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Abstract: Fault diagnosis is a powerful tool to reduce downtime and improve maintenance efficiency;
thus, the low management cost of wind turbine systems and effective utilization of wind energy can
be obtained. However, the accuracy of fault diagnosis is extremely susceptible to the nonlinearity
and noise in the measured signals and the varying operating conditions. This paper proposes a
robust fault diagnosis scheme based on ensemble empirical mode decomposition (EEMD), intrinsic
mode function (IMF), and permutation entropy (PE) to diagnose faults in the converter in wind
turbine systems. Three-phase voltage signals output by the converter are used as the input of the
fault diagnosis model and each signal is decomposed into a set of IMFs by EEMD. Then, the PE
is calculated to estimate the complexity of the IMFs. Finally, the IMF-PE information is taken as
the feature of the classifier. The EEMD addresses nonlinear signal processing and mitigates the
effects of mode mixing and noise. The PE increases the robustness against variations in the operating
conditions and signal noise. The effectiveness and reliability of the method are verified by simulation.
The results show that the accuracy for 22 faults reaches about 98.30% with a standard deviation
of approximately 2% under different wind speeds. In addition, the average accuracy of 30 runs
for different noises is higher than approximately 76%, and the precision, recall, specificity, and
F1-Score all exceed 88% at 10 dB. The standard deviation of all the evaluation indicators is lower than
about 1.7%; this proves the stable diagnostic performance. The comparison with different methods
demonstrates that this method has outstanding performance in terms of its high accuracy, strong
robustness, and computational efficiency.

Keywords: wind converter; fault diagnosis; reliability and robustness; complexity features; wind
turbine systems; economic operation

1. Introduction

The renewability and cleanness of wind energy render wind turbine systems sustain-
able solutions to meet the growing energy demand and mitigate the effects of greenhouse
gas emissions [1]. Additionally, the flexible investment scale and short construction period
of wind farms improve the power structure in rural areas and effectively solve agricul-
tural electricity consumption [2]. The wind power system has developed rapidly in the
past decade, and the global installed capacity has been increasing [3]. The global wind
power accounted for 5% of global electricity production in 2021, which is on par with solar
photovoltaic power generation, and is second only to hydropower in renewable energy
generation [4], as shown in Figure 1.

Wind turbine systems are usually installed in coastal island, grassland, offshore, or
remote areas. The high loads and the harsh environmental conditions, such as salt spray,
extreme temperatures, and humidity, make the system more prone to failures. Therefore,
reliability and maintenance costs are critical for the large-scale development of wind
turbine systems. High reliability is conducive to its good operation, improving the effective
utilization of wind energy [5]. The maintenance costs for onshore systems can reach up
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to 15% of the total cost, while those for offshore systems can reach up to 30% [6]. Fault
diagnosis technology is taken as an effective tool to enhance the operation reliability and
debase the maintenance costs [7,8].
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Figure 1. Worldwide wind power share of global electricity production in 2021 [4].

A power converter is an important component in wind turbine systems. Accord-
ing to the statistics, the annual fault rate of wind power converters is as high as 17.5%,
and its downtime percentage reached 14.3% [9]; thus, it is fragile. On the other hand,
a non-recurring cost breakdown from the United Kingdom government shows that the
replacement cost of a wind power converter is very expensive; the wind turbine system
accounts for 33% of the total cost, of which the converter accounts for 8% [10]. Converter
faults not only debase the power quality, but also cause damage to other components
and endanger the power grid security, in turn increasing the production costs [11]. The
high-accuracy fault diagnosis of the converter is essential for efficient fault-tolerant control
and improving the converter operation capability under a fault state [12]. Furthermore,
it enables operators to find faults as early as possible in order to take measures to avoid
catastrophic accidents, and subsequently ensuring the safety of power production [13].
Moreover, it can help maintenance personnel quickly and accurately locate converter faults,
improving maintenance efficiency, reducing maintenance costs, and increasing economic
revenue [14].

Model-based approaches require the establishment of an accurate analytical model
for the converter system using physical knowledge of the system structure and dynamics;
then, the fault results are obtained by analyzing the residual between the estimation and
the actual measurement. A sliding mode integral observer-based fault diagnosis method
was proposed for multilevel converters open-circuit (OC) faults [15]. A nonlinear adaptive
observer-based fault diagnosis method for a modular multilevel converter in a wind turbine
system was proposed to obtain the online detection and location of OC faults [16]. The
real-time fault diagnosis of a single-switch OC and a multi-switch OC of a converter were
obtained based on the Kalman filter [17]. However, their diagnostic accuracy significantly
relies on the precision of the system model and parameters. Signal-based approaches
generate diagnostic variables and thresholds by studying the converter behaviors under
different fault states in order to detect and locate faults. Inverter faults were diagnosed
by detecting positive and negative sequence components [18]. A current trajectory fault
diagnosis strategy was proposed to identify the converter faulty switch, reducing the effects
of random wind speed [19]. The absolute normalized current and adaptive threshold were
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utilized to realize the real-time fault diagnosis of a wind converter [20]. However, they
need prior knowledge of converter systems and are susceptible to thresholds.

Data-driven approaches are becoming popular because accurate converter models
and prior-knowledge of the system are not necessary. They can diagnose faults only by
mathematical analysis of a large number of system data. Fast Fourier transform (FFT) was
used to extract the fault features [21], and then principal component analysis (PCA) was
applied to obtain the low-dimensional features; finally, fault identification was performed
using a relevance vector machine. An FFT-Relative PCA (RPCA)-support vector machine
(SVM) scheme was presented for inverter fault diagnosis [22]. The FFT-PCA-Bayes net-
works (BNs) scheme was proposed to improve the robustness to bias and noise in converter
measurement signals [23]. Discrete wavelet transform (DWT) was utilized to extract the
detail coefficients of normalized currents as fault features, then the artificial neural network
(ANN) was used for fault recognition of the inverter switch [24]. An DWT-approximate
coefficient-energy vector was used as the fault feature [25]. DWT-PCA was presented to
extract the fault features from the voltage signals of the inverter [26]. Feature analysis and
judgment were performed on the signal processed by wavelet transform (WT) [27], then
the back propagation neural network (BPNN) was used to identify OC faults in the wind
power converter. The principal component energy value and proportional coefficient of the
forward current of each phase are used to construct fault features to locate the faulty leg in
the inverter [28]. The normalized average currents were used to generate diagnostic vari-
ables, then the fuzzy logic system (FLS) was used to identify the inverter faulty switch [29].
Concordia transform and random forests were used to diagnose switch OC faults [30].
Predictive current errors were combined with FLS for power switch fault diagnosis [31].

It should be noted that feature extraction is crucial for data-driven approaches, and
effective feature representation can significantly improve the accuracy of the fault diagnosis.
In fact, the fault diagnosis performance greatly depends on the feature extraction technique.
However, the nonlinearity and instability of the wind power converter signal make FFT and
WT unable to guarantee the diagnostic accuracy because FFT produces error information
for nonlinear signals and has no time resolution; WT is susceptible to wavelet basis func-
tions and is non-adaptive. In addition, feature representation, such as detail coefficients,
approximate coefficient, energy vector, Concordia transform, and predictive current errors,
are susceptible to loads, operating conditions, and noise. The application of the signal
denoising technique is an effective scheme to improve the diagnostic accuracy [32], but the
complexity of the diagnostic method increases accordingly.

The topology and configuration of wind power converters continue to evolve due
to the constant emergence of complex high-power machinery. In addition, wind power
converters suffer from numerous stresses and operating condition variations. Therefore, it
is necessary to develop an intelligent fault diagnosis strategy for wind power converters to
meet the requirements of intelligent maintenance and management that does not require
accurate system model and prior knowledge of signal patterns. In addition, this method
should have high reliability and strong robustness, which is essential for practical engineer-
ing applications. The nonlinearity and non-stationarity of wind power converter signals
make it significant to develop a fault diagnosis strategy that can deal with the nonlinearity
and non-stationarity in the signal.

This paper presents a robust adaptive data-driven intelligent fault diagnosis scheme
ensemble empirical mode decomposition (EEMD)-permutation entropy (PE) for power
converters in wind turbine systems. EEMD was used to decompose nonlinear and non-
stationary three-phase voltage signals of a converter into a set of intrinsic mode functions
(IMF). Then, the PE is calculated to estimate the complexity of the IMFs, and the IMF-PE is
taken as the feature of the classifier. The reliability and robustness of the method to wind
speed and noise are further studied. The main contributions are:

• EEMD realizes the adaptive processing of nonlinear and non-stationary signals, and
its application mitigates mode mixing and the effects of noise interference;
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• The complexity measure of PE enhances the robustness against variations in the
operating conditions and signal noise;

• IMF-PE highlights the signal local characteristics;
• The effects of the embedding dimension on the fault diagnosis results are studied, and

the optimal value is selected;
• The scheme has high reliability and robustness and low time consumption. It also has

a stable diagnostic performance.

The rest of this paper is organized as below: Section 2 describes a back-to-back
converter in a doubly fed wind power system, then analyzes its fault modes and the
reliability and robustness issues to be considered. Section 3 proposes a robust intelligent
fault diagnosis scheme: EEMD-PE. Section 4 establishes the simulation model and gives
rigorous comparative analyses. Section 5 concludes with several remarks.

2. Fault Analysis and Diagnostic Requirements for Wind Power Converter
2.1. Fault Analysis

The topology of a doubly fed induction generator (DFIG) wind turbine system is
shown in Figure 2. The main components of the system are the blades, gearbox, generator,
back-to-back converter, and control system. The back-to-back converter consists of a rotor-
side converter and a grid-side converter. The rotor-side converter tracks the maximum
wind energy, thus improving the system operation efficiency. The grid-side converter keeps
Udc constant and prevents grid-side current harmonics. They have the same structure, and
contain three-phase bridge arms with six insulated gate bipolar transistor (IGBT) power
switches. Each switch is controlled by a gate signal; it is turned on when the gate signal
equal to 1 and turned off when the gate signal equal to 0.
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Converter faults can be divided into short-circuit (SC) faults and open-circuit (OC)
faults. SC faults are easy to detect because they usually produce an abnormal overcurrent
and cause system protection. OC faults respond slowly and do not cause the system to
collapse immediately. However, they can cause a high harmonic in the currents, and cause
current offset in the healthy phase and the faulty phase, resulting in generator torque
oscillation and grid power factor reduction. Moreover, long-term OC fault operation can
damage the generators and capacitors. In addition, SC faults will eventually turn into OC
faults due to the action of the circuit breakers and fuses. Thus, when an OC fault occurs in
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the power converter, the operational safety of the wind turbine system can be significantly
affected, and the power production is reduced. Therefore, OC fault diagnosis is necessary
for earlier faults decision and risk reduction.

The internal fault mechanisms of the IGBT open circuit mainly include gate drive
faults and thermal stresses. The external fault mechanisms of the IGBT open circuit mainly
include bond wire lift-off, bond wire rupture, cracking of solder layers, and the drive board
open circuit. These fault mechanisms will ultimately manifest as IGBT OC faults. Different
IGBT OC faults constitute different fault modes. For a grid-side converter, there are 22 fault
modes: when six switches are healthy, that is the normal state; when only one switch is
faulty, six fault modes are formed, namely T1, T2, T3, T4, T5, T6; when the upper and lower
switches of the same bridge arm fail at the same time, three fault modes are formed, namely
T1 and T2, T3 and T4, T5 and T6; when two switches of the same half-bridge are faulty, six
fault modes are formed, namely T1 and T3, T1 and T5, T3 and T5, T2 and T4, T2 and T6,
T4 and T6; when the simultaneous fault of two switches of different half-bridges occurs,
six fault modes are formed, namely T1 and T4, T1 and T6, T3 and T2, T3 and T6, T5 and
T2, T5 and T4. The fault diagnosis of single and dual-IGBT OC faults is studied as it is
rare for three or more IGBTs to fail simultaneously. The input signal selection of the fault
diagnosis model directly affects the diagnostic accuracy. In the wind turbine system, the
output voltage signals Uab, Ubc, and Uca are constant with the load variation, while the
current signals ia, ib, and ic are easily affected. Therefore, the three-phase voltage signals
are selected as the input to the diagnosis method.

2.2. Diagnostic Requirements

The mass configuration of nonlinear power switches and the complex working condi-
tions make the output signals of the wind power converter nonlinear and non-stationary;
thus, the reliability of the fault diagnosis method for the converter requires superior process-
ing capability for nonlinear and non-stationary signals. The wind turbine system involves
high dynamics, rapid changes in the wind speed and frequent changes in the grid load
cause abrupt changes in the torque, so the fault diagnosis method for the power converter
should have strong robustness to wind speed and load. Additionally, the signals measured
by the sensors contain noise, which has a serious impact on the diagnostic accuracy; thus,
the proposed fault diagnosis method should be robust to noise.

3. Fault Diagnosis Method
3.1. The Proposed Fault Diagnosis Method

This section describes in detail the presented fault diagnosis method EEMD-PE to
diagnose OC faults of wind power converters. The diagnosis steps are as follows:

1. Acquiring three-phase line-to-line voltages Uabcg (Uab, Ubc, Uca) from simulation
under both healthy and faulty operating condition, then using them as fault signals to
train and test the proposed fault diagnosis method;

2. Decomposing each fault signal into a group of IMFs using EEMD;
3. Obtain the minimum number of all IMFs of all fault signals and noted as `;
4. Calculating the PE of each IMF as a fault feature to reflect the complexity of the signal.

The IMF-PE feature is expressed as:

HPE = [HPE(IMF1/Uab), HPE(IMF2/Uab), . . . , HPE(IMF`/Uab),
HPE(IMF1/Ubc), HPE(IMF2/Ubc), . . . , HPE(IMF`/Ubc),
HPE(IMF1/Uca), HPE(IMF2/Uca), . . . , HPE(IMF`/Uca)]

5. Diagnosing the faults using SVM. The fault features are marked as fault labels and
further randomly divided into training samples and testing samples, and the ratio of
training samples to testing samples is set as 3:2.
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3.2. Signal Decomposition Using EEMD

Empirical mode decomposition (EMD) is a data-driven adaptive signal processing
technique for nonlinearity and non-stationary signals [33]. It decomposes a complex
signal into a group of simple oscillation modes based on the local feature time scale of the
signal, namely, the intrinsic mode functions (IMFs). An IMF satisfies the EMD conditions
and sifting stop criteria [34], and it is produced by an algorithm rather than a specified
kernel function. Ensemble empirical mode decomposition (EEMD) is a noise assisted EMD
algorithm implemented by performing EMD over the ensemble of signal plus noise [35]. It
can not only mitigate mode mixing in the EMD, but is also robust to noise. The IMFs of
EEMD are obtained by adding white noise to the original signal and averaging the EMD
decomposition results.

For a signal x(t), the steps of the EMD algorithm and EEMD algorithm are described
in Tables 1 and 2, respectively. The block diagrams of the EMD algorithm and EEMD
algorithm are shown in Figure 3.

After the EMD decomposition procedure is ended, a set of IMFs (d1, d2, . . . , dI) and
a residue rI are obtained, and x(t) = ∑I

i=1 di + rI , where (d1, d2, . . . , dI) contains different
signal frequencies, from high to low, rI represents the average trend of x(t).

Table 1. The steps of EMD algorithm.

Steps EMD Decomposition

Step 1 Initialization: r0 = x(t), i = 1
Step 2 Calculate the ith oscillation mode IMFi
Step 2 (a) Set ci(q−1)(t) = ri−1(t), q = 1
Step 2 (b) Calculate the local extremum of ci(q−1)(t)

Step 2 (c) Use cubic spline to interpolate the local extremum to obtain the lower
envelope emin(t) and upper envelope emax(t)

Step 2 (d)
Average the lower and upper envelopes:
ψi(q−1)(t) = (emax(t) + emin(t))/2

Step 2 (e)
Calculate the detailed component: ciq(t) = ci(q−1)(t)− ψi(q−1)(t). If ciq(t)
satisfies IMF conditions, then set di(t) = ciq(t), that is IMFi; else go to step
2 (b) and q = q + 1

Step 3
Obtain residue: ri+1(t) = ri(t)− di(t). If ri+1(t) has more than one
extreme, then go to Step 2 and i = i + 1; else the procedure is ended and
ri+1(t) is residue

Table 2. The steps of EEMD algorithm.

Steps EEMD Decomposition

Step 1
Add white noise to the original signal to obtain a new signal:
xδ(t) = x(t) + wδ(t), δ = 1, 2, . . . , ρ, where ρ is the number of ensemble
realizations, wδ(t) is the δth independent white noise

Step 2 Decompose xδ(t) by EMD and obtain a group of IMFs: di,δ, i = 1, 2, . . . , I,
where I is the number of IMFs, di,δ is the ith IMF of the δth realization

Step 3 Average all realizations to obtain final IMF: di = 1
ρ ∑

ρ
δ=1 di,δ, where

i = 1, 2, . . . , I and δ = 1, 2, . . . , ρ



Electronics 2023, 12, 1597 7 of 19Electronics 2023, 12, x FOR PEER REVIEW 7 of 19 
 

 

Input signal x(t)

Calculate the ith oscillation mode IMFi

No

Start

Yes

i = i+1

q = q+1

Yes

No

Initialization: r0 = x(t), i = 1

( 1) 1( ) ( )i q ic t r t− −= 1q =Set                             ,

( 1) ( )i qc t−Calculate the local extremum of

Interpolate to get  the lower envelope 
and upper envelope

min ( )e t
max ( )e t

( 1)
max min( ) ( ( ) ( )) / 2i q t e t e tψ − = +Average: 

Calculate: ( 1) ( 1)( ) ( ) ( )iq i q i qc t c t tψ− −= −

satisfies IMF conditions?( )iqc t

Set ( ) ( )i iqd t c t= , that is IMFi

1( )ir t+ has more than one extreme?

1( ) ( ) ( )i i ir t r t d t+ = −Calculate:

End

1= ( )I ir r t+Get residue:

 
End

No

Yes

Generate a new noise-added signal: 

Average all realizations to obtain final           :

Input signal x(t)

ρ

and the amplitude of white noise

Initialization: 
the ensemble realizations number    ,

( )w t

1δ =

δ

Set

Perform the      th realization

( ) ( ) ( )x t x t w tδ δ= +

( )x tδDecompose             by EMD

 Obtain a group of IMFs:
, ( 1, 2, , )id i Iδ = 

?δ ρ<

1δ δ= +

iIMF

,
1

1i id dρ δ
δρ =

=  1, 2,...,i I= 1, 2,...,δ ρ=,                      and

Start

 

(a) (b) 

Figure 3. The block diagrams of EMD algorithm and EEMD algorithm. (a) EMD; (b) EEMD. 

After the EMD decomposition procedure is ended, a set of IMFs 1 2( , , , )Id d d  and 

a residue Ir  are obtained, and 1
( ) I i I

i
x t d r

=
= + , where 1 2( , , , )Id d d  contains dif-

ferent signal frequencies, from high to low, Ir  represents the average trend of ( )x t . 

3.3. Feature Extraction Using PE 
Permutation entropy (PE) can quantify the dynamics and uncertainties of the time 

series, and is quite sensitive to changes in nonlinear signals, so it can be treated as a pow-
erful tool for the complexity measurement of nonlinear signals [36]. Due to the simple 
calculation, short time consumption, good real-time performance, and strong robustness 
to noise, PE is used to extract the feature information from the fault signal of the converter. 
The PE estimates the complexity of the signal by comparing the neighboring values. For a 
given signal ( ) { (1), (2), , ( )}u n u u u N=  , the PE is calculated as follows: 

Figure 3. The block diagrams of EMD algorithm and EEMD algorithm. (a) EMD; (b) EEMD.

3.3. Feature Extraction Using PE

Permutation entropy (PE) can quantify the dynamics and uncertainties of the time
series, and is quite sensitive to changes in nonlinear signals, so it can be treated as a
powerful tool for the complexity measurement of nonlinear signals [36]. Due to the simple
calculation, short time consumption, good real-time performance, and strong robustness to
noise, PE is used to extract the feature information from the fault signal of the converter.
The PE estimates the complexity of the signal by comparing the neighboring values. For a
given signal u(n) = {u(1), u(2), . . . , u(N)}, the PE is calculated as follows:

Step 1. Reconstruct the phase space of the signal, and each subsequence is represented as
X(i) , then the results can be obtained:

X(i) = {u(i), u(i + τ), . . . , u(i + (m− 1)τ)}
i= 1, 2 , . . . , N − (m− 1)τ

(1)
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where, m is the embedding dimension, τ is the time delay.
Step 2. Rearrange each X(i) in ascending order:

u(i + (j1 − 1)τ) ≤ u(i + (j2 − 1)τ) ≤ . . . ≤ u(i + (jm − 1)τ) (2)

where j1, j2 , . . . , jm is the location index of the elements in X(i) after reordering. If
two values are equal, they are sorted according to the value of jη . In this way, each
X(i) is mapped to a symbol sequence:

λ(s) = (j1, j2 , . . . , jm) (3)

which is one of the m! permutations, and s= 1, 2 , . . . , k, k ≤ m!.
Step 3. The probability distribution of all the symbol sequences is expressed as P1, P2 , . . . , Pk,

and Pk is defined as:

Pk =
f (k)

N − (m− 1)τ
(4)

where f (k) is the occurrence times of the k-th symbol sequence.
Step 4. PE is defined as:

H(m, τ) = −
k

∑
j=1

Pj ln Pj (5)

when Pj =
1

m! , there is no repetition in the symbol sequence, the signal complexity is
the highest and PE obtains the maximum, which is ln(m!).

It should be noted that m and τ are two major parameters affecting the PE. If m is too
small, the permutation space will be very small, resulting in a few different states, so the
scheme is invalid; in theory, it is better to take the larger value of m, as long as the length of
the signal is proportional to m!. However, the larger the m is, the higher the computational
complexity and the more time-consuming it will be. The purpose of the research is to detect
the changes in the signal, so it is inappropriate for m to be too large. In addition, the value
of τ is required to be greater than or equal to 1.

4. Simulation Results and Discussion
4.1. Simulation Platform

In order to evaluate the performance of the proposed fault diagnosis scheme, EEMD-
PE, the DFIG wind power system simulation model is established using MATLAB software,
and the converter model is shown in Figure 4. Some of the main parameters are shown in
Table 3.

Table 3. Main parameters of the simulated converter model.

Quantity Value Quantity Value

Rated voltage 575 V Stator leak inductance 0.18 pu
Rated power 1.5 MW Rotor leak inductance 0.16 pu
Pole pairs number 3 Stator resistance 0.023 pu
Magnetizing inductance 2.9 pu Rotor resistance 0.016 pu



Electronics 2023, 12, 1597 9 of 19

Electronics 2023, 12, x FOR PEER REVIEW 9 of 19 
 

 

Magnetizing inductance 2.9 pu Rotor resistance 0.016 pu 

 
Figure 4. Simulation model of the converter. 

The IGBT OC fault is obtained by removing the corresponding gate signal, for exam-
ple, an OC fault is inserted into T1 by setting the gain gg1 to 0. Measure the three-phase 
line-to-line voltage Uabcg (Uab, Ubc, Uca) of the converter under different fault states; the 
results are shown in Figure 5, and it can be seen that the OC fault in the switch can cause 
the distortion of the Uab, Ubc, and Uca signals, so the converter fault modes can be identified 
by analyzing the Uab, Ubc, and Uca signals. 

  
(a) (b) 

Figure 5. Simulated line-to-line voltage Uabcg (Uab, Ubc, Uca). (a) Normal state; (b) OC fault in T1. 

Sample for 1 s and the sampling frequency is 10 kHz, so the size of sample is 10,000. 
For assessing the robustness to wind speed changes of the proposed fault diagnosis 
scheme, the voltage signals Uab, Ubc, and Uca of the converter are measured when the wind 
speed changes from 10 m/s to 15 m/s with the interval of 0.0625 m/s. Thus, there are 81∗3
∗22 = 5346 samples in 22 fault modes. 

4.2. Results of EEMD-IMF-PE Feature 

For the 22 fault modes, the PE calculation results of the EEMD-IMFs with different 
embedding dimensions m are shown in Figure 6 (set time delay τ = 1). In addition, the 
local results are amplified for the convenience of comparison. It can be seen from Figure 
6 that the PE values of IMF1 in different fault modes are significantly different when m = 
9, while they are similar when m = 3, and the results have the same phenomenon for IMF2, 

Figure 4. Simulation model of the converter.

The IGBT OC fault is obtained by removing the corresponding gate signal, for example,
an OC fault is inserted into T1 by setting the gain gg1 to 0. Measure the three-phase line-to-
line voltage Uabcg (Uab, Ubc, Uca) of the converter under different fault states; the results
are shown in Figure 5, and it can be seen that the OC fault in the switch can cause the
distortion of the Uab, Ubc, and Uca signals, so the converter fault modes can be identified
by analyzing the Uab, Ubc, and Uca signals.
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Sample for 1 s and the sampling frequency is 10 kHz, so the size of sample is 10,000.
For assessing the robustness to wind speed changes of the proposed fault diagnosis scheme,
the voltage signals Uab, Ubc, and Uca of the converter are measured when the wind
speed changes from 10 m/s to 15 m/s with the interval of 0.0625 m/s. Thus, there are
81∗3∗22 = 5346 samples in 22 fault modes.

4.2. Results of EEMD-IMF-PE Feature

For the 22 fault modes, the PE calculation results of the EEMD-IMFs with different
embedding dimensions m are shown in Figure 6 (set time delay τ = 1). In addition, the local
results are amplified for the convenience of comparison. It can be seen from Figure 6 that
the PE values of IMF1 in different fault modes are significantly different when m = 9, while
they are similar when m = 3, and the results have the same phenomenon for IMF2, IMF14,
IMF15, IMF27, and IMF28. In addition, the PE values of IMF6-IMF13 (IMF19-IMF26, and
IMF32-IMF39) in different fault modes have a more significant difference when m = 9 than



Electronics 2023, 12, 1597 10 of 19

when m = 3. Therefore, the PE feature with a large value of m is superior for distinguishing
different converter fault modes.
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4.3. Results of Classification

In order to analyze the effects of the embedding dimension m on the fault diagnosis
results, the comparison of the SVM classification results is presented under different values
of m. First, 10 dB and 20 dB white noise is added into the voltage signal with different wind
speeds, respectively. The training samples and testing samples are randomly divided, and
the training-to-testing ratio is 3:2. The value of m changes from 3~9, and the set time delay
τ = 1. The effects of m on the average accuracy of 30 runs are shown in Figure 7a, and the
effects of m on the calculation time of the PE are shown in Figure 7b. In order to show the
results more clearly, the specific coordinate values of the curves are shown in Figure 7a,b.
Since the calculation time of PE is close at 10 dB and 20 dB, only the specific coordinate
value of the curve at 10 dB is shown in Figure 7b.
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Figure 7. Effects of m on diagnostic results. (a) Accuracy; (b) Time-consuming.

As shown in Figure 7a, the diagnostic accuracy is significantly improved with the
increase in m, and the improvement becomes not obvious when m exceeds 6. It can be seen
from Figure 7b that the larger the value of m, the longer the calculation time of PE, and
the calculation time increases greatly when m exceeds 6. In particular, for 10 dB, the PE
calculation time under m = 9 is 121 times longer than that under m = 6 (53.4/0.44 = 121),
but the diagnostic accuracy under m = 9 is only 0.51% higher than that under m = 6
(88.63 − 88.12 = 0.51); in addition, Figure 7b is only a comparison of the calculation time
for the Uab of a normal state, so the time consumption for all samples 22∗3∗81 = 5346 is
extremely heavy in m = 9; thus, m = 9 is uneconomical. Similarly, the diagnostic accuracy
under m = 7 is only 0.13% higher than that under m = 6, while the calculation time is
increased by about 5 times.

In order to evaluate the stability of the method, the diagnosis results of 22 faults at
20 dB noise under different m values are shown in Table 4, and the average value and
standard deviation are also provided.
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Table 4. The diagnosis results of 22 faults.

Fault Mode
Accuracy (%)

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

Normal 96.8750 100 100 100 100 100 100

T1 90.6250 90.6250 93.7500 100 93.7500 96.8750 96.8750

T2 100 100 100 96.8750 100 100 100

T3 90.6250 90.6250 100 93.7500 96.8750 96.8750 100

T4 81.2500 84.3750 90.6250 93.7500 93.7500 96.8750 96.8750

T5 93.7500 93.7500 100 100 100 100 100

T6 100 90.6250 100 100 96.8750 100 100

T1T2 100 100 100 100 100 100 100

T3T4 100 100 100 100 100 100 100

T5T6 96.8750 96.8750 100 100 100 100 100

T1T3 87.5000 90.6250 87.5000 96.8750 100 100 93.7500

T1T5 96.8750 84.3750 96.8750 100 100 96.8750 100

T3T5 93.7500 100 90.6250 100 96.8750 96.8750 96.8750

T2T4 93.7500 96.8750 100 96.8750 100 96.8750 100

T2T6 96.8750 96.8750 100 96.8750 96.8750 96.8750 96.8750

T4T6 96.8750 100 100 100 100 100 100

T1T4 100 100 100 96.8750 100 96.8750 100

T1T6 93.7500 100 100 96.8750 96.8750 100 100

T3T2 71.8750 90.6250 93.7500 100 96.8750 93.7500 96.8750

T3T6 100 100 100 96.8750 100 100 100

T5T2 93.7500 100 100 96.8750 96.8750 100 96.8750

T5T4 93.7500 96.8750 100 100 100 100 100

Average 94.0341 95.5966 97.8693 98.2955 98.4375 98.5795 98.8636

Standard deviation 6.8131 5.2521 3.9039 2.0968 2.1019 1.8619 1.8159

As shown in Table 4, the average accuracy of 22 faults at m = 5 (97.8693%) is signifi-
cantly higher than that at m = 3 (94.0341%) and m = 4 (95.5966%). When m is greater than 6,
the average accuracy gradually increases, but the increase is not obvious. In addition, when
m exceeds 6, the standard deviation of the accuracy of the 22 faults can be maintained at
about 2%, which is significantly lower than 6.8131% at m = 3, 5.2521% at m = 4, and 3.9039%
at m = 5. As a result, when m exceeds 6, high diagnostic accuracy can be obtained, and the
diagnostic results have a more stable performance.

In summary, the calculation time of PE increases exponentially after m exceeds 7,
while the diagnostic accuracy and stability performance are already quite high at m = 6.
Thus, it is effective and economical to select m as 6. Therefore, when m = 6, the proposed
fault diagnosis method has an outstanding performance in terms of its high accuracy, high
stability, and low time consumption.

4.4. Analysis of Robustness

The classification results are presented with different wind speeds to assess the robust-
ness of the proposed method to wind speed: 20 dB, 15 dB, 10 dB, and 5 dB white noise is
added into the voltage signal at different wind speeds, respectively. Set the embedding
dimension m = 6 and time delay τ = 1. The training samples and testing samples are
randomly divided as 3:2. Running 30 times, the results of some of the evaluation indicators



Electronics 2023, 12, 1597 14 of 19

(accuracy, precision, recall, F1-Score, specificity, false alarm rate (FAR), and missing alarm
rate (MAR)) of the proposed method for all noise conditions are recorded, as shown in
Table 5, including the minimum, maximum, average, and standard deviation.

Table 5. The diagnostic results of the proposed method for all noise conditions.

Noise Conditions Stability
Evaluation Indicators (%)

Accuracy Precision Recall F1-Score Specificity FAR MAR

20 dB

Minimum 96.8750 96.9758 96.8750 96.8654 99.8512 0.0541 1.1364

Maximum 98.8636 98.8965 98.8636 98.8629 99.9459 0.1488 3.1250

Average 97.8220 97.9108 97.8220 97.8186 99.8963 0.1037 2.1780

Standard deviation 0.5735 0.5387 0.5735 0.5756 0.0273 0.0273 0.5735

15 dB

Minimum 94.3182 94.5155 94.3182 94.3085 99.7294 0.0947 1.9886

Maximum 98.0114 98.0806 98.0114 98.0086 99.9053 0.2706 5.6818

Average 96.3021 96.4387 96.3021 96.2939 99.8239 0.1761 3.6979

Standard deviation 0.8616 0.8381 0.8616 0.8660 0.0410 0.0410 0.8616

10 dB

Minimum 85.7955 86.2573 85.7955 85.8105 99.3236 0.4532 9.5170

Maximum 90.4830 90.7074 90.4830 90.4658 99.5468 0.6764 14.2045

Average 88.1203 88.5073 88.1203 88.0924 99.4343 0.5657 11.8797

Standard deviation 1.0354 1.0319 1.0354 1.0320 0.0493 0.0493 1.0354

5 dB

Minimum 72.3011 72.6030 72.3011 72.2741 98.6810 1.0011 21.0227

Maximum 78.9773 79.5929 78.9773 78.9605 98.9989 1.3190 27.6989

Average 75.9375 76.4467 75.9375 75.8553 98.8542 1.1458 24.0625

Standard deviation 1.6764 1.7411 1.6764 1.6651 0.0798 0.0798 1.6764

From Table 5, for 20 dB, the average diagnostic accuracy can reach 97.8220%, and
the standard deviation of accuracy for 30 runs is 0.5735%, so the proposed method has
an excellent ability to classify the overall samples correctly and has a stable performance.
Furthermore, the high average precision (97.9108%) and high average recall (97.8220%),
respectively, reflect the outstanding ability to correctly predict positive samples and the
effectiveness of the method to identify positive labels. The low standard deviation of
the precision (0.5387%) and low standard deviation of the recall (0.5735%) indicate the
stability of the diagnostic performance. The F1-Score is the harmonic mean of the precision
and recall to balance the single-dimensional metrics defects of the two indicators, and it
achieves a 97.8186% high performance, and the standard deviation is only 0.5756%. Its high
average specificity (99.8963%) and its low standard deviation (0.0273%) indicate that this
method can stably and correctly predict negative samples. In addition, the average FAR
(0.1037%) and average MAR (2.1780%) are also very low, with small standard deviations.
These results show that the proposed fault diagnosis method can accurately and stably
diagnose switch faults at 20 dB signal noise; therefore, it has an excellent robustness to
wind speed changes.

It also can be seen from Table 5 that the average accuracy for all noises is higher
than about 76%, and it reaches 88.1203% at 10 dB and 96.3021% at 15 dB. In addition, its
average precision, average recall, and average F1-Score all exceed 88% at 10 dB, and the
average specificity even exceeds 99%. The average FAR and average MAR for all noises are
below about 0.5% and 11%, respectively. Thus, this method has strong noise robustness. In
addition, the standard deviation of all the evaluation indicators for all noises is lower than
about 1.7%, so this method has a stable diagnostic performance for all noises.

To summarize, this method not only has strong robustness to wind speed, but also has
an excellent and stable performance in the noise environment.
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4.5. Comparison of Different Methods

This section compares the proposed fault diagnosis method, EEMD-PE, with differ-
ent methods to prove the excellence of the proposed method. The different methods are
compared in Figure 8 to highlight the advantages of EEMD, including EEMD-PE, EMD-PE,
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-
PE [37], improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN)-PE [38], and direct PE feature extraction (represented as direct PE). The diag-
nostic accuracies (average of 30 running) of the different methods are shown in Figure 8a,
and the calculation times of the different methods are shown in Figure 8b.
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As shown in Figure 8a, although the diagnostic accuracy of the direct PE method
exceeds 60% at 20 dB, it is not satisfactory at other noise levels (15 dB, 10 dB, 5 dB), indicating
that the PE feature can represent the converter fault modes, but is highly susceptible to
signal noise. In addition, the accuracy of the EEMD-PE method, the CEEMDAN-PE method,
and the ICEEMDAN-PE method is significantly more improved than that of the EMD-PE
method and the direct PE method, indicating that the EEMD, CEEMDAN, and ICEEMDAN
algorithms not only overcome the disadvantage of the mode mixing of EMD, but also has
strong robustness to signal noise. It also can be seen from Figure 8a that the accuracy of
the EEMD-PE method is the highest, which is close to 90% at 10 dB and 100% at 20 dB; in
addition, the decomposition time of EEMD is significantly lower than that of CEEMDAN
and ICEEMDAN at all noise levels, as shown in Figure 8b, and this is only a comparison
of the decomposition time for the Uab of a normal state, so CEEMDAN and ICEEMDAN
are time-consumption heavy for all 5346 samples. The results show that the EEMD-PE
method not only has the highest diagnostic accuracy, but also consumes less time. Thus,
the EEMD-PE method is optimal.

The different methods are compared in Figure 9 to highlight the advantages of PE, in-
cluding EEMD-PE, EEMD-approximate entropy (AE), EEMD-sample entropy (SE), EEMD-
fuzzy entropy (FE), and EEMD-norm entropy (NE) [11]. The diagnostic accuracies (average
of 30 running) of the different methods are shown in Figure 9a, and the calculation times of
the different methods are shown in Figure 9b.
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From Figure 9a, the diagnostic accuracy of the EEMD-PE method and the EEMD-NE
method are both above about 95% (15 dB) and 70% (5 dB), significantly higher than that of
the EEMD-AE method, EEMD-SE method and EEMD-FE method. Figure 9b shows that the
calculation of the IMFs-PE feature and IMFs-NE feature is very fast, and the calculation
time is much lower than that of the IMFs-FE feature, IMFs-AE feature, and IMFs-SE feature.
It should be noted that this is only a comparison of the calculation time for the Uab of
a normal state, so the calculation speed of the IMFs-PE feature and IMFs-NE feature is
perfect for all 5346 samples. Therefore, the performance of the EEMD-PE method and
EEMD-NE method is better than that of the EEMD-AE method, EEMD-SE method and
EEMD-FE method. In addition, the diagnostic accuracy of the EEMD-PE method (75%)
is higher than that of the EEMD-NE method (70%) for the signal-to-noise ratio of 5 dB.
Therefore, the EEMD-PE method is more suitable for the high-noisy environment than the
EEMD-NE method.

In summary, the accuracy of the EEMD-PE method is optimal at all noise levels, and
the accuracy is acceptable; additionally, its calculation speed is fast. These results show
that the EEMD-PE method is preferred in terms of accuracy, robustness to noise, and
time consumption.

4.6. Comparison with Previous Schemes

In order to highlight the advantages of the proposed scheme, it is compared with
similar ones in the literature, as shown in Table 6. The average accuracy and standard
deviation of the accuracy under different noise conditions are provided to highlight the
high robustness and stability of the proposed scheme. In order to prove the fairness of the
comparison, the diagnostic fault types, training to testing ratio, and the number of runs of
each scheme are also given in Table 6.

From Table 6, the diagnostic average accuracy of the EEMD-PE scheme in 20 dB
(97.8220%) and in 10 dB (88.1203%) are all higher than that of the MEMD-FE scheme [12]
in 20 dB (92.1477%) and in 10 dB (84.2338%), indicating that the EEMD-PE scheme has
stronger robustness to noise than MEMD-FE scheme. In addition, the standard deviation
of the accuracies for the EEMD-PE scheme in 20 dB (0.5735%) and in 10 dB (1.0354%) are
significantly lower than that of the MEMD-FE scheme [12] in 20 dB (1.3312%) and in 10 dB
(1.7167%); thus, the EEMD-PE scheme is more stable than the MEMD-FE scheme. Although
the average accuracy of the EEMD-PE scheme is slightly lower than that of the EEMD-NE
scheme [11] at 20 dB, 15 dB, and 10 dB, it is significantly higher at 5 dB (75.9375%) than
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that of the EEMD-NE scheme at 5 dB (71.8040%). As a result, the EEMD-PE scheme is more
robust to large noise than the EEMD-NE scheme, and is more suitable for applications in
large noise environments.

Table 6. Comparison with previous schemes.

Scheme Fault Types Training to
Testing Ratio Number of Runs Noise

Conditions
Average

Accuracy (%)
Standard Deviation

of Accuracy (%)

EEMD-PE 22 OC faults 3:2 30

20 dB 97.8220 0.5735

15 dB 96.3021 0.8616

10 dB 88.1203 1.0354

5 dB 75.9375 1.6764

MEMD-FE [12] 22 OC faults 3:2 30

30 dB 95.5758 1.9344

20 dB 92.1477 1.3312

10 dB 84.2338 1.7167

EEMD-NE [11] 22 OC faults 3:2 30

20 dB 99.2756 -

15 dB 97.8598 -

10 dB 90.0758 -

5 dB 71.8040 -

4.7. Discussion

This scheme is a data-driven fault diagnosis technology that requires only a large
amount of data. It diagnoses faults through mathematical techniques, facilitating transplan-
tation to other topics. As analyzed above, this scheme is suitable for processing nonlinear
and non-stationary signals and has strong robustness and stability against large noise. This
characteristic makes this scheme very suitable for applications in large noise and nonlinear
situations, such as mechanical fault diagnosis.

5. Conclusions

A robust fault diagnosis scheme based on ensemble empirical mode decomposition
(EEMD), the intrinsic mode function (IMF), and permutation entropy (PE) is proposed in
this paper for converter fault diagnosis in wind turbine systems. Three-phase voltages are
used as the input of the fault diagnosis model. The effects of the embedding dimension
m on the fault diagnosis results are studied, and the optimal m is selected. The EEMD
algorithm addresses nonlinear signal processing in wind power systems and improves
the robustness to wind speed changes, and the accuracy can reach approximately 98.30%
at 20 dB; additionally, the precision, recall, F1-Score, specificity, FAR and MAR all have
excellent performance when in variable wind speed. The diagnostic accuracy exceeds
approximately 76% at 5 dB as the PE estimates the complexity of the fault signal and
increases the robustness against signal noise. The standard deviation of all the evaluation
indicators for different noises lower than about 1.7% demonstrates that the method has
good stability. In addition, the scheme has low computation and time consumption and is
suitable for real-time applications. Through the full demonstration and comparison of the
different methods, this scheme is more suitable for high-noisy environments and real-time
applications, so it is more available for practical applications.

For future study, it will be interesting to further analyze the fault features of power
converters in wind turbine systems and explore more reliable and robust feature extraction
methods under more realistic working conditions.
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