT is the clock time, and E is the equation of time.
The position of the sun at any time of the day can be described by the altitude β

and azimuth ∅S angles, as shown in Figure 3. Generally of solar activity, the azimuth in
the northern hemisphere is measured in degrees from the south, whereas in the southern
hemisphere, it is measured relative to true north. By convention, the azimuth is positive in
the morning when the sun is to the east and negative in the afternoon when the sun is to
the west.
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Figure 2. Altitude angle of the sun at solar noon.
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Figure 3. The Sun’s position can be described by its altitude β and azimuth ∅S angle.

The angle of incidence θ is a function of the PV cell orientation and elevation and
the azimuth of the sun at a particular time. Figure 4 shows these important angles. The
solar collector is tilted at angle Σ and faces in the direction described by the azimuth ∅C.
Figure 4 illustrates the collector’s azimuth angle ∅C and tilt angle Σ along with the solar
azimuth angle ∅S and altitude angle β.
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Figure 4. Illustration of the PV panel angles.

The solar flux striking the PV panel is a combination of direct beam radiation trans-
mitted through the atmosphere to the receiver in a straight line, diffuse radiation scattered
by molecules and aerosols in the atmosphere, and ground or reflected radiation, as shown
in Figure 5. Equations (10)–(12) are the direct beam, diffuse, and reflected isolation, respec-
tively. Equations (1)–(9) express each component of Equations (10)–(12) [34].

m =
1

sinβ
(5)
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k = 0.174 + 0.035sin
[

360
365

(n − 100)
]

(6)

A = 1160 + 75sin
[

360
365

(n − 275)
]

(7)

IB = Ae−km (8)

C = 0.095 + 0.04sin
[

360
365

(n − 100)
]

(9)

IBC = IBcosθ (10)

IDC = CIB

(
1 + cosΣ

2

)
(11)

IRC = ρIB(sinβ + C)
(

1 − cosΣ
2

)
(12)

where m is the air mass ratio, k is the collector coefficient of the direct beam, A is the
insolation component reaching the earth from the sun, C is the atmospheric diffusion factor,
ρ is the ground reflectance, Σ is the tilt angle, L is the PV latitude, δ is the solar declination,
n is the number of days, IBC is the direct beam radiation, IDC is the diffuse radiation, and
IRC is the reflected radiation.
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Figure 5. Solar radiation striking a collector IC is a combination of direct beam IBC diffuse IDC, and
reflected IRC radiation.

Combining the equations for the three components of radiation yields the following
for the total rate on a clear day:

IC = IBC + IDC + IRC (13)

The calculated radiation can be used to calculate the PV power output. The physics of
a PV module can be represented by an equivalent electrical circuit shown in Figure 6 and
Equations (14) and (15) [29].

I = ISC − I0

exp

 V + IRS

n × m
(

kT
q

) − 1

− V + IRS
RSH

(14)

ISC = ISC(re f )

(
IC

1000

)
+ J(T − Tre f ) (15)
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where I is the output terminal current, I0 is the diode saturation current, V is the terminal
voltage of a module, n is the ideal constant of diode, k is the Boltzmann constant, T is the cell
temperature, q is the coulomb constant, and m is the number of cells in series in a module.
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The maximum insolation at the Chonnam National University was calculated to
predict the photovoltaic output. By applying hourly solar positions, the hourly maximum
insolation was calculated on a clear day. The maximum insolation was calculated using
the PV installation information listed in Table 1. Figure 7 compares the calculated PV
generation with the measured PV generation. The blue dotted line represents the maximum
calculated PV power generation. The red line represents the actual measured PV power
generation in Chonnam National University.

Table 1. PV Installation Information.

Categories Values

Latitude 35.18◦

Local Longitude 126.9◦

Local Time Meridian 135◦

Azimuth Angle 20◦

PV Module Tilt Angle 90◦
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Figure 7. Comparison of measured PV generation and calculated PV max generation.

The cloud amount, also known as cloud cover, is the amount of clouds covering the
sky. The amount of all clouds floating in the sky is called total cloudiness. It is divided into
11 levels from 0 to 10 based on the amount of clouds. The amount of clouds is expressed as
0 when there is no cloud in the sky and as 10 when the sky is completely covered by clouds.
This is expressed in steps as listed in Table 2 [35,36].
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Table 2. Cloud Coverage [27].

Classification Range

Clear 0–2
Partly cloudy 2–5
Mostly cloudy 5–8

Cloudy 8–10

The PV generation was determined based on weather factors. The relationship be-
tween the weather and PV generation was also analyzed, in relation to the building illus-
trated in Figure 8. The actual measured output value was compared with the maximum
PV power output presented in this paper. By analyzing past data, the average output in
each weather type was calculated as shown in Equation (16). The results in Table 3 were
derived by analyzing data from 2007 to 2010. If the weather information is known, the PV
generation can be estimated as in Table 3.

Generation rate =
Actual output o f PV

Maximum power output o f PV
(16)
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Figure 8. 50 kW building integrated PV.

Table 3. Generation rates considering 2007–2010 raw data of PV.

Weather Generation Rate Weather Generation Rate

clear 0.84 mostly cloudy, fog 0.52
clear, fog 0.73 mostly cloudy, rain 0.46

partly cloudy 0.73 cloudy 0.39
partly cloudy, fog 0.62 cloudy, rain 0.24

mostly cloudy 0.56 cloudy, fog, rain 0.24

4. Operation Method

In this section, the operation method for peak load reduction is proposed. If the
weather information and load pattern of the next day are provided, the peak load can
be reduced by controlling PSYS. In Figure 9, the grid-side power can be seen to level
the load. The load forecasting and PV forecasting technology are required for optimal
operation of the ESS. In this paper, load prediction is not considered, and the PV maximum
output prediction is considered. Loads have pattern characteristics depending on the type
(residual, commercial, industrial) and may have similar patterns from day to day. Therefore,
the load prediction applied the representative pattern. A brief overview of how to predict
the PV generation is presented in Section 3.
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Figure 9. Load peak shaving by systems.

An operation method that uses the previously obtained prediction of PV generation
and load pattern was proposed. The concept of the proposed method is illustrated in
Figure 10. If the hourly demand (P[h]) is greater than the system output setpoint (Pset

out),
the system power is controlled from the system to the grid. Otherwise, if the hourly load
(P[h]) is less than the system input setpoint (Pset

in ), the system power is controlled from the
grid to the system. The given data are the PV generation (EPV) during a day, hourly load
demand (P[h]), full-charge battery energy (PBAT,full), initial SoC energy (EBAT,initial), and
inverter capacity (PSYS,max). The system output setpoint (Pset

out) was determined to maximize
the reduction in peak load. The system output energy setpoint (Eset

out) was determined to
maximize battery energy (EBAT,full). The system output power (Pout) and total output energy
(Eout) were calculated using Equations (17) and (18).

Pout[h] = max
((

P[h]− Pset
out
)
, 0
)

(17)

Eout = ∑24
h=1 Pout[h] (18)
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The calculated total output energy (Eout) must be lower than the system output energy
setpoint (Eset

out). Otherwise, the system output setpoint (Pset
out), system output power (Pout), and

total output energy (Eout) were calculated while increasing the system output setpoint (Pset
out).

While repeating the previous steps, the final system output setpoint (Pset
out) was calculated.

If the sum of the PV generation (EPV) and the initial SoC energy (EBAT,initial) is less
than the total output energy (Eout), the system input setpoint (Pset

in ) can be set. The system
input setpoint (Pset

in ) sets the maximum system power (Pavg) and sum of the minimum load
(Pmin) and inverter capacity (PSYS,max). The system input power (Pin) and total input energy
(Ein) were calculated using Equations (19) and (20). Ein + EPV + EBAT,initial must be greater
than the full-charge battery energy (EBAT,full). However, if it is less than the total output
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energy (Eout), the system output energy setpoint (Pset
out) is reset as Ein + EPV + EBAT,initial.

All the previous steps were repeated. The detailed flowchart of the proposed method is
shown in Figure 11. First, information related to weather, load patterns, and the battery and
inverter ratings are entered. Then, the proposed method performs the parts of Equations
(17)–(20) described earlier. In this paper, the normal state of all systems is considered, and
over-discharge and overcharge of the BESS are not considered. In the proposed method,
over-discharge and overcharge of the BESS can be solved through the constraints of the
PCS in BESS, but it is not considered in detail.

Pin[h] = max
((

Pset
in − P[h]

)
, 0
)

(19)

Ein = ∑24
h=1 Pin[h] (20)Electronics 2023, 12, x FOR PEER REVIEW 10 of 15 
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5. Simulation Studies

The method was implemented using MATLAB to verify the effectiveness of the opera-
tion method. Figure 12 shows the residential load patterns. Table 4 lists the system-setting
values. Because the PV generation prediction was inaccurate, the initial SoC of the battery
sets was 0.2. The initial SoC included the PV generation error. If the predicted PV gener-
ation is less than the actual power generation, the initial battery energy can be covered.
Otherwise, the additional PV generation energy is fed to the grid. Because the simulation
was being conducted to verify the algorithm, the battery operating range was assumed
to be 0 to 100%. In actual operation, it can be calculated as a range that can prevent over-
charge and over-discharge. The simulation sampling time was 1 h. In this paper, dynamic
operation (short period) is not considered and normal operation is considered. However,
the operating time may be determined according to the predicted load cycle and PV, and
in general, the predicted cycle in the distribution system is performed in units of 15 min,
30 min, and 1 h. The battery capacity is set to a high capacity to maximize the load peak
shaving effect of the PV–BESS system. Similarly, the average load was set higher than the
PV to maximize the load peak shaving effect.
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Table 4. Simulation Setting Value.

Categories Setting Values

Average Load 7.69 MW
Battery Capacity 12 MWh

PV Capacity 2.5 MWp
Inverter Capacity 2.5 MW

Initial SoC (margin) 0.2

Figure 13 shows the results of the system output from the operating algorithm on
12 March 2008. The first graph shows the original load, the second graph shows the PV
generation prediction, the third graph shows the grid-side load, and the last graph shows
the battery SoC. The weather information on the day was clear and fog (generation rate:
0.73). The results of the simulation were as follows: the system output setpoint, total output
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energy, system input setpoint, and total input energy were 7.959 MW, 9.6 MWh, 7.004 MW,
and 9.6 MWh, respectively.
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Figure 14 shows the results of the system output for 13 March 2008. The weather
information included cloudy, fog, and rain (generation rate: 0.24). The results of the
simulation were as follows: the system output setpoint, total output energy, system input
setpoint, and total input energy were 7.959 MW, 9.6 MWh, 7.397 MW, and 9.6 MWh,
respectively. The difference between the two simulations is the input setpoint. As the PV
generation rate decreases, the BESS charges more power from the grid.
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To confirm the algorithm results, they were compared with the initial load as shown in
Figures 15 and 16. According to the simulation results, it was possible to reduce the power
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peak by 30%. Running simulations on annual data is expected to reduce 30% of annual
power peaks.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

Figure 14 shows the results of the system output for 13 March 2008. The weather 

information included cloudy, fog, and rain (generation rate: 0.24). The results of the sim-

ulation were as follows: the system output setpoint, total output energy, system input 

setpoint, and total input energy were 7.959 MW, 9.6 MWh, 7.397 MW, and 9.6 MWh, re-

spectively. The difference between the two simulations is the input setpoint. As the PV 

generation rate decreases, the BESS charges more power from the grid. 

 

Figure 14. 13 March 2008 system output schedule 

To confirm the algorithm results, they were compared with the initial load as shown 

in Figures 15 and 16. According to the simulation results, it was possible to reduce the 

power peak by 30%. Running simulations on annual data is expected to reduce 30% of 

annual power peaks. 

 

Figure 15. Comparison of initial load and algorithm results on 12 March 2008. 

 

Figure 16. Comparison of initial load and algorithm results on 13 March 2008. 

Figure 15. Comparison of initial load and algorithm results on 12 March 2008.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

Figure 14 shows the results of the system output for 13 March 2008. The weather 

information included cloudy, fog, and rain (generation rate: 0.24). The results of the sim-

ulation were as follows: the system output setpoint, total output energy, system input 

setpoint, and total input energy were 7.959 MW, 9.6 MWh, 7.397 MW, and 9.6 MWh, re-

spectively. The difference between the two simulations is the input setpoint. As the PV 

generation rate decreases, the BESS charges more power from the grid. 

 

Figure 14. 13 March 2008 system output schedule 

To confirm the algorithm results, they were compared with the initial load as shown 

in Figures 15 and 16. According to the simulation results, it was possible to reduce the 

power peak by 30%. Running simulations on annual data is expected to reduce 30% of 

annual power peaks. 

 

Figure 15. Comparison of initial load and algorithm results on 12 March 2008. 

 

Figure 16. Comparison of initial load and algorithm results on 13 March 2008. Figure 16. Comparison of initial load and algorithm results on 13 March 2008.

6. Conclusions

This paper presented an operation method for hybrid PV–battery systems. The method
aims to reduce the peak load of the power system by using the estimated load and PV
generation of the next day. The PV generation was estimated using historical data analysis,
and the load was derived from the load pattern. Using the estimated data, the charge and
discharge setpoints of the battery can be determined by considering the initial SoC and capacity
of the battery. The effectiveness of the operation method was evaluated using simulations.
According to the simulation results, it was possible to reduce the power peak by 30%.

The PV generation output estimation method is a technique that calculates the amount
of sunlight and maximum output and estimates the next day’s PV output through compari-
son with the actual output. The proposed method can predict the amount of solar power
generation and help power system operation. Moreover, the PV systems can improve
operational efficiency and battery-operated algorithms can reduce load peaks. By reducing
the peak load of the power system, the power demand imbalance can be resolved. The
proposed method has the advantage of increasing power system operating efficiency, which
can be further improved by using batteries.

In future work, we will develop an operation algorithm that considers more practical
factors, such as the charge/discharge efficiency of the battery system and power loss in the
electronic components.
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