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Abstract: Matrix multiplication is ubiquitous in high-performance applications. It will be a significant
part of exascale workloads where power is a big concern. This work experimentally studied the
power efficiency of three matrix multiplication algorithms: the definition-based, Strassen’s divide-
and-conquer, and an optimized divide-and-conquer. The study used reliable on-chip integrated
voltage regulators for measuring the power. Interactions with memory, mainly cache misses, were
thoroughly investigated. The main result was that the optimized divide-and-conquer algorithm,
which is the most time-efficient, was also the most power-efficient, but only for cases that fit in
the cache. It consumed drastically less overall energy than the other two methods, regardless of
placement in memory. For matrix sizes that caused a spill to the main memory, the definition-based
algorithm consumes less power than the divide-and-conquer ones at a high total energy cost. The
findings from this study may be of interest when cutting power usage is more vital than running for
the shortest possible time or least amount of energy.

Keywords: matrix multiplication; power-aware algorithms; Strassen’s divide-and-conquer multiplication;
running average power limit (RAPL); high-performance computing (HPC)

1. Introduction

A frequent and computationally intensive operation in scientific computing and other
high-performance applications is matrix multiplication. It is reasonable to expect it to be a
significant portion of exascale workloads. Power consumption has been a major obstacle
for developing exascale systems for many years [1] and will continue to be a concern in
the future. A point of general motivation for this investigation is the notion that some
algorithms may offer savings in power consumption that may be of value in systems that
use them in a significant portion of typical workloads. In an exascale system, even small
savings in power may be valuable, as the effects may accumulate and amplify in potentially
massive workloads if sufficiently ubiquitous.

Previous work on the power characteristics of other commonplace computational
tasks, such as sorting [2,3] and searching [4], ave provided further encouragement to
examine matrix multiplication. Those studies showed that some methods, not necessarily
the usual choices, could provide a better alternative for power-aware applications. In [3],
experimental results showed that a natural unoptimized mergesort consumes less power
than a highly optimized three-way quicksort. A later study by other researchers supported
that result [5]. Similarly, in [4], a two-way binary search was more power efficient than its
faster three-way counterpart. The researchers identified interesting time-power tradeoffs in
cases of both mergesort and two-way binary search.

Moreover, work in [6,7] showed that the codes executed by a processor are correlated
with the chip temperature. Codes generated under different conditions cause the chip to
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run at different temperatures, which reflect the code and measures inside the processor
designed to protect against overheating. The two chief influences on the code are the
original algorithm and the compilation process. Compilers typically offer rich compilation
options focused on execution speed and code efficiency, not power performance. The
researchers experimented with matrix multiplication code. They proposed optimizations
to reduce overheating based on monitoring the temperature reported by the chip. Their
work served as further motivation for this work, which explores algorithmic aspects.

In this study, we describe a preliminary investigation of the energy and power charac-
teristics of three matrix multiplication algorithms:

1. Definition-based matrix multiplication (will be referred to as D3.0 in this work).
2. Basic divide-and-conquer matrix multiplication by Strassen (D2.8).
3. Optimized divide-and-conquer multiplication (D2.4).

The first is simply the familiar pen–paper systematic row-by-column multiplications.
The difference between the three methods is best illustrated by examining the 2-by-2 case.
The definition-based algorithm performs eight basic multiplications to generate the ele-
ments of the product matrix. The other two perform only seven but combine the products in
different ways. A recursive divide-and-conquer provides a succinct statement. It repeatedly
replaces a product with a combination of seven half-dimension submatrices. The naming
convention intends to remind the reader of an algorithm by its time complexity, which
in each case is a polynomial term with a different degree. For example, the well-known
time efficiency of brute force implementation of the definition of matrix multiplication
is n3, hence the D3.0 tag. For the other two, the degrees are either log2 7 ≈ 2.807 [8] or
≈2.376 [9]. The programs used in the study were based on code from [10,11] adapted to the
experimental environment. The study relied on internal sensors embedded in an HPC-class
processor. Power, energy, and other microarchitectural activity measurements from those
sensors were collected via the Intel running average power limit (RAPL) interface. A recent
study showed that RAPL provided accurate power readings compared to plug power on
the processor used for the experiment [12]. In that report, the terms power and energy were
not used interchangeably.

The objectives of this study, within the general goal of discovering new ways to help
build power-efficient HPC software, are threefold. First, to study the primary matrix
multiplication algorithms that may be considered in high-performance applications and
compare them based on their power efficiency on a credible HPC platform. Second, to
quantify the power cost for each in an HPC context. Third, to help identify the best choices
for applications where power efficiency is a priority. The organization of this paper is as
follows. Section 2 reviews in chronological order interesting related research in the last ten
years, focusing on the methods and the findings. Section 3 introduces the methods and
materials used in this research. Section 4 presents and discusses the results. Finally, some
conclusions and suggested future work are in Section 5.

2. Literature Review

Basmadjian et al. [13] performed redundant multithreading (RMT) on a two-way chip
microprocessor (CMP) in gate-level mode. The failure rate of the method was estimated
through the injection of the fault. The energy consumption and performance cost of the
method were also studied. The simulation and examinations performed resulted in an
RMT error (relative to 4% capacitance) of 91.7%. The RMT technology consumed 20 to
40 times more energy than conventional technology.

Khezripour et al. [14] implemented two different types of electronic refrigeration
and cooling systems, exploring reducing the total energy consumption with a model that
combines a microprocessor and a real cooling system. They utilized thermoelectric coolers
(ETEC) to cool the cache, achieving a modest three development but with the benefit of
integration. In addition, they utilized their cooling system for chip-level cooling, which
saved 25% in energy in contrast to the non-cooled designs.
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Partk and Yang [15] suggested a method to anticipate the number of cores needed
to interconnect multicore processors using scheduling control information. The method
was characterized by low energy consumption without deterioration. It was successfully
applied to a 32-core processor.

Al-Hasib et al. [16] examined the energy competence impact of applying data reuse
conversion to utilize time location on a multicore processor operation with a movement
evaluation algorithm. This method increased the energy competence 5.5 times.

Kodaka et al. [17] comprehensively surveyed approaches for estimating the power
consumption of single-core and multicore processors, virtual machines, and the entire
server.

Dargie and Wen [18] examined a lightweight probability model to evaluate the power
utilization for the entire CPU, network interface cards, and servers. They assessed the
precision of the model via two criteria (custom-made and standard benchmarks) on two
heterogeneous server platforms. The reported error related to the custom benchmark was
minus 1%, while it was minus 12% for the standard scale.

Yuechuan et al. [19] provided an energy examination methodology for C resource
programs. Building on the basic structure of the C process and the C program, this
technique proposed classifying atomic processes and creating a database of power for
atomic processes through experiments. For the sequential statement block, control blocks,
and subblocks, three types of methodologies related to counting the energy were suggested.
The entire C program was turned into a stream tree. The power prediction algorithm for C
was advanced.

Hamady et al. [20] estimated the power used by multicore processor systems when
operating diverse work burdens with a restricted numeral of cores. Their method developed
energy competence by applying a single physical core with ultra-connectivity.

Poon et al. [21] presented an energy-conscious sorting algorithm applying networked
computers with visual hierarchical mapping. This reduced the overall time and data flow,
thus decreasing energy consumption.

Aliaga et al. [22] offered an energy-saving runtime application responsible for simul-
taneously executing ILUPACK on a multicore platform. The findings demonstrated that
decreasing the idle time of the strands saved energy without degrading the performance.

Yildiz et al. [23] evaluated the power utilization of diverse I/O methods. Regardless
of the system architecture or application-specific parameters, the model chose the best I/O
method based on energy competence.

Cebrian et al. [24] applied microarchitecture to correspond to power limitations while
minimizing the processor power consumption. They converted the decentralized CPU
power consumption at the cycle and base block levels into icons to choose among various
microarchitectural methods to save on energy consumption. The energy efficiency was
increased by 11% for this method.

Lastovetsky et al. [25] suggested a new model founded on approaches and algorithms
to reduce the computing time and effort for equal data applications implemented on a simi-
lar multicore mass (Intel E5-2670 Haswell Server). Compared to the customary balanced
workload allocation, it also showed a significant increase in the two applications’ average
and maximum percent of performance and functionality. The findings demonstrated that
performance improvement alone could significantly decrease energy consumption.

Abdel-Hafeez et al. [26] suggested a new mathematical algorithm for sorting and
categorizing the correct elements of the input data on a y basis without a comparison.
They used a custom built-in CMOS circuit (90 nm, Taiwanese semiconductor manufacturer)
with a 1 V power supply to evaluate the work and contrasted it with other device-based
enhanced hybrid classification designs; the findings demonstrated a 50% energy savings.

Gupta et al. [27] suggested a new methodology to distribute the best CPU and GPU
power consumption to mobile platforms within a provided power financial plan. They
assessed their work using simulations and trials on industry-standard advanced mobile
platforms. The findings demonstrated the high productivity and efficient use of the avail-
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able stagnated energy. They effectively achieved the objective of distributing the best power
consumption for the CPU and GPU for the provided power.

Aljabri et al. [3] conducted a comprehensive empirical study on a high-performance
quicksort against basic mergesort, paying careful attention to the experimental environment.
They used a RAPL profiler on a light Linux setup to obtain measurements on an HPC-class
Intel Haswell chip, which supported better instrumentation. They gathered energy (joules),
power (watts), and cache miss information. The work was careful to focus readings on the
experimental code and to eliminate those from other sources. The plain mergesort showed
a clear advantage over the quicksort.

Haidar et al. [28] examined the performance of several kernels and the energy con-
sumption of different hardware elements from a maximum power perspective. They
utilized the PAPI instrument of power tuning to decrease the total power consumption by
30%, and there was no regression in performance in many cases.

Kondo et al. [29] suggested a venture under the name of “BomPP venture” and ad-
vanced numerous energy-saving methods within a specific energy financial plan. They also
provided a recognized resource manager, energy performance simulation, and examined a
framework for future supercomputer systems.

Chandra et al. [30] researched the impact of programming languages related to power
consumption. They used a higher than one programming language (Java, Visual Basic, and
C#) to implement different sorting algorithms (bubble, pick, insert, and quick sort) to find
the most energy-efficient programing language. They discovered that Java was the most
energy-efficient, and the least energy-efficient was Visual Basic.

Ozer et al. [31] applied a machine learning methodology to anticipate energy indicators
and legacy guidelines with potential recurrence settings by utilizing information gathered
at runtime. Then, they used degradation algorithms, creating preprocessed data and
training algorithms to anticipate the best recurrence settings.

3. Methods and Procedures

The underlying objective of determining the power advantage that an algorithm for a
basic computation process may have over its competitors is a critical driver of the method-
ology used in this research. As much noise as possible, i.e., power from environmental
source,s had to be removed to obtain representative sensor values. Eliminating noise lends
credibility to results. A considerable time was spent with the CPU environment to ensure
removal of noise. For the best results, the experimental code was run on one core as a
precaution to guarantee that readings were least affected by on-chip optimizations, internal
power control mechanisms, or temperature effects from neighboring silicon. For a reliable
estimate of the measured values, the experiment was allowed to run as much as needed
until converging on an average value. In this environment, the average stabilized around
240 runs. Execution time was used as a control to confirm that the code worked as expected.

This section outlines the techniques and tools utilized in the research. It is divided
into four parts: the environment of the experiments, the datasets used in the experiments,
the characteristics of the executables that implemented the algorithms, and the profiling
tool used to collect CPU data and related statistics.

3.1. Experimental Environment

This empirical study relies on an experimental setup originally developed for work
described in [3]. The setup and the various measures and settings designed to eliminate
as many factors as possible that could confound measurements in empirical studies, such
as the ones described in this report, are detailed in [32]. This study contributes with a
significant update, however. During the initial runs of the experiments, some environmental
noise was detected in the results. The expected time complexity behavior was somewhat
off. It was determined to be due to the data collection process thread running on multiple
cores instead of the designated one, as had been anticipated. To fix this, we set the affinity
for the OS thread and the process to run on core 0 only, thus eliminating another power
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source that contaminates the measurements. It is vital to ensure the credible of the majority
of the power readings that come from the running code to be able to discuss the underlying
algorithms. This experience highlights the importance of collecting information about
timing in these studies.

An Intel Xeon-class Haswell processor, a popular HPC part that provides credible
readings from its internal sensors [12], was used. The addition of fully integrated voltage
regulators (FIVR) to the Haswell platform provided the reliable, high-resolution measure-
ments required for the experiments in this research. Table 1 lists the specifications of the
machine used for running the experiments. The setup is shown in Figure 1.

Table 1. Experimental platform specifications.

Processor Intel Xeon E5-2680/v3 2.50 GHz 12 cores
Cache L1 data: 12 × 32 KB (8-way set associative)

L1 instruction: 12 × 32 KB (8-way set associative)
L2: 12 × 256 KB (8-way set associative)
L3: 30 MB shared (20-way set associative)

Memory 8 GB
Operating System Linux Ubuntu 16.04 64-bit
Compiler GCC 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)

Figure 1. The experimental setup.

3.2. Test Dataset Generation

Square matrices, sized (dimension) from 50× 50 to 1500× 1500, were generated for
the tests. They were filled by randomly generated 32-bit integer operands ranging in value
from 0 to 9 (int in C++). A dataset was run three hundred times in each case, of which the
first twenty were ignored to bypass the initial thermal state of the system and start from a
consistent point. The remaining runs were enough to obtain a reliable average.

3.3. Executable Files

The algorithm codes, [10,11] for the Coppersmith–Winograd-based D2.4, were reim-
plemented in C++ to fit the experimental framework. Executables were produced by the
GCC 64-bit compiler. Optimizations were disabled to minimize the role of compilation in
shaping the code. With no optimization, the code was expected to be more faithful to the
original algorithms. This measure was crucial for being able to argue about the underlying
method. In addition, we specified in the code the affinity of the executables to processor
core number 0 to avoid context-switching overheads when sampling the CPU sensors. In
particular, the thread and the process were explicitly specified to run on core 0 only.

3.4. Profiling Tools

The Linux perf profiler was used to obtain the measurements. It is available from
the kernel as a command. The powerful tool was developed to reliably read the CPU
sensors based on the RAPL interface by Intel. It was configured to automatically run the
executables from designated folders and systematically record the readings from the CPU.
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4. Results and Discussion

Loading input datasets and reading sensor data while running the algorithm’s code
will consume some power that adds to the measurements. Those unwelcome additions,
considered noise in this research, must be eliminated. To remove that noise, we configured
the profiling tool to read sensor data right after running the executables. Furthermore,
datasets were integrated directly into the executables to avoid the overheads associated
with the loads. These simple measures resulted in measurements that better reflected
the code. Table 2 presents the main results. They show the averages of three hundred
executions for each set size. Randomized datasets ensured that the results were unaffected
by anomalies of a set. A quick look reveals that there were no significant differences in
energy or power consumption for very small matrix sizes. At those sizes, all methods
would have very close runtimes. Time is the main factor affecting energy consumption
in general, which seemed to be the case there. In addition, the readings at dimension
50 seemed off. Runtime at that point was very short and likely the most distorted by
environmental factors. It may be ignored as an outlier.

Table 2. Average energy in millijoules (mJ), power in watts, and percentage difference of D2.4 relative
to the other methods, where negative indicates better performance. The region of best power savings
is marked.

Matrix Energy Power
% D2.4 Advantage

Dimension Energy Power

D3.0 D2.8 D2.4 D3.0 D2.8 D2.4 D3.0 D2.8 D3.0 D2.8

50 39.6 47.2 53.5 13.2 11.8 10.7 35 13 −19 −9
100 132.3 136 141.9 14.7 13.6 12.9 7 4 −12 −5
150 385 402.3 394.8 15.4 14.9 14.1 3 −2 −8 −5
200 1333.8 1312 1271.7 17.1 16.4 15.7 −5 −3 −8 −4
250 3860.6 3698.4 3633.7 19.4 18.4 17.9 −6 −2 −8 −3
300 14,552 10,341.2 7819.5 21.4 20.6 19.5 −46 −24 −9 −5
350 50,020 29,106 18,144 24.4 23.1 22.4 −64 −38 −8 −3
400 166,123 79,679.8 37,861.2 27.1 25.4 23.4 −77 −52 −14 −8
450 559,056 256,522 85,106.8 30.4 29.2 26.3 −85 −67 −13 −10
500 1,771,599 755,158.6 183,804.8 32.1 30.7 28.4 −90 −76 −12 −7
550 5,644,914 2,231,517.6 380,553.6 34.1 32.4 29.4 −93 −83 −14 −9
600 18,422,747 6,576,116.8 833,593.6 37.1 34.1 32.2 −95 −87 −13 −6
650 58,690,200.6 19,493,061.4 1,775,916.8 39.4 36.1 34.3 −97 −91 −13 −5
700 184,560,201 58,058,035.2 3,738,227.2 41.3 38.4 36.1 −98 −94 −13 −6
750 587,196,378 169,003,328.4 8,201,318.4 43.8 41.4 39.6 −99 −95 −10 −4
800 1,825,939,422 493,783,689.6 17,065,369.6 45.4 43.2 41.2 −99 −97 −9 −5
850 5,815,657,278 1,449,803,759 35,870,412.8 48.2 45.3 43.3 −99 −98 −10 −4
900 8,591,024,333 3,852,873,000 75,220,172.8 50.4 47.9 45.4 −99 −98 −10 −5

1000 10,566,721,109 5,256,980,789 156,404,940.8 52.4 50.7 47.2 −99 −97 −10 −7
1100 12,542,732,410 6,813,082,979 327,390,003.2 54.4 52.1 49.4 −97 −95 −9 −5
1200 14,483,051,326 8,602,704,239 677,312,921.6 56.8 54.8 51.1 −95 −92 −10 −7
1300 18,771,993,578 14,159,804,022 2,046,518,886 60.1 71.2 77.2 −89 −86 28 8
1400 21,728,744,360 15,771,824,266 4,214,980,608 64.2 73.4 79.5 −81 −73 24 8
1500 24,178,945,769 19,860,856,069 8,493,583,565 66.8 76.1 80.1 −65 −57 20 5

The power consumption readings were the most interesting in this investigation for
applications where the energy concern was not confined to total consumption. In mobile
and exascale applications, the rate of energy expenditure is also a concern but for different
reasons. For example, how quickly batteries drain is critical for mobiles. Optimizing for low
power can allow making smaller and hence lighter, more practical batteries. Figure 2 tracks
the power consumption that results from using the three methods under investigation
as the computations move in the upper memory hierarchy. For sizes that fit in the cache
memory regardless of the level, both the divide-and-conquer versions outperformed D3.0,
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with the more time-efficient one, D2.4, being consistently better. It consumed up to 14%
and 10% less power than D3.0 and D2.8, respectively, or a respectable average of 11% and
6%. At its best, D2.4 showed an average savings 4.817 W at dimensions 500–1200 (relative
to D3.0). The trend reversed as D2.4, D2.8, and D3.0 progressively, in that order, moved to
the main memory for larger matrix sizes. All cases were estimated to be out of the L3 cache
by matrix dimension 1300, with D2.4 and D2.8 exiting sooner due to their cached recursion
stacks. Power consumption increased in all cases, as expected. However, D3.0 not only
consumed less power but continued to rise steadily, seemingly unaffected by the move
out of the cache. It is worth noting that the high-performance CPU circa 2014 managed to
hold fully in the cache computations of matrix dimensions 1200–1300, composed of 32-bit
elements. It was also astonishing how much power was consumed at relatively moderate
multiplication workloads, as much as a household lightbulb.

Figure 2. Power consumption in watts (W): estimated boundaries for L1, L2, and L3 caches marked
for each case. Note the recursive divide-and-conquer methods spilled earlier due to increased stack
storage overheads.

Figure 3 tracks the total energy used at each matrix dimension. It shows that D2.4
consumed much less energy than the computations based on the other two algorithms. The
differences were drastic, averaging 73% and 65% better than D3.0 and D2.8, respectively. A
closer look in Figure 4 reveals that the trend started early at matrix dimension 250. Both of
the computations based on divide-and-conquer were decisively more energy-efficient. It is
interesting to point out that energy consumption closely followed the runtime trend (see
Figure 5), suggesting a close complexity behavior in each case. A closer look at run times
(see Figure 6) confirms that the energy trend of D2.4 indeed started at matrix dimension
250. The figure seems to indicate that time efficiency had more influence on the overall
energy consumption than being in the cache or the main memory. The transition to the
main memory seemed smooth in all cases.
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Figure 3. Total energy consumption in kJ, where the estimated points of spill out to main memory
are marked.

Figure 4. Total energy consumption in joule (J) for small matrix dimensions, where computation is
estimated to be within L1 cache.



Electronics 2023, 12, 1599 9 of 14

Figure 5. Execution time in seconds. Note the time trend seems to closely follow the total energy
consumption.

Figure 6. A detailed view of execution time (ms) for small matrix dimensions within estimated L1
cache boundary.

4.1. Miss Rate Analysis

Cache misses were expected to be the principal influence on power and energy char-
acteristics. Thus, cache miss data were obtained to see the effects on power and energy
usage. Moreover, the information helped track the computations across the various cache
levels through to the main memory. The miss data could also help infer cache level and
main memory boundaries. Table 3 shows the numbers of cache miss events reported by
the internal counters in the CPU. We remind the reader that the matrix elements and stack
frames, in the case of D2.4 and D2.8, were retained in the same cache. Therefore, the dif-
ferent algorithms should be expected to cause their computations to spill to the following
level of the storage hierarchy at different matrix dimensions.
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Table 3. Average cache miss from reported internal counter data.

Matrix L1 Misses L2 Misses L3 Misses

Dimension D3.0 D2.8 D2.4 D3.0 D2.8 D2.4 D3.0 D2.8 D2.4

50 50,641 24,312 21,643 12,471 10,478 8741 24 17 15
100 48,531 24,781 22,314 12,781 10,241 8914 22 19 17
150 53,152 26,140 23,146 13,784 11,364 9246 24 21 19
200 53,941 27,140 24,691 17,425 12,634 10,656 25 23 20
250 54,631 28,631 25,631 18,421 13,847 11,634 27 27 23
300 55,981 29,140 26,147 22,641 14,852 12,647 29 28 24
350 56,910 30,147 27,931 30,145 15,362 14,654 31 30 26
400 57,931 31,651 28,146 33,652 16,324 15,698 33 31 27
450 59,713 32,950 30,147 41,320 17,422 16,874 35 33 28
500 60,235 33,165 31,460 50,361 21,632 21,698 38 34 30
550 75,321 33,714 32,785 55,617 23,547 22,948 41 36 33
600 79,310 34,601 33,147 70,142 29,841 25,478 43 38 34
650 85,312 33,631 33,910 82,156 35,261 33,695 45 39 39
700 87,932 35,489 34,942 83,149 39,475 35,954 46 41 40
750 91,324 36,631 35,147 90,145 44,361 41,658 49 43 41
800 95,312 37,326 36,147 95,961 55,641 50,647 48 46 43
850 98,123 38,971 37,120 97,447 62,145 59,841 50 49 45
900 99,145 39,361 28,147 99,147 70,456 63,587 52 50 47

1000 99,569 42,698 30,958 99,365 72,941 65,941 58 54 56
1100 914,320 714,327 678,910 916,347 578,912 469,820 60 59 58
1200 4,678,940 3,768,453 2,876,453 1,090,657 1,019,876 1,009,765 5698 4698 3548
1300 3,547,931 4,236,941 5,631,740 1,011,649 1,156,941 1,296,148 70,658 82,658 90,568
1400 7,890,147 8,316,740 12,321,945 1,260,478 1,340,658 1,345,964 150,968 192,689 210,658
1500 11,365,741 12,630,948 20,103,941 1,345,968 1,406,157 1,469,123 185,698 245,698 410,698

In particular, Table 3 gives cache misses averaged over multiple runs for each algorithm
in each cache level. By carefully noting where the misses suddenly spike, estimating cache
and main memory boundaries is possible. According to our analysis, the D3.0 spill point out
of L1 was 200, L2 was 650, and L3 was 1300. D2.8 spilled out of L1 a bit earlier at dimensions
350, L2 at 750, and L3 at 1300. For D2.4, the points were L1 at dimensions 450, L2 at 800,
and L3 at 1300. By matrix dimension 1300, all three were accessing the main memory. The
estimated level boundaries on Figure 2 were made based on the previous analysis.

Hence, D2.4 had the power advantage when the computation was in the on-chip
memory. The trend shifted in favor of D3.0 when accessing the off-chip memory (DRAM)
at matrix dimension 1300. Only the expensive misses from the L3, which are satisfied from
data kept in the main memory, had an impact on the power advantage, strongly indicating
the DRAM effect.

Moreover, a closer inspection of the miss data table reveals that in the matrix dimen-
sions from the smallest up to 1200, D3.0 displayed the sharpest increase in the cache miss
rate, which could account for why it consumed the most power while there. Conversely,
D2.4 had the lowest increase in the cache miss rate, which likely accounted for the lowest
power consumption within the various cache levels. After the inflection point, the D3.0
algorithm, which had the highest power consumption when matrix dimensions were small,
now has the lowest consumption because it had a lower increase in the cache miss rate.
D2.4 had the most power consumption because it showed the highest rise in the cache miss
rate. D2.8 sat in between the other two.

4.2. Main Memory Trends

The columns in Table 3 listing misses in the third level of the cache are the most
relevant to behaviors related to the main memory. A high increase in misses is noted just
before dimension 1300 in D2.4 and D2.8, compared with D3.0, signaling an early spill to
DRAM. Subsequently, the earlier trend of power efficiency in the cache reversed in the
main memory. Miss data suggest that 1300 was when D3.0 spilled. That shift associated
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with the off-chip memory (DRAM) access should not be surprising. According to the
literature [16], access to off-chip memory had a substantial impact on power consumption,
more than on-chip memory. The divide-and-conquer access memory was heavier due to
recursion overheads.

Hence, from matrix dimension 1300 onward, D3.0 commanded a significant edge
in power draw over the time-optimized algorithms D2.4 and D2.8. The overall energy
consumption, however, was significantly lower for the divide-and-conquer algorithms,
signaling the clear advantage gained from their significant time efficiency and reflecting
substantially lower runtimes. It was lower still in D2.4, which was the most aggressively
time-efficient, suggesting that time efficiency is the dominant factor. From an energy
budget viewpoint, D2.4 and D2.8 were the top performers. However, from a power draw
perspective, D3.0 is more appealing.

4.3. Algorithm Behavior

The Strassen method and similar divide-and-conquer algorithms for matrix multipli-
cation have significantly better time complexity than a definition-based one. They function
as follows: a matrix is recursively broken into smaller submatrices and combined in specific
ways to construct a product. The process takes O(log n) more memory for the bigger stack
space [10], which is worse than a simpler nonrecursive D3.0. Generally, divide-and-conquer
may be considered more efficient for small matrix sizes because it is faster, and the space
overhead may be neglected. However, they are not space efficient for large matrices. Power
and energy consumption depend on hardware usage. Hence, from a viewpoint based on
hardware usage, divide-and-conquer may not necessarily be regarded as more efficient
than D3.0 algorithms, especially for large datasets [31,33]. On the other hand, less runtime
should lead to less energy consumption if the power draw (rate) is the same.

The results confirm the memory overhead of D2.8 and D2.4 as computations spill out
of lower caches sooner than D.3.0. They show no significant differences for trivially small
sizes that fit in the L1 cache. However, the faster D2.4 consumes considerably less energy,
all the way through the DRAM. Figure 2 suggests that at least while in the cache, there is
more than just lower runtimes behind the energy trend. D2.4 consistently drew less power
despite needing more memory to complete, suggesting a more efficient use of the memory.
Since the power overheads of the SRAM-based cache are generally similar and may be
assumed to be relatively small, efficiency may be attributed to usage patterns that depend
on how the computation was systemized. It is not entirely clear if the trend reversal in
DRAM was due to nuances of the computations or solely due to the transition to reliance
on DRAM.

According to [34], enlarging the cache size reduces those misses due to capacity.
Therefore, power consumption should be less, and exit from cache memory would occur
later. However, the trend of faster times and increased memory usage would remain the
same. Results generally confirm this but also show that the trends are not solely dependent
on being in the cache.

5. Conclusions

This study investigated a potential advantage that may be traced back to an algorithm
for basic computation in terms of its overall energy cost and how quickly it spends that bud-
get (power being the consumption time rate). The study compared two high-performance
matrix multiplication algorithms (D2.8, D2.4) to a definition-based one (D3.0) as a baseline
on an HPC-class platform. Misses in each cache level were studied to discern effects on
consumption patterns and to examine their impact.

The main finding was an average 11% and 6% power advantage for D2.4 over D3.0
and D2.8, respectively, when the computation was generally within the boundaries of
on-chip (SRAM) caches. It shifted just before all the cases spilled out to the off-chip memory
(DRAM), where D3.0 gained the advantage. Total energy consumption mainly followed
the runtime and seemed unaffected by the memory hierarchy. The most time-efficient,
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D2.4, used drastically less energy, even in DRAM, where its power consumption (the rate)
was the highest. Therefore, it was significant that the power trend reversal happened in
the L3 cache. An effect of the shift to DRAM was evident, but there was a suggestion
of a computation-related influence. This remains, however, inconclusive based on this
one investigation.

In summary, for large matrix sizes relative to the cache configuration, a D3.0 algorithm
could be interesting when the main concern is power, not time. However, D2.4 should
be interesting when both power and total energy are the primary concern, particularly
for computations that could fit in the caches. In the authors’ opinion, the power-energy
performance more than makes up for the functional complexity of the algorithm, even
when compared to basic divide-and-conquer. Optimizing locality has been long known
to result in better execution times. Optimizing the locality should also reduce power
consumption, which our findings seem to support. There was no suggestion in this
preliminary investigation of good opportunities to trade time for power savings, such as
those reported for sorting and searching scenarios [2,4]. Although one could argue for
trading runtime for low power by switching to D3.0 in DRAM, the time and total energy
costs were too terrible to justify. In this study, there was no interplay between power and
time on comparable energy budgets as in those studies. There is evidence to suggest that
a larger cache was better for matrix multiplication in terms of power consumption. This
could be a crucial design factor for high-performance processors routinely including that
computation in their workloads. Finally, the study further highlights the importance of
looking at power separately from energy in some cases. Some results may be of interest
to mobile devices and exascale systems, where the power in watts (energy draw rate) is
crucial. Exascale computing would also benefit from cumulative savings in their massive
workloads, especially when the multiplication could fit in the caches and it is a significant
fraction of the general workload (as much as 4.8 W average savings were measured for
dimensions 500–1200).

The findings from this study should encourage looking into more algorithms, in-
cluding those previously underutilized due to their time performance or complexity. It
could lead to a finer understanding of the factors that affect their energy and power per-
formance or uncover patterns that could help design new ones. Results from different
hardware are needed to make a case for an algorithmic power advantage that should be
demonstrable independently of hardware or at least for hardware in the same architectural
class, particularly investigation of a more modern HPC-class processor platform. It would
also be interesting to examine how each algorithm used the memory to understand and
optimize the power behavior, perhaps by boosting locality. Future research may also devise
a better experimental setup with a minimal system load to eliminate even more sources that
contaminate measurements and amplify the signature of code implementing an algorithm.
Further investigations along those lines may reveal natural algorithmic power efficiency,
i.e., originating in the method.

Author Contributions: Conceptualization, M.S., F.J., N.A., M.A.-H. and O.A.; Data curation, F.J.
and N.A.; Formal analysis, F.J., N.A. and M.A.-H.; Funding acquisition, M.A.-H., M.S. and O.A.;
Investigation, F.J., N.A., M.A.-H., M.S. and O.A.; Methodology, N.A., M.A.-H. and F.J.; Project
administration, N.A., M.A.-H. and O.A.; Resources, M.A.-H., M.S. and O.A.; Software, F.J. and N.A.;
Supervision, M.A.-H.; Validation, F.J., N.A. and M.A.-H.; Visualization, F.J., N.A., M.A.-H., M.S. and
O.A.; Writing—original draft, F.J. and N.A.; Writing—review and editing, M.A.-H., F.J. and N.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2023, 12, 1599 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

HPC High Performance Computing
D3.0 The definition-based matrix multiplication
D2.8 Strassen’s divide-and-conquer matrix multiplication
D2.4 An optimized divide-and-conquer matrix multiplication
CPU Central Processing Unit
GPU Graphics Processing Unit
EXE Executable
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