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Abstract: With the rapid development of the electric vehicle (EV) industry, charging facilities for
electric vehicles are gradually improving, thus meeting the demand for fast and safe charging. This
paper comprehensively describes the current development status and future development trend of
EVs and their charging infrastructure and analyzes in detail the EV fast-charging system architecture
according to the AC/DC coupling configuration. The topologies and control techniques of the front
AC/DC converter and rear DC/DC converter for the charging system are discussed, providing a
reference for the future design of hundred-kilowatt level and above fast-charging systems for EVs. In
addition, this paper summarizes the EV charging interface and the charging specifications applicable
to the hundred-kilowatt power fast-charging system, as well as the impact of fast charging on power
batteries, and emphasizes that high-power fast-charging technology is an inevitable trend for the
future development of electric vehicles.

Keywords: electric vehicle; fast-charging system; AC/DC converter; DC/DC converter; charging
control technology

1. Introduction

In recent years, people’s awareness of resource conservation and environmental pro-
tection has gradually increased. EVs have progressively become the main development
direction of the automotive industry due to their low pollution and low cost of use. They
are also driving the development of other sectors in their industrial chain [1]. Compared to
traditional fuel vehicles, EVs have three obvious advantages: their energy has two-way
mobility, the electronic technology supporting them is mature and specialized, and they
have low carbon emissions [2].

In this context, governments and automotive companies are gradually reducing the
production of conventional fuel vehicles and shifting their R&D focus to EVs. As a result,
annual EV sales have rapidly increased. In 2021, global sales of EVs reached 6.6 million
units, which was double the number sold in 2020. In 2012, only 120,000 EVs were sold
worldwide, whereas more than that number were sold on a weekly basis in 2021 [3].
Figure 1 shows the global EV inventory from 2010 to 2021. In 2021, the total global EV
inventory was over 16.5 million, which was three times the number in 2018. By 2030, global
EV stock is expected to exceed 150 million [4].

The industrialization of EVs is a system project and the charging infrastructure is
one of the most important links. The charging system is an integral part of the charging
infrastructure and provides energy replenishment for the operation of EVs in addition to
being an important support system for EVs [5]. Charging systems need to be compatible
with the battery system of EVs and are classified into slow-charging systems and fast-
charging systems based on their power. Slow-charging systems are typically capable of
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outputting 3–4 kW of power and take about 8–10 h to fully charge a battery. They are
mostly used for charging at night and utilize a home’s grid power. Fast-charging systems
can output hundreds of kilowatts of power and the charging time is usually less than one
hour. Additionally, they can be installed in public places or gas stations [6].
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Figure 1. Global electric vehicle inventory (2010–2021). 

The industrialization of EVs is a system project and the charging infrastructure is one 
of the most important links. The charging system is an integral part of the charging infra-
structure and provides energy replenishment for the operation of EVs in addition to being 
an important support system for EVs [5]. Charging systems need to be compatible with 
the battery system of EVs and are classified into slow-charging systems and fast-charging 
systems based on their power. Slow-charging systems are typically capable of outputting 
3–4 kW of power and take about 8–10 h to fully charge a battery. They are mostly used for 
charging at night and utilize a home’s grid power. Fast-charging systems can output hun-
dreds of kilowatts of power and the charging time is usually less than one hour. Addition-
ally, they can be installed in public places or gas stations [6].  

Long-range capabilities and shorter charging times have become the main focus of 
technological innovation for EVs, and the availability and stability of the corresponding 
public charging facilities are crucial to their success [7]. Figure 2 shows the distribution of 
public EV charging systems by power level and region from 2015 to 2021. China has about 
85% of the worldʹs fast-charging systems and 55% of the worldʹs slow-charging systems. 
In 2021, the number of fast-charging systems in China reached about 470,000 units, an 
increase of 44% from 2020. Similarly, the number of slow-charging systems in China in 
2021 reached about 680,000 units, which was 35% more than in 2020 and more than four 
times the number in 2018. There are about 22,000 fast charging systems in the United 
States, nearly 60% of which are Tesla supercharging systems [8,9]. 
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Figure 2. Public electric vehicle charging system by power level and region (2015–2021). (a) Publicly 
available fast chargers. (b) Publicly available slow chargers. 

Figure 1. Global electric vehicle inventory (2010–2021).

Long-range capabilities and shorter charging times have become the main focus of
technological innovation for EVs, and the availability and stability of the corresponding
public charging facilities are crucial to their success [7]. Figure 2 shows the distribution of
public EV charging systems by power level and region from 2015 to 2021. China has about
85% of the world’s fast-charging systems and 55% of the world’s slow-charging systems.
In 2021, the number of fast-charging systems in China reached about 470,000 units, an
increase of 44% from 2020. Similarly, the number of slow-charging systems in China in
2021 reached about 680,000 units, which was 35% more than in 2020 and more than four
times the number in 2018. There are about 22,000 fast charging systems in the United States,
nearly 60% of which are Tesla supercharging systems [8,9].
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Figure 2. Public electric vehicle charging system by power level and region (2015–2021). (a) Publicly 
available fast chargers. (b) Publicly available slow chargers. 
Figure 2. Public electric vehicle charging system by power level and region (2015–2021). (a) Publicly
available fast chargers. (b) Publicly available slow chargers.

With the development of fast-charging technology, experiments have shown that
the theoretical charging time of batteries can be shortened to as little as 3 min. A large
number of 100 kW power charging systems connected to the grid at the same time can
significantly impact the grid, including the power quality (harmonic current, voltage offset,
voltage imbalance at the incoming nodes), grid economy (line and transformer losses), and
operational stability (grid waveform, peak load, electrical facility life) [10–13]. Increasing
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the load capacity of the distribution grid can fundamentally solve these problems but is
costly. Numerous scholars in China and elsewhere have conducted extensive research on
designing fast-charging systems that can meet the regional base grid’s demands of 100 kW
power., Their research includes circuit topology, operation control of charging systems, and
the proposal of new topologies. They have also explored the incorporation of renewable
energy systems and battery storage systems, as well as the use of Vehicle-to-Grid (V2G)
technology and the corresponding control strategies to ensure that fast-charging systems
can meet short-time high-power load demand [14,15]. The research mainly focuses on
whether the circuit topology can meet the power level of the charging station, voltage and
current entry standards, and other requirements. EV charging systems can be divided into
on-board and off-board types, each with unidirectional and bidirectional power mobility.
This paper will mainly discuss the circuit topology and related control methods suitable for
the 100 kW power level.

Numerous references related to fast-charging technology have been compiled and
studied. In [16,17], the current state of research regarding fast-charging schemes and
electrical topologies was analyzed. In [17], the fast-charging station’s overall architecture
and control strategies were studied and analyzed at the University of Naples as an example
of a charging unit. The AC/DC and DC/DC power converters for fast-charging systems
were analyzed in detail in [18–21]. A resonant DC/DC converter with a modular parallel
structure was proposed in [19], which can increase the power rating and reliability of
the charging system. The fast-charging system can be divided into unidirectional and
bidirectional charging systems according to the power flow direction. A bidirectional DC
fast-charging system was proposed in [20], which uses a dual-active-bridge (DAB) converter
with blocking capacitors and an active front-end converter and can realize bidirectional
power flow between EVs and the grid. Traditional low-frequency transformers are widely
used in power systems. However, because their use increases the weight and cost of
charging systems and generates problems such as grid current harmonics, solid-state
transformer (SST) technology has gradually begun to be applied in fast-charging systems.
The architecture of SST-based ultra-fast-charging systems was introduced in [22–24]. The
authors of [24] discussed current state-of-the-art fast-charging systems, the current status
of the charging infrastructure, power converter topologies suitable for medium-voltage
ultra-fast-charging stations, and the integration of renewable energy systems and energy
storage systems. A fast-charging system consisting of a charging power converter system
and a battery energy storage system was proposed in [25], which can meet the requirements
for the fast-charging of high-power EVs. In order to reduce the impact of EV fast-charging
stations on the grid, a two-stage centralized method was proposed in [26] to balance the
power mismatch between the predicted and real-time demands of the medium-voltage grid
and reduce grid losses. A two-stage model was proposed in [27] for solving the charging
infrastructure design problem. The model considers the distribution grid capacity to
maintain voltage stability and determine the optimal location and capacity with minimum
deployment costs.

This paper first describes the current development of EVs and their charging infras-
tructure and summarizes the current literature on fast charging and ultra-fast charging.
Section 2 analyzes EV fast-charging technology and the configuration of the EV charging
system. Section 3 summarizes the charging interfaces and technical specifications for fast
and ultra-fast charging. To realize the fast-charging requirements, the front AC/DC con-
verter and rear DC/DC converter of fast-charging systems are described in Sections 4 and 5,
respectively, and the corresponding control strategies are presented in Sections 6 and 7.
Section 8 describes the impact of fast charging on the power battery and details various fast-
charging methods. Section 9 introduces the future development trends of EV fast-charging
technology and Section 10 presents the conclusions.
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2. Electric Vehicle Fast-Charging Technology and System Structure
2.1. Charging Level of Electric Vehicles

EV charging systems can be divided into slow- and fast-charging systems. Slow-
charging systems are generally defined as Level 1 and Level 2 on-board charging systems.
Level 1 on-board charging systems are slow and take about 8–10 h to fully charge a power
battery. They are primarily used in residential buildings and the output power is usually
less than 10 kW. In contrast, Level 2 charging systems take less time than Level 1 systems
to fully charge a battery. They are usually used in shopping malls, public facilities, etc., and
the power can reach 20 kW [28].

Currently, there are two general topologies for slow-charging systems, namely on-
board charging systems. One is a single-stage topology with an uncontrolled rectifier and
high-frequency DC/DC converter. This topology includes forward, flyback, push-pull,
half-bridge, and full-bridge. Single-stage topology has the advantages of a simple structure,
smaller number of components, small size, etc., but because it is directly connected to
the grid, it can easily pollute the grid. The other is a two-stage charging system with
power factor correction in the front stage and a DC/DC converter in the rear stage. The
two-stage charging system can effectively address the issues of the low power factor
and serious harmonic pollution but it has a high cost and low efficiency. Currently, the
conventional PID control method is widely used for slow-charging systems but more
advanced control methods, such as BP neural network PID control methods and fuzzy
adaptive PID control methods, have also been developed, which can significantly affect the
charging output characteristics.

As the number of EVs in use has increased, so has consumer demand for faster
charging systems, as slow-charging systems have a long charging time and low power
output. Fast-charging systems are a type of non-vehicle charging system that can be
classified into fast and ultra-fast types. The topology and control strategy of the off-board
charging systems are described in detail in the following sections.

Fast-charging systems, also known as Level 3 charging systems, can deliver high
currents of up to 400 A and can fully charge power batteries in 20–30 min, typically in the
50 kW-350 kW range. The ultra-fast-charging system is rated at 400 kW or even higher and
can fully charge power batteries in 20 min. Due to the maturity of fast-charging technology,
ultra-fast-charging systems have more application prospects. The interfaces and standards
for fast- and ultra-fast-charging systems are presented in Section 3 of this paper. Table 1
shows the types and levels of EV charging, and Table 2 summarizes the current advanced
fast/ultra-fast-charging systems with hundred-kilowatt power levels.

Table 1. Electric vehicle charging types and levels.

Charging Type Charging Location
Specifications Charging Time

(Battery Capacity) Criterion
Voltage/V Current/A Power/kW

Level 1 On-board 120/230 12–16 1.44–1.92 11–36 h
(16–50 kWh)

International
Electrotechnical

Commission (IEC)

Level 2 On-board 208/240 15–80 3.1–19.2 2–6 h
(16–30 kWh)

Level 3 (Fast) Off-board 300–600 ≤400 50–350 ≤30 min
(20–50 kWh)

Ultra-fast Off-board >800 >400 ≥400 ≈10 min
(20–50 kWh)
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Table 2. Characteristics of the 100-kilowatt-class of fast/ultra-fast-charging systems.

Manufacturer and
Model Power/kW Input Voltage/V Output

Voltage/V
Output

Current/A
Supported
Standards

Peak
Efficiency/% Weight/Ibs

EVBox Troniq 100 100 480 Vac ± 10% 500 200 CCS Combo 1,
CHAdeMO 95 2535

PHIHONG
Integrated Type 120 380/480 Vac ± 10% 200–750 240 GB/T 20234.3 93.5 528

Tesla Supercharger 135 380–480 Vac 50–410 330 Super
charger 91 1323

EVTEC espresso
and charger 150 400 Vac ± 10% 170–940 50–400 SAE Combo 1,

CHAdeMO 93 881

Delta 200 400 Vac ± 10% 200–1000 350–500 CHAdeMO, CCS 94 992

ABB Terra HP 350 400 Vac ± 10% 150–920 500 SAE Combo 1,
CHAdeMO 1.2 95 2954

Tritium Veefil PK 475 480 Vac 920 500 CHAdeMO, CCS 98.5 1540

2.2. Electric Vehicle Fast-Charging System Architecture

EV charging systems generally have a centralized layout in a specific area, and the
power supply typically employs AC coupling or DC coupling, that is, multiple independent
charging systems use the common AC bus or common DC bus to obtain power. The
configuration is shown in Figure 3.
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In the AC-coupled configuration, a low-frequency transformer is used to connect the
medium-voltage grid to the common coupling point of the charging system to supply
power to each independent charging system. Each charging system consists of an AC/DC
converter and a DC/DC converter. Many charging systems use the AC coupling configura-
tion because the converter technology is mature and the AC distribution system is stable.
However, the overall complexity of system control is high since the power flow between
the grid and the EV must pass through the AC bus and multiple AC/DC and DC/DC
converters [29].

In the DC-coupled configuration, high-power AC/DC converters are connected to a
low-frequency transformer, which is then coupled to the EV charging system through a DC
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bus. This configuration uses centralized rectification, which effectively reduces the number
of AC/DC converters, simplifies system control, and alleviates the impact of high-power
charging on the grid [30]. The DC bus power supply structure is used to effectively avoid
the problems of the power angle, frequency stability, and reactive loop current in the AC
bus. The power flow between the grid and the EV can be controlled by detecting the
magnitudes of the AC and DC side voltages and currents on the grid side. However, the
DC/DC converters connected to EVs typically have an isolation-type structure, which
means that each charging system needs to be equipped with high-frequency transformers.
However, the primary and secondary circuits of these high-frequency transformers still
need to be controlled independently, which results in a high level of complexity in the
control system of the charging station’s rear stage [31,32].

The fast-charging system consists of two AC/DC conversion stages: the first is the rec-
tification stage that converts three-phase AC power to high-voltage DC power, i.e., AC/DC,
which includes power factor correction (PFC) to improve power utilization effectively. The
second stage is the conversion of high-voltage DC power to DC power that matches the volt-
age level of the load, i.e., DC/DC. Typically, an EV charging strategy involves the battery
constant current (CC) and constant voltage (CV) charging, which are performed by DC/DC
converters [33]. A block diagram of the fast-charging system configuration is shown in
Figure 4. The control algorithms used for the charging mode operation of the power con-
trol unit include proportional–integral (PI) control, proportional–integral–derivative (PID)
control, sliding-mode control, and neural network control [34].
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Figure 4. Block diagram of the configuration of the fast-charging system.

According to IEEE Standard 1547 [35], electrical isolation between the grid and the EV
power cell can be provided by a low-frequency transformer or a high-frequency transformer
inside the isolated DC/DC converter. The electrical isolation allows the power modules
to be connected in parallel. If a single module cannot meet the power requirements of a
fast-charging system, connecting multiple identical modules in parallel can increase the
output power. The Tesla supercharger uses 12 groups of modules connected in parallel
to output power. The topology and control algorithm of the fast-charging system are
described in Sections 4–7 of this paper.

3. Charging Interface and Technical Specifications

The charging interface is an essential component that connects EVs to power supply
equipment during the charging process. With the industrialization and globalization of EVs,
there is a challenge of unifying charging interface standards across various countries, which
hinders the ability to achieve charging interconnection between various types of EVs in
different regions. In this case, regions such as China, the United States, Europe, and Japan
actively promote the unification of charging interface standards [36]. The standardization
of EV charging interface standards is crucial in promoting and encouraging the widespread
adoption and use of EVs and in facilitating the development of the charging infrastructure.
Currently, there are several global standards for EV charging interfaces, including the
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IEC standards [37], CCS joint charging standards [38], CHAdeMO standards [39], SAE
standards [28], GB/T standards [40], etc.

According to SAE J1772, based on their power levels, EV charging systems can be
classified into Level 1, Level 2, Level 3, and ultra-fast-charging. Level 3 and ultra-fast
charging systems directly provide power to the EV battery at levels of 350 kW or higher.
Ultra-fast-charging systems can recharge a battery to a 300 km driving range in 10 min or
less [41]. The current fast-charging interfaces used worldwide are shown in Figure 5.
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The CCS Combo 1 interface shown in Figure 5a was released by SAE International in
October 2012. It is mainly used in North America and is compatible with the SAE J1772
interface used in the U.S. and Japan, with a maximum voltage of 600 V, a maximum current
of 200 A, and power of up to 150 kW. The CCS Combo 2 interface shown in Figure 5b is
an upgrade of the CCS Combo 1 interface, which was jointly launched in 2012 by eight
European and American manufacturers, including Audi, BMW, Ford, and Chrysler, to
enable high-power charging. The system can currently support a maximum voltage of
1000 V, a maximum current of 400 A, and power of up to 350 kW [38]. The CHAdeMO
charging interface shown in Figure 5c is mainly used by Japanese car companies, which
released the CHAdeMO version 1.2 and 2.0 standards in 2017 and 2018 that support power
outputs of up to 200 kW and 400 kW [39]. The GB/T 20234.3 interface shown in Figure 5d
represents the charging interface standard of China. This interface uses the CAN bus
communication protocol with a rated current of no more than 250 A and a theoretical power
of 250 kW [40]. Car companies represented by Tesla use charging interfaces independent
of each standard series that are mainly applied in the U.S., as shown in Figure 5e. This
charging interface currently has a maximum power of 250 kW, maximum current of 600 A,
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and maximum voltage of 400 V. The CHAdeMO 3.0/Chaoji charging interface shown in
Figure 5f was jointly developed by the China Electricity Council and CHAdeMO to promote
the technical research and development of international standards for high-power field
charging [42]. On June 19, 2020, the "White Paper of ChaoJi EV Charging Technology" and
CHAdeMO 3.0 standards were announced. The maximum output power of this charging
interface is 900 kW, the maximum current is 600 A, the maximum voltage is 1500 V, and
there is a maximum charging time of 5 min for a 400 km driving range. At the same time,
due to Chaoji’s compact design and scalability, it can be expanded to small and medium
power applications. The Chaoji charging system can adapt to ultra-high power, addressing
the long-standing issue of the short range and long charging time of EVs. As a result, it has
a wide range of application prospects. The types of charging interfaces and their electrical
characteristics are shown in Table 3. The continuous optimization of charging interfaces
also promotes the development of high-power charging technology.

Table 3. Electrical characteristics of global high-power charging interfaces.

Standard Maximum Voltage/V Maximum Current/A Maximum Power/kW

CCS Combo 1 600 200 150

CCS Combo 2 1000 400 350

CHAdeMO 1000 400 400

GB/T 20234.3 1000 250 250

Tesla Supercharger 400 600 250

CHAdeMO 3.0/Chaoji 1500 600 900

4. Front-Stage AC/DC Converter Topologies

To meet the fast-charging requirements of EVs, the front AC/DC converter typi-
cally uses a three-phase high-power rectifier. This section introduces the three common
topologies and analyzes their technical features in detail: three-phase boost-type rectifier,
three-phase buck-type rectifier, and multilevel rectifier topologies.

4.1. Three-Phase Boost-Type Rectifier Topologies

The three-phase six-switch boost rectifier (TPSSBR) has the advantages of a simple
structure, high efficiency, a high power factor, low total harmonic distortion (THD) of the
input current, low current stress, low cost, and bidirectional energy flow capabilities. The
topology of the TPSSBR is shown in Figure 6a. Each bridge leg of the TPSSBR consists of
a field-effect transistor, and the parasitic diode of the field-effect transistor can provide a
freewheeling path for the inductor current in the dead time to realize a continuous input
current. The output voltage of the TPSSBR is higher than the peak value of the AC input
line voltage, therefore, the components need to withstand higher voltage stress and the
requirements for the rear-stage converter to withstand voltage are correspondingly higher.
In addition, the input voltage is directly connected to the DC-side capacitor through the
parasitic diode, which can lead to large inrush currents at the moment of startup. When a
short-circuit fault occurs in a bridge leg, it can cause an instantaneous overcurrent in the
rectifier, resulting in damage to the power components. The TPSSBR is widely used in EV
charging systems. In [43,44], a TPSSBR was proposed that can realize charging operations
while regulating the grid voltage and correcting the power factor. In [45], a SiC-based
200 kW ultra-fast-charging system was designed, which achieved an overall operating
efficiency of higher than 98.5% and a total input current distortion of less than 2.2%. More-
over, this system can provide reactive power support to the grid. The converter proposed
in [46] was composed of two TPSSBRs in parallel, which can control the grid current and
DC-link voltage. This structure can effectively reduce the current flowing through the
power components and reduce the size of the passive filter and the harmonic content of the
grid current. To further improve the efficiency of the converter, an auxiliary resonant branch
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composed of an auxiliary active switch, resonant inductor, and clamping capacitor was
added to the traditional TPSSBR in [47]. The proposed space-vector modulation strategy
enables the turning on of all main and auxiliary switches under zero-voltage conditions,
the elimination of the reverse recovery current of the diode, and the equalization of the
voltage stress of all switches with the DC-link voltage.
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The Vienna rectifier is a three-phase boost-type three-level rectifier and its topology is
shown in Figure 6b. Each phase bridge leg has a bidirectional switch, which is composed
of two power components in series. When the bidirectional switch of a certain phase is
on, the phase is connected to the neutral point of the output capacitor side, and when the
bidirectional switch of a certain phase is off, the current can flow through the diode on the
bridge leg. Compared to the TPSSBR, the Vienna rectifier does not have the advantage of
shoot-through and does not need to consider the dead-time problem, therefore, it is more
reliable but its energy can only flow in one direction. In addition, the Vienna rectifier inherits
some advantages of the three-level rectifier due to the reduced number of switches. The
Vienna rectifier switches operate under lower voltage stress, which is only half of the output
DC voltage. This results in lower switching losses and less conducted electromagnetic
interference (EMI) noise [48]. Moreover, the lower harmonic content of the input current
reduces the size and cost of the input-side filter inductor and increases the power density.
However, the Vienna rectifier also has the problem of unbalanced voltage at the neutral
point of the output capacitor on the DC side. The fluctuation of the neutral-point voltage
increases the voltage stress of the switch and causes harmonic distortion of the input
current. The authors of [49–51] addressed this problem and provided relevant solutions.
The Vienna rectifier has been applied in high-power charging systems by many enterprises.
In [52], different Vienna topologies were compared based on the number of components,
efficiency, THD of the input current, and power factor. In [53], a Vienna rectifier based on a
digital multi-loop control strategy was proposed, which can achieve an ultra-fast charge
of 30 kW. In [54], a Vienna rectifier based on a voltage-oriented controller was proposed,
which guarantees a minimum ripple and distortion in the input sinusoidal current, reduces
the requirements for the filter, and has a high power factor. With the application of wide-
bandgap semiconductors and the optimization of passive components, the efficiency and
power density of rectifiers are also improving. In [55], the loss and volume of the inductor
were optimized based on the use of SiC components. The rectifier efficiency reached 98% at
rated power and the power density reached 2.3 kW/L. In [56], zero-voltage switching (ZVS)
for all transition processes was achieved by improving both the topology and modulation,
further reducing power losses.

4.2. Three-Phase Buck-Type Rectifier Topologies

The topology of the three-phase buck rectifier (TPBR) is shown in Figure 7a. Because
the input current of the TPBR is intermittent during each switching cycle, an LC filter
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is required to filter out the high-order harmonics in the input current [57]. Each phase
of the TPBR bridge leg is composed of a switch and a diode in series, which ensures
a unidirectional flow of the current in the bridge leg and improves the reverse voltage
resistance of the switch; however, it also results in large conduction losses [48]. Compared
to the TPSSBR, when all the switches of the TPBR are turned off, there is no power flow
path so the TPBR has a lower starting current [58]. In addition, the output voltage of the
TPBR is lower than the peak AC input line voltage, allowing for a wider range of the output
voltage regulation and less voltage stress on the power supply equipment cascaded with
it. The energy storage inductor at the output side can restrain the short-circuit current,
improve the reliability of the system, and realize the stability of the output current at the
DC side. In [59], a typical TPBR design scheme was proposed, the loss calculation model
for each component was discussed, and the efficiency of the optimized rectifier reached
98.8%. In [60], a converter consisting of two phase-shift-modulated six-switch TPBRSs in
parallel was proposed, which achieved higher efficiency and lower input harmonic current
distortion. In addition, the use of SiC components in a TPBR allows for an increase in the
switching frequency, which can reduce the weight and size of the output inductor. Lower
switching losses can also lead to higher efficiency, but this can result in higher costs [61].
In [62], the three legs of the rectifier were delta-connected on the AC input side. This
structure allows the DC-link current to be shared by more switches, which reduces the
conduction losses by 20% and the current stress on the components. In the charging system,
the voltage stress of power components is a problem that cannot be ignored. Although
IGBT has a high-rated voltage, its switching performance is poor when it operates at high
frequencies, whereas the MOSFET has a high on-resistance when the voltage is high, which
can affect efficiency. Therefore, an improved scheme was proposed in [63]. By replacing
the freewheeling diode with two diodes in series and connecting the input neutral point
to the common point of the two diodes, the switch only needs to withstand the phase
voltage. Based on this, low-voltage stress was also achieved in [64] by connecting the two
output capacitors in series and adding a small capacitor between the input neutral point
and common point. In [65], a novel voltage clamp three-phase two-switch Buck PFC circuit
was proposed, which effectively reduces the voltage stress on the switches while retaining
the advantages of simple control.
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The Swiss rectifier is a new three-phase buck rectifier, which consists of an input
filter, a three-phase diode rectifier bridge, two buck converters connected in series with
the output of the rectifier bridge, and a third harmonic injection network. Its topology
is shown in Figure 7b. The three bidirectional switches of the third harmonic injection
network operate at twice the input voltage frequency, resulting in lower switching losses
and higher efficiency compared to the three-phase six-switch Buck rectifier [66]. The Swiss
rectifier can operate at a unity power factor and has the advantages of a low harmonic
distortion rate of the input current and a wide range of output voltages, making it suitable
for EV charging systems. In addition, the Swiss rectifier does not require the current space
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vector pulse-width modulation strategy so its control is simpler [67]. The disadvantage
of the Swiss rectifier is its relatively high number of switching components, which is not
conducive to low costs or a high power density. In [68], a parallel Swiss rectifier based on an
interleaved switching strategy was proposed. The switching frequency can be doubled to
reduce the filter size but its application is limited due to the double number of components.
The authors of [69] addressed this issue by only interleaving the buck circuit. In addition,
the efficiency was significantly improved by using fewer components. In [70], a Swiss
rectifier with interleaved output stages was proposed and the DC output inductance was
optimized. This structure reduces the ripple of the input current and voltage and improves
the THD of the input current, achieving a 99.3% efficiency. In [71], a single-stage isolated
Swiss rectifier based on a single full bridge with a midpoint clamper was proposed, which
utilizes only one full-bridge structure, reduces the conduction loss of the switches, improves
the core utilization, and realizes electrical isolation and the soft-switching function. In [72],
the DAB converter and Swiss rectifier were combined to realize the functions of PFC and
soft switching, achieving low input current distortion and bidirectional power flow.

4.3. Multilevel Converter Topologies

Compared to the two-level converter, the multilevel converter can significantly im-
prove the waveform of the input voltage and current. Under the same switching frequency,
the current harmonics are smaller, thus reducing the filter inductance on the grid side to
reduce the volume of the rectifier and effectively improve the power density. Due to the
increase in the level number, the voltage change rate, EMI, and switching loss are reduced,
and the voltage borne by the switch when it is turned off is also smaller, making it suitable
for use in EV charging systems [73,74]. However, the multilevel converter also has inherent
disadvantages, that is, the number of required power components increases with the in-
crease in the number of levels, and the structure and control of the circuit become more
complex. According to their circuit structure, multilevel converters can be divided into
neutral-point-clamped (NPC) [74–76], flying capacitor (FC) [77,78], and cascaded H-bridge
(CHB) [79–81] converters. The circuit topology is shown in Figure 8. For the NPC multilevel
converter, when operating at high frequencies, the reverse recovery time of the diode limits
the switching frequency of the converter. In addition, the conduction time of the switches
in the middle of the bridge leg of the converter is different from that on both sides, which
can lead to the inconsistent service life of each switch and cause different charging and
discharging times of each DC capacitor, resulting in an unbalanced output voltage and
affecting power quality. Therefore, a balancing circuit needs to be added, which increases
costs and reduces efficiency [75,76]. To address the above issues, scholars proposed an FC
multilevel converter, which uses a flying capacitor to replace the diode so that the voltage
stress of the switch can be limited, and some capacitor voltage-balance strategies [77,78].
However, the increase in the number of capacitors also leads to an increase in the cost
and volume, which can affect the power density of the system. CHB multilevel converters
combine multiple identical H-bridge units in a cascading manner to achieve higher output
voltage by using power components with limited voltage resistance [79]. Its topology is
simpler than the NPC converter and has the advantage of high modularity. It can increase
or reduce the number of modules to adapt to the charging power, and the AC side of the
system can output multiple levels to reduce the harmonic pollution of the power grid [80].
The DC capacity of each module in the system is self-contained, making voltage-balancing
measures easier to realize. In [73], a megawatt-level modular multilevel converter based on
three-level active-neutral-point-clamped cells in parallel was proposed, which requires only
six high-frequency SiC switches operating at 333 kHz to generate a 1 MHz switching spec-
trum, thus significantly reducing switching losses. In [82], a power electronic transformer
based on a multilevel converter was analyzed and reviewed in detail, demonstrating its
potential for broad applications in EV charging systems.
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5. Rear-Stage DC/DC Converter Topologies

The rear-stage DC/DC converter is used to output a wide range of adjustable DC
to adapt to the load characteristics of high-voltage power batteries for EVs. There are
typically two architecture forms for these converters, namely non-isolated and isolated
DC/DC converters.

5.1. Non-Isolated DC/DC Converter Topologies

Non-isolated DC/DC converters are simpler, have lower losses, and are more efficient
because they do not use isolation transformers. In [83], a step-down/step-up bidirectional
converter suitable for V2G and Grid to Vehicle (G2V) was proposed. The circuit has a wide
voltage gain range, which can realize the dynamic matching between the battery voltage
and the constant DC bus voltage. In [84], a multi-phase interleaved DC/DC converter
was proposed. As shown in Figure 9a, it works as a buck converter in the charging mode
operation of the battery and the boost mode operation during the discharging of the
battery. Due to the small size of the inductor, the interleaved operation of the converter
helps to control the charging current under different charge states. In [85], a non-isolated
bi-directional DC/DC converter with multi-phase interleaved half-bridge topology was
proposed. The coupled output inductor is used to reduce the current ripple but it has
inherent voltage-balance limitations. In [86], a multi-phase interleaved buck converter was
proposed. The converter has a variety of characteristics, including current sharing, a lower
output capacitor current ripple, better heat distribution, and smaller filter and radiator
sizes. It uses interleaving techniques to reduce the output current ripple and improves
efficiency by distributing the power balance among the phases. In [87], a high-power
three-level DC/DC converter was proposed, as shown in Figure 9b. The converter adopts
two groups of parallel three-level structures to achieve a high power output. The topology
is compatible with the bipolar DC bus structure and eliminates the balance circuit of the
NPC AC/DC converter. However, in this working mode, if multiple charging systems work
at the same time, there will be a high DC-link voltage ripple and circulation. To address
this issue, a parallel three-level DC/DC converter with an integrated inductor structure
was proposed in [88]. The inductor in the converter contains an integrated magnetic
core with output and circulating windings for filtering the output current and reducing
the circulating current. In [89], a topology of a three-phase buck converter connected in
parallel was proposed to improve the DC bus voltage and charging power level. In [46], a
bidirectional three-level asymmetric voltage converter was proposed, as shown in Figure 9c.
Compared to the non-isolated DC/DC converter with a half-bridge structure, the current
ripple is significantly lower. In [90], a non-isolated soft-switching bidirectional DC/DC
converter with interleaved technology and a built-in transformer was proposed. The T-type
neutral point clamping circuit is integrated into the traditional interleaved buck-boost
converter to obtain a high-voltage gain ratio and effectively reduce the voltage stress of the
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power switch. The interleaved structure can effectively reduce the current ripple on the
low-voltage side and help to achieve voltage matching on both sides of the transformer
under pulse-width modulation control while reducing the circulating current to improve
efficiency.
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5.2. Isolated DC/DC Converter Topologies

Isolated DC/DC converters for EV fast-charging systems can be divided into the
following categories: resonant converters, DAB converters, and phase-shifted full-bridge
(PSFB) converters [91].

The LLC resonant converter is widely used in high-voltage and high-power-density
EV charging systems and its topology is shown in Figure 10a. The LLC resonant converter
has attracted attention due to its high efficiency, high power density, low EMI, and wide
voltage range. For lithium battery units, CC and CV charging are required. When the
battery is in a CV or trickle-charging state, the light-load efficiency becomes an issue for
the LLC resonant converter [92]. In [93], a novel dual full-bridge LLC resonant converter
for CC and CV charging of EV batteries was proposed. One full-bridge LLC resonant
converter is controlled by a fixed resonant network, whereas the other uses a variable
resonant network for CC and CV charging operations. All switches in CC charging mode
can achieve ZVS and zero-current switching (ZCS), and all switches in CV charging mode
can achieve ZVS. A magnetically controlled dual half-bridge LLC resonant converter was
proposed in [94]. Using interleaved parallel technology, two LLC resonant networks share
the main switch and the output side is connected in series. One of the LLC resonant
converters is designed to operate at a series resonant frequency, whereas the other LLC
resonant converter uses magnetic control to adjust the total output current and voltage
in CC charging mode and CV charging mode [95]. In [96], a full-bridge LLC resonant
converter with series-parallel transformers was proposed and its topology is shown in
Figure 10b. The converter can achieve the ZVS of the switch tube and the ZCS of the diode,
as well as automatic power balance. The series connection can reduce the number of turns
of the primary winding and the parallel connection can reduce the current stress of the
secondary winding group and the conduction loss of the rectifier diode. In addition, the
converter has the same advantages as the LLC resonant converter. In [97], an LLC resonant
converter with a laminated structure, as well as a new control scheme, was proposed. The
frequency multiplier modulation strategy is used to reduce the switching loss and driving
loss, and the output is adjusted by frequency modulation.
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The development of V2G technology will further accelerate the development of the
EV industry. Therefore, bidirectional power flow, high power density, and high efficiency
have become the main technical indicators of fast-charging systems [98]. The bidirec-
tional CLLC resonant converter has the potential for use in EV charging systems due to
its soft-switching and bidirectional power flow capabilities. The topology is shown in
Figure 11. The traditional CLLC resonant converter typically adopts a symmetrical design
to maintain the symmetrical characteristics of bidirectional energy flow. The symmetrical
design is only suitable for applications that do not require a wide voltage range. Due to
the wide voltage range of the battery, there must be characteristic differences between
charging and discharging modes so a completely symmetrical topology cannot meet the
application requirements. To address this issue, a CLLC design method based on parameter
equivalence and a time-domain model was proposed in [99]. Based on the principle of
parameter equivalence, a CLLC resonator with arbitrary parameters was designed to meet
the requirements of a wide voltage range for bidirectional charging and discharging. An
asymmetric parameter design method was proposed in [100]. The gain curves of charging
and discharging modes were designed so that the switching frequency ranges of the two
modes could overlap, thereby reducing the change in the bidirectional frequency range.
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The DAB converter can automatically adjust the bidirectional power flow, wide voltage
gain range, and ZVS capability, and its topology is shown in Figure 12. The modular parallel
connection of the DAB converter allows it to expand to a higher power level. However, this
type of converter also has certain disadvantages. It has a large reactive current and a large
electrical stress on the power element, which increases the loss of the power element [101].
In [102], the single-phase shift (SPS), double-phase shift (DPS), and three-phase shift (TPS)
control methods were applied to the DAB converter to ensure that all power components
could achieve ZVS throughout the operating range of the load. In [103], the causes of the
circulating current and loss of ZVS were comprehensively expounded. The methods used
to suppress the circulating current were mainly the hardware method and the duty-cycle
method. The core idea was to control the equivalent voltage gain close to 1. In [104], a
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sinusoidal charging scheme was proposed, which consists of a full-bridge AC/DC converter
and a DAB converter. The influence of the converter loss on the ripple power balance was
analyzed. On this basis, a feedback control method for the DC bus voltage ripple was
proposed, which can control the charging curve more flexibly, thereby improving charging
efficiency and battery life. In [105], a dual-band current control method for DAB converters
was proposed to avoid the risk of transformer saturation. In [106], a transformer saturation
suppression algorithm for DAB converters was proposed. By detecting the change in the
transformer current slope near the saturation boundary and applying the duty cycle offset
to the DAB converter, the transformer saturation was suppressed.
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The traditional PSFB converter has been widely used in EV charging systems. Its
topology is shown in Figure 13. The main features of the PSFB converter are its simple
circuit, high conversion efficiency, high power density, constant operating frequency, and
low EMI. The PSFB converter can achieve ZVS, even without additional circuits. The main
disadvantages of the PSFB converter are that the ZVS range of the lagging branch switch is
narrow, and the circulating current, duty cycle loss, voltage oscillation, and reverse recovery
current of the rectifier diode are relatively large [107]. In [108], a novel PSFB converter
with a novel center-tapped clamp circuit was proposed. It uses two diodes and a capacitor
to form a center-tapped clamp circuit, which addresses numerous issues in traditional
PSFB converters. In [109], a novel interleaved current-driven PSFB converter was proposed.
The converter has a voltage-doubler rectifier, and the power element can achieve ZVS in
a wide load range, which can eliminate the voltage spikes at both ends of the secondary
rectifier, and the output diode is non-destructively commutated due to the current-driven
mode. In order to improve the performance of the traditional phase-shifted full-bridge
converter, an improved zero-voltage zero-current switching phase-shifted full-bridge pulse-
width modulation converter was proposed in [110]. By adding a simple auxiliary circuit,
the leading branch switch realizes zero-voltage switching and the lagging branch switch
realizes zero-current switching. During the freewheeling period, the primary current is
reset, thereby improving the efficiency of the converter. In addition, the improved converter
can effectively reduce the output current ripple. In [111], an improved control method for
the PSFB converter was proposed. By adjusting the phase-shift angle between the primary
side and the secondary side of the circuit and the duty cycle of the secondary side, the pre-
charging stage and the co-charging stage are added to address the issues in the bidirectional
PSFB converter. Compared with DAB and CLLC converters, the PSFB converter has a lower
root-mean-square current, which minimizes the current stress and conduction loss [112].
The dynamic response of the PSFB converter is superior to other topologies. Because its
output gain is related to the phase angle and works at a fixed switching frequency, the
PSFB converter is more suitable for applications with frequent bidirectional energy flow.
However, since the PSFB converter can only achieve hard switching on the secondary side,
the switching loss of its power components is higher than that of resonant topologies such
as CLLC. In [113], an asymmetric pulse-width modulation full-bridge converter with ZVS
and a reduced circulating current was proposed. To reduce the circulating current, an
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improved PSFB converter with asymmetric pulse-width modulation control was adopted.
The converter has a split capacitor and an improved rectifier. All switches can achieve ZVS
and reduce the output current ripple.
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6. Front-Stage AC/DC Converter Control Technology

This section discusses the control strategies of various AC/DC converters in terms of
control objectives, control methods, and common problems.

6.1. Three-Phase Boost-Type Rectifier Control Technology

The control objectives of the three-phase boost rectifier mainly consist of two parts:
(1) ensuring a stable and reliable output voltage at the DC side; and (2) achieving unity
power factor operation by keeping the voltage and current of the AC side of the rectifier
in the same phase. To achieve this, the dual-loop control method is typically adopted
for the voltage outer loop and current inner loop. The voltage outer loop is responsible
for controlling the output voltage of the DC side and providing a reference current for
the inner-loop control. In [114], the control system was composed of a dual-loop voltage-
current controller. Four different types of controllers, PI, lead-lag, proportional-resonance
(PR), and modified proportional-resonance controllers, were used for the current loop, and
the performance of the voltage ripple and current THD under different conditions was
compared. Taking the design of the PI controller as an example, the author first established
a linear model of the system in the form of the state space. After closed-loop analysis,
the PI controller was optimized according to the margin and frequency. The inner-loop
current PI controller was designed at < 1/10 of the switching frequency and the outer-loop
voltage control was designed at a 50 Hz line frequency. The control performance was
optimized by adjusting the control gain to obtain the appropriate overshoot, undershoot,
rise time, and settling time. In addition, there are other studies that use the MATLAB
toolbox and experiments to determine the PI parameters. However, the sampling time
delay is inevitable in the traditional PI controller due to the error-tracking method. In
contrast, model predictive control can predict the value of the next sampling period based
on the system model. In [115], the finite set-model predictive control (FS-MPC) algorithm
was used, which uses the discrete behavior of the converter to determine the appropriate
switching states that minimize the cost function. This method achieved bidirectional power
transfer with instantaneous mode-changing capabilities and a fast dynamic response.
In [116], continuous control set-model predictive control was adopted, which can realize a
fixed switching frequency and reduce the computational burden, in addition to having a
better dynamic response and robustness. In addition, direct power control in a smart power
grid can better regulate the active and reactive power of the system, which is conducive to
the energy exchange between the V2G system and the power grid. In [44], a direct power-
control method based on dual loops was proposed, which can adjust the grid current
and charging current by receiving a command from the active power or reactive power,
achieving a fast response speed. In [117], a control system consisting of an outer voltage
loop and an inner deadbeat instantaneous power loop was proposed, which can realize
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the fast-tracking of instantaneous power and bidirectional energy flow. In [118], a droop
control strategy was proposed to optimize the converter, which can adjust the frequency
deviation in the distribution feeder by controlling the bidirectional active power and the
charging and discharging processes.

The Vienna rectifier typically adopts a dual-loop control strategy. The voltage outer-
loop control is relatively simple, whereas the current inner-loop control is more complicated
due to the sinusoidal input current and PFC. Many control strategies are applied to Vienna
rectifiers, including PR control [49,119], voltage-oriented control [54], model predictive
control [120,121], one-cycle control [122], and sliding-mode control [123], among others.
Neutral-point voltage fluctuation is an inherent problem in Vienna rectifiers. To address
this, a dual-loop hybrid control scheme was proposed in [121] and its control block diagram
is shown in Figure 14. The outer loop uses a PI controller to regulate the DC-link voltage
and input reactive power. The output of the controller is used as the active current reference
id*, and the reactive current reference iq* is determined by the reactive power requirements
and is then converted into an expression in αβ coordinates. The inner loop uses FS-MPC to
regulate the input current to maintain the neutral-point voltage balance. ip

α and ip
β are the

predicted input current, up
1 and up

2 are the predicted capacitor voltage, îo is the estimated
load current, and finally, the combination of switching states (S1, S2, S3) is obtained. This
scheme has good dynamic performance and a wide operating range but it also has the
disadvantage of an unfixed switching frequency. In [122], the neutral-point voltage balance
control loop was added based on one-cycle control, which can eliminate the neutral-point
voltage fluctuation and improve the voltage utilization rate of the DC-link. In [124], a
harmonic resonance suppression strategy based on the impedance matching principle was
proposed, which can not only ensure the low ripple output voltage of the Vienna rectifier
but also suppress the background harmonic resonance amplification to effectively improve
the power quality of the Vienna rectifier’s grid-connected current and common coupling
point voltage.
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6.2. Three-Phase Buck-Type Rectifier Control Technology

Based on whether the input current is detected, the control technology of the TPBR
can be divided into direct current control [125] and indirect current control [126,127].
Direct current control technology has a fast dynamic response and strong robustness to
circuit parameters. Indirect current control has the characteristics of a good steady-state
performance, simple control structure, and low cost but this method is more dependent
on the system parameters. In [125], feed-forward decoupling and active damping control
strategies were adopted, and the system achieved good dynamic and static performance
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and low grid-side current harmonic distortion by optimizing the zero position and loop
gain of the inner-loop controller. The proposed current outer-loop controller can effectively
suppress the influence of the operating point of the system on its performance. In [126],
a reconstructed phase-voltage-based power following control for the three-phase buck
rectifier under unbalanced input phase voltages in a wide AC input frequency application
was proposed. This strategy can make the input current more balanced and sinusoidal,
and it can be easily implemented using digital control techniques. In order to suppress
the harmonics of the input current and output voltage under the condition of AC input
unbalance, a simple transfer-matrix digital control strategy was proposed for a three-phase
six-switch buck rectifier [127]. The control block diagram is shown in Figure 15. The
control strategy does not need to sample the input current but only needs to sample the
input voltage Va, Vb, Vc; output voltage Vo; and DC-link current iL. The output of the
inner current loop u* is multiplied by the calculated sampled input voltages ya,yb,yc to
obtain the transfer matrix σ. The three-phase input currents are reconstructed from the
DC-link current iL using the space vector pulse-width modulation (SVPWM) strategy,
which can realize the sinusoidal input currents and ensure that the input currents are
in phase with the input voltages. This strategy does not need a phase-locked loop and
complicated calculation, and can effectively reduce the cost and volume of the digital
controller. In addition, the influence of sector update delay on the input current distortion
and switching loss of a three-phase six-switch buck rectifier was studied in [58] and a
time-delay compensation method was proposed, which can reduce the THD of the input
current and improve system efficiency.
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For the Swiss rectifier, five different inner-loop feedforward options (constant voltage-
transfer ratio, constant input current, constant output voltage, constant power transfer,
and constant input resistance) were considered [128] and different schemes were analyzed
and evaluated. Based on traditional PI dual-loop control, fuzzy PI control was introduced
in [129] to achieve PFC, achieving better dynamic performance and robustness. Due to the
switching frequency voltage ripple on the input filter capacitor of the Swiss rectifier, the
input current of the three-phase diode rectifier bridge will commutate frequently, resulting
in a current distortion at the commutation boundary [130]. to address this, two control
methods were proposed in [131]: one method was to allow the bidirectional switch to work
in a high-frequency state near the commutation boundary so that the driving signal was
complementary to the outer high-frequency switch; and the other method was to turn off
the bidirectional switch near the commutation boundary to reduce the current distortion.
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6.3. Multilevel Converter Control Technology

The control objectives of the three-phase multilevel rectifier mainly include three
points: (1) controlling the output voltage of the DC side to improve the stability and dy-
namic response performance of the output voltage, and ensuring its ripple meets the design
requirements; (2) balancing the capacitor voltage on the output side to avoid the abnormal
operation of the system due to the unbalanced capacitor voltage; and (3) controlling the
input current on the AC side to ensure that the input current and input voltage are in the
same phase, reducing the THD and reactive power loss and achieving PFC. The current
control strategy is the focus of the multilevel converter control strategy, which affects the
operating frequency and transmission efficiency of the rectifier and determines the overall
operating performance of the system. Currently, the main current modulation strategies of
the multilevel converter are sinusoidal pulse-width modulation (SPWM) and space-vector
modulation (SVM). In [74], PR control was adopted to effectively adjust the DC-link voltage
and power factor. Based on phase-disposition SPWM, the system has bidirectional power
flow capabilities and achieved good performance in both rectifier and inverter modes.
In [75], in order to expand the controllable balance region and eliminate additional balance
circuits, a voltage balance control (VBC) strategy for coordinating the NPC converter and
DC/DC converter was established. The maximum available output current was utilized
to achieve DC-link voltage balance and obtain a faster balance response. A coordinated
VBC strategy also brings more freedom to grid-side current control and eliminates low-
frequency fluctuations in the DC-link voltage. In [76], a voltage-oriented control scheme
based on the SVM algorithm was adopted, and its control block diagram is shown in
Figure 16. The control scheme uses four PI controllers. The top PI controller outputs ∆S,
which provides a reference for the redistribution of positive and negative small vectors to
achieve precise control of the mid-point voltage. The PI voltage controller estimates the
reference current signal i∗gd by comparing the DC-link voltage Vd to the reference voltage
V∗

d , and then obtaining the voltage control value V∗
cd through the inner-loop active current

PI controller. The current PI controller of the reactive current loop regulates the power
factor by managing the reactive current component igq. In [77], a capacitor voltage balance
strategy based on closed-loop SVM was proposed. Based on the deviation of the capacitor
voltage, the cost function is defined and minimized and the appropriate redundant switch
state is selected in the available switch state. Using the SVM switch-state redundancy
regulates the capacitor voltage to a reference value, and this strategy does not have any
adverse effect on the harmonic distortion of the AC-side voltage. In [79], the decoupled
current method was used, which allows for the independent control of active and reactive
power by controlling the id and iq current components, respectively. In [132], a unified
VBC strategy was proposed, which can realize the voltage balance of the CHB DC-link
under different power-flow directions, meeting the requirements of active and reactive
power on the grid side through a d–q decoupled power controller. In addition, the output
voltage of the CHB is susceptible to errors due to the nonlinear behavior of the electronic
components. Therefore, a nonlinear compensation technique based on predictive current
control was proposed in [133], which can greatly improve the harmonic content of the grid
current under steady-state conditions within a single fundamental cycle.

Rectifiers are generally controlled using a double-loop control method that includes a
voltage outer loop and a current or power inner loop. The current or power inner loop is
commonly known as current closed-loop control or power closed-loop control. Some new
control methods have been derived based on these two control approaches. In the double
closed-loop control process, the outer loop is required to have good robustness and strong
anti-interference and the inner loop is required to have a fast dynamic response. For the
modulation technology of rectifiers, SPWM and SVPWM methods are generally used, but
it is also necessary to consider the circuit topology, switching frequency, complexity of the
algorithm, as well as other aspects, to make a reasonable choice.
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7. Rear-Stage DC/DC Converter Control Technology

This section discusses the control strategies of various DC/DC converters in terms of
control objectives, control methods, and common problems.

7.1. Non-Isolated Converter Control Technology

The main control objective of the interleaved converter is to balance the interphase
current, which aims to reduce the total current ripple and avoid power imbalance, thereby
increasing the overall efficiency. At present, EV fast-charging systems require minimizing
the current ripple of the input battery as much as possible to extend battery life. The control
method proposed in [134] provides a wide range of battery voltages and a ripple-free
battery current. In [85], a control method was proposed for lithium polymer batteries and
lithium-ion batteries to meet the long life and safe operation requirements of these two
types of batteries. In [89], to manage the power flow of the battery during charging and
discharging, two cascaded PI controllers were used to control CC mode and CV mode.
In [135], DC/DC converters achieved ZCS of all power devices at any voltage ratio of the
high-voltage side voltage to the low-voltage side voltage. The bipolar DC bus feed charging
system based on an NPC converter has many advantages. In [87], a fast-charging method
with DC power balance management capabilities was proposed, which does not require the
addition of extra balance circuits and high-frequency transformers, thereby improving the
overall efficiency of the system. The fast-charging control method with comprehensive DC
power balance management is shown in Figure 17. The upper-left box represents the output
voltage and current control, where the charging profile (CP) provides the reference current
io2

*, the reference voltage vo
*, and the switch signal sc to control the transition between CC

charging mode and CV charging mode. Then, as the two units share the total output current,
the current reference of each unit is set to io*/2 and the four output currents of the two
converter units are controlled using four PIs. Then, the outputs of the PIs are divided by the
total input voltage 2vi to generate the original modulation signals dx1, dx4. The lower-left
box shows the comprehensive DC power balance management. In [75], a new VBC method
was proposed, which expands the controllable balance region using the VBC method, thus
eliminating the additional balance circuit. In [136], a model predictive control method was
proposed, which integrates the internal and external dynamics of the DC/DC modular
multilevel converter into the model predictive control algorithm and introduces three
control objectives. Compared to the traditional PI control, the proposed model predictive
control method reduces the AC circulating current in steady-state operation and has a
faster response speed. In [137], a control technology based on harmonic elimination was
proposed, which allows for the minimization of the ripple under asymmetric conditions.
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7.2. Isolated Converter Control Technology

The LLC converter has many advantages. However, during the process of EV charging,
improving the working efficiency of the LLC converter under a light load is one of the key
problems in this research area. In [138], a hybrid control method with adjustable frequency
and a duty cycle was proposed, which can improve the performance of the full-bridge
series-resonant DC/DC converter in CV charging mode. Compared to the conventional
control method without any additional hardware, this control method can improve the
efficiency of the charging system by 4% under light load conditions. At the same time, a new
burst-mode control method was used to improve the light-load efficiency [139]. In [140],
a burst-mode control method based on a simplified optimal trajectory was proposed to
improve the efficiency of light loads. In [141], a hybrid-mode pulse-frequency modulation
control method was proposed, which can achieve a fast dynamic response without an
additional slope compensation circuit and can better adjust the output voltage without
jump mode under light loads. The hybrid control strategy of pulse-frequency modulation
and pulse-width modulation can significantly increase the adjustable output voltage range
and perform sensitive automatic adjustments when the load conditions change while
maintaining a stable target output voltage value [142]. This hybrid control strategy can
also overcome the limited-frequency resolution problem [143]. A new control method
for a full-bridge LLC resonant converter was proposed in [144]. Frequency control was
used to adjust the output voltage under full-load conditions. By analyzing the loss of all
power components, the optimal duty cycle was determined to obtain the minimum power
loss under each light-load condition. In [93], the resonant tank parameters were designed
to realize CC and CV mode charging at a fixed switching frequency and simultaneously
realize soft switching. It adopts a simple PI control scheme, which consists of a PI controller,
mode conversion switch, and limiter. When the battery voltage is lower than the maximum
charge voltage, the current controller is activated to charge the battery with a constant
current. Once the battery voltage reaches its maximum charge voltage, the controller
automatically switches to CV mode by enabling the switch S mode and activating the
voltage controller. The control block diagram is shown in Figure 18. In [145], the output
voltage was adjusted using frequency conversion control. When the output voltage is high,
the secondary winding group is in series. When the output voltage is low, fixed-frequency
phase-shift control is used to adjust the configuration of the secondary winding group.
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Scholars have described the small-signal modeling method and discrete-time average
modeling method of the DAB converter in detail to analyze its dynamic characteristics.
There are three techniques used to improve the dynamic performance of the DAB converter,
including load-current feedforward control, direct inductor current control, and power-
based control [146]. Based on state-space average modeling and small-signal modeling
of the DAB converter, a model-based phase-shift control method was proposed in [147]
to improve the dynamic characteristics of the DAB converter under load disturbances.
In [148], by establishing a linearized dynamic model of the DAB converter, a load current
feedforward compensation strategy was proposed to improve the output transient response
of the converter under load disturbance conditions. In [149], a boundary control scheme
using a natural switch surface was proposed to improve the dynamic characteristics of
the system. Load current feedforward control is an alternative solution for improving
the dynamic performance of load changes. Direct power control is an effective method
to improve the dynamic response of the converter to achieve a fast dynamic response.
In [150], a virtual direct power control scheme with fast response under complex conditions
was proposed by combining direct power control with a feedforward control strategy.
In [105], a dual-band current control method was proposed to avoid the risk of transformer
saturation. In [151], a control scheme for a bidirectional isolated DAB converter based on
sliding-mode control was proposed. This method not only achieves zero steady-state errors
but also produces a fast transient response to load changes. Single-phase-shift modulation
is the original modulation method of the DAB converter, but it is not enough to ensure
the efficient operation of the DAB converter in the whole working range. Dual-phase-shift
modulation is used to eliminate reactive power and improve system efficiency but it cannot
achieve full-range soft switching. Three-phase-shift modulation provides a sufficient degree
of freedom to extend the soft-switching range and reduce the root-mean-square current.
In [152], a discrete extended phase-shift (DEPS) control scheme was proposed to improve
the dynamic response of DAB DC-DC converters. The proposed DEPS control adjusts the
transmission power of the DAB DC-DC converter by generating high- and low-power
control pulses, which are preset to have discrete phase-shift ratios rather than pulse-width
modulation control. In [153], a double-integral sliding-mode control and variable phase-
shift algorithm were proposed. The control block diagram is shown in Figure 19. The
dual-bridge DC/DC converter is operated in a phase-shifting operation to transfer the
desired power to either V2G or G2V mode. During the G2V mode of operation, the primary
side of the DAB converter operates with a leading phase-shift variation, whereas in V2G
mode, the secondary side operates with leading-phase operation. The selector switch in
the DAB controller receives a high or low logic signal to determine whether to use leading
or lagging-edge phase-shift control to operate in G2V and V2G modes, respectively.
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The control method of the PSFB converter is similar to that of the DAB converter. SPS
modulation is the most commonly used method to control the PSFB converter. The output
power and voltage can be adjusted by changing the phase-shift angle, but it is difficult to
achieve soft switching under light-load conditions. In [154], a new hybrid-mode control
technology for the PSFB converter was proposed to improve efficiency under light- and
heavy-load conditions. The control idea is to reduce the transformer turn ratio to reduce
the circulating current, thereby reducing the circulating loss. In [113,155], an asymmetric
pulse-width modulation strategy was adopted for the circulation problem so that the
converter could achieve high efficiency in a wide range of output voltages. In [156], a new
adaptive-burst-mode control strategy was proposed, which achieved a smaller effective
switching frequency and lower switching loss. In [111], aiming to address some of the
technical defects of PSFB converters in EV applications, such as the large circulating current
and large reverse power, an improved control scheme was proposed by adjusting the
phase-shift angle and duty cycle to increase the pre-charging stage and common charging
stage. In the pre-charging stage, the voltage overshoot was suppressed. In the co-charging
stage, the circulating current and the root-mean-square current of the transformer were
effectively reduced. The long pre-charging time is the main reason for the reverse power
and circulating current. This control method optimizes the pre-charging time and the
control block diagram of the reverse operation is shown in Figure 20. The compensator is a
PI controller, where kp is the proportional gain and ki is the integral gain. If the reference
current is higher than IL0, the co-charging time as ϕ1Ts needs to be increased and vice
versa. By sampling the input voltage Vin, output voltage V0, and average input current
IL0, single-direction mode (SDM) and alternating-direction mode (ADM) can be judged
using mode-selection calculations. In the sensing and diagnostic module of SDM, the
pre-charge time can be calculated. In ADM, the pre-charge time is zero. Then, the driving
signal can be obtained using ϕ1 and Tpre. The model predictive control method has certain
advantages in the case of multiple objectives and multiple physical constraints. In [157], a
model predictive control method was proposed, which can effectively improve the dynamic
characteristics of the center-tap PSFB converter. This method has the characteristics of fast
dynamics and is robust to sudden changes in load impedance. In [158], an efficient model
predictive control algorithm based on the Laguerre function was proposed for the PSFB
converter. This method uses the system dynamics model to transform the nonlinear peak
inductor current constraint into a dynamic linear constraint.
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This section discusses various DC/DC converter control methods suitable for fast-
charging systems. Some general control methods can be applied to a variety of topologies,
such as pulse-width modulation control, frequency modulation control, double closed-
loop PI control, phase-shift control, and double phase-shift control, among others, which
are suitable for the LLC resonant converter, DAB converter, PSFB converter, and other
topologies. Model predictive control, sliding-mode control, and burst-mode control are
also applicable to a variety of topologies.

8. Impact of High-Power Fast Charging on Power Batteries

The power battery is the key component of electric vehicles and is the premise and
foundation of the stable operation of EVs. Electric vehicles with high-power charging have
some impact on the battery body [159], such as low charging efficiency, reduced battery
cycle charging times, battery aging, and reduced battery capacity. It may also cause battery
thermal runaway and can even affect safety.

8.1. Factors Influencing Fast Charging of Power Batteries

The lithium battery is affected by the state of charge, temperature, and charging current
of the battery during the fast-charging process and these factors have strong coupling [160].
The influencing factors of the fast charging of power batteries are shown in Figure 21.
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1. SEI Film Growth.

When a lithium battery is charged and discharged for the first time, the anode reacts
electrochemically with the electrolyte and an SEI film is formed at the anode interface [161].
The formation of the SEI film causes the irreversible loss of the partial capacity of the
lithium battery and increases the internal resistance of the battery. In [162], the effect of the
charging-current rate on the aging of ternary lithium batteries was analyzed. It was found
that a high charging-current rate increased the growth rate of SEI film, which further led to
the increase in battery impedance and aggravated capacity attenuation.

2. Anode Lithium Precipitation.

Lithium precipitation on the anode causes the battery capacity to decay. The precipi-
tated lithium metal is typically attached to the surface of the negative electrode particles
in the form of lithium dendrites. After a certain amount of growth, the lithium dendrites
can pierce the diaphragm, causing the positive and negative electrodes to short circuit,
which, in turn, causes thermal runaway. In [163], the lithium evolution potential was used
to calibrate the lithium evolution current boundary of the lithium battery. In other words,
based on the negative potential threshold, the negative lithium evolution side-reaction
boundary current of the lithium battery during the fast-charging process was used as the
maximum charging current for the entire battery charging range.

3. Polarization Effect.

The polarization of lithium batteries is affected by factors such as the charge and
discharge current, ambient temperature, internal active material concentration, etc. The
polarization phenomenon hinders the dynamic characteristics of lithium ions, resulting in
an increase in temperature, anode lithium precipitation, etc., making the charging-current
curve unable to track the maximum charging-current curve. When the polarization is
serious, it can cause the battery voltage to rise sharply and damage the battery [164].
In [165], the pulse-duty cycle was adjusted by reducing the concentrated polarization to
ensure that distributed batteries can be safely charged in the temperature range of 5 ◦C to
45 ◦C. The proposed charging process completed about 80% of its maximum capacity in
less than 20 min without damaging the battery characteristics.

4. Thermal Characteristics.

Lithium batteries generate heat during fast charging, mainly manifested as chemical
heat, polarization heat, ohmic heat, and side-reaction heat. Since the capacity of a certain
type of lithium battery does not change much during use, the chemical heat of the battery
also does not change much, whereas the polarization heat, ohmic heat, and side-reaction
heat are all related to the charging strategy adopted by the battery. The higher the polariza-
tion degree of the battery, the more severe the side reaction and the more heat generated,
which accelerates the rate of the temperature increase of the battery [166]. In [167], two
lithium-ion batteries were compared and the thermal images during the profiling process
were recorded to observe the temperature distribution. At the same time, three ambient
temperatures were tested. The analysis showed that when the temperature was lower than
35 ◦C, fast charging could be applied to lithium batteries. When the temperature exceeded
the safe boundary temperature, it caused a thermal runaway if not controlled.

5. The influence of the charging current on the battery.

The charging-current rate can affect the life cycle of lithium batteries, and the bat-
tery capacity curve at different charging-current rates first shows a decrease and then an
increase [168]. When the number of battery cycles exceeds 300, the maximum available
capacity of the battery decreases sharply under the condition of high-rate current charging.
Increasing the upper charge voltage can suppress the battery capacity decay. This is because
increasing the upper charge voltage increases the potential difference between the positive
and negative electrodes, which leads to more lithium ions being embedded into the nega-
tive electrode. However, when the charging voltage is too high, the negative potential drops
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below 0 V, which leads to the evolution of the anode lithium, resulting in a sharp decline in
battery capacity. Under the condition of fast charging, the negative electrode potential and
current density should be monitored to avoid lithium precipitation and reduce the risks to
charging safety. In [169], the first-order equivalent circuit model of the battery was used to
analyze the variables affecting the charging process, and the influence of the current rate
on the internal resistance was discussed. Through experiments, it was concluded that a
high-rate charging current has a significant effect on the fast-charging performance of the
battery. Charging the battery at 6C can significantly improve the charging speed.

8.2. Fast-Charging Method of Power Batteries

To effectively reduce the impact of fast charging on the power battery of an EV, a
variety of charging methods have been derived. The following are some of the mainstream
charging methods [170,171].

1. Pulse Charging.

Compared with conventional charging methods, pulse charging can charge at a larger
current and the concentration polarization and ohmic polarization of the battery are elimi-
nated during the shutdown period so that the next round of charging is carried out more
smoothly. The charging speed is fast, the temperature change is small, and the battery life
is small so this method is widely used. Compared to traditional CC charging, a short break
is added during the charging process, which gives the lithium battery a stronger charging
acceptance ability. At the same time, it can eliminate the polarization voltage, inhibit the
growth of lithium dendrites, slow down the aging of the battery, and accelerate the charging
speed [172]. In [173], the effects of low-frequency positive pulse-current (PPC) charging on
the life and charging performance of lithium-ion batteries were studied experimentally. It
was found that compared to traditional CC charging, the life, maximum temperature, and
energy efficiency of lithium-ion batteries using the PPC charging cycle increased by 81.6%,
60.5%, and 9.1%, respectively, after 1000 cycles.

2. Multi-stage constant-current charging.

Multi-stage constant-current charging refers to dividing the charging current into mul-
tiple segments according to certain rules. Each current is a fixed constant. After charging to
a set threshold with a specific constant current, it continues to charge with another constant
current until the battery capacity reaches the set value. In [174], an orthogonal experimental
scheme for multi-objective coordinated multi-stage current optimization was designed
and a five-stage constant current (5SCC) optimization strategy was proposed based on
two orthogonal experiments. Compared to the traditional CC-CV charging strategy, the
5SCC charging strategy has good application prospects in terms of charging time and
charging power. In [175], a variable-inductance binary operation method was proposed to
realize different constant-current stages, and the voltage-controlled semi-active rectifier
was controlled to ensure the efficient operation of the converter.

3. Positive and negative pulse charging.

The working cycle of positive and negative pulse charging involves three stages: posi-
tive charging, reverse instantaneous discharge, and stop charging. It solves the polarization
phenomenon of the battery to a large extent and accelerates the charging speed but re-
verse discharge can shorten the life of the lithium battery. In [176], a method of using a
supercapacitor to absorb and store high-energy negative pulses in the charging process
of positive and negative pulses was proposed. When the amount of electricity stored in
the supercapacitor reached the set value, this part of the electricity was used to charge
the lithium-ion battery CV. Compared with the traditional positive and negative pulse
methods, the energy utilization rate increased by 19%.

4. Optimal fast-charging strategy.

The main research objectives of the lithium battery charging strategy comprise four
aspects: minimizing charging time, maximizing efficiency, maximizing capacity, and maxi-
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mizing the life cycle. However, there is a competitive relationship between these targets.
Shortening the charging time requires increasing the current rate and the high-rate current
also increases the polarization voltage, thereby reducing the charging efficiency. Therefore,
it is necessary to balance the relationship between the different objectives based on the
battery characteristics to achieve rapid charging. In [177], a new multi-stage constant-
heating-rate optimization method based on a genetic algorithm (offline strategy) was
proposed, which effectively reduced the charging time and the increase in temperature.
The results showed that at ambient temperatures, 10 ◦C, 25 ◦C, and 40 ◦C, compared
to the average charging time of the CC-CV method, the charging time of the proposed
method was shortened by 1.9%, 5.3%, 8.56%, and 9.54%, respectively, and the increase
in temperature was reduced by 48.6%, 28.3%, 67.3%, and 17.9%, respectively. In [178],
an optimal charging strategy with constant power injection was proposed. Based on the
electric vehicle charging billing system, the charging strategy provides an optimal charging
power reference to minimize the cost of the charging energy, charging time, and available
energy loss. The results showed that the proposed charging strategy can minimize the loss
of battery capacity and the economic burden on users.

To meet the demand for increased charging speeds, many automobile manufacturers
have invested a lot of time in investigating and implementing fast-charging strategies, but
there are still many deficiencies [179]. The main challenges in the safe and fast charging
of lithium batteries are as follows. First, the battery itself can withstand a large charging
current, which has higher requirements for the battery polarization resistance. Second,
the battery can maintain good working performance, life cycle, and thermal safety after
being charged at a high-rate current, which requires the active material of the battery to be
reliable in terms of stability.

8.3. The Influence of the Battery Management System on Power Batteries

Research into battery management systems (BMS) is necessary for the fast charging
of electric vehicles [180]. There are two main functions of BMS: they provide stable and
reliable energy for new-energy electric vehicles and they improve the service time and
life of power batteries through the charge and discharge balance of the batteries. The
battery management system is integrated into the power battery. The quality of the battery
management decision directly affects the battery life and the stability and safety of the
vehicle. The working characteristics and life of the battery are significantly influenced
by the temperature. The main functions of battery thermal management involve rapidly
heating the battery pack when ambient temperatures are too low to ensure the battery is
operating in an optimal condition; achieving effective heat dissipation and ventilation of
the battery pack when ambient temperatures are too high; and identifying the temperature
field range while ensuring uniform temperature distribution [181,182]. In [183], the current
research priorities were summarized and some possible new research directions were
proposed for more efficient thermal management systems. Three important types of
thermal management strategies were discussed: air management, fluid management, and
phase-change materials.

One of the important functions of BMS is the accurate prediction and monitoring of
the state of charge (SOC) of each battery in the battery pack, which is essential for the safety
and charge balance of electric vehicles [184]. In [185], a data-driven method was used to
propose a transfer learning framework by considering adaptive conditional probability
distribution, which addressed the influence of battery pack differences, temperature, aging,
and other factors on SOC prediction. In [186], the authors proposed an effective health
status indicator and remaining useful life prediction method for lithium-ion batteries based
on a moving window approach to predict the remaining useful life of the battery. The
experimental data tested at different current rates (including 1 ◦C and 2 ◦C) and different
temperatures (including 25 ◦C and 40 ◦C) were collected and used. The implementation
results showed that the capacity estimation error was within 1.5%.
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9. Development Trends
9.1. Trends in Charging Infrastructure

With the large-scale promotion of electric vehicles, the construction and deployment of
charging facilities have become the main reason restricting the development of the electric
vehicle industry [187]. In the early stages of electric vehicle development, class I and class
II slow charging were the most widely used charging methods. The slow-charging method
is suitable for private cars, unit group cars, and other vehicles with a short travel time and
long-term idle state. These vehicles can be charged for a long time during the low electricity
trough at night, which has less of an impact on the power grid and provides power grid
support, such as load balancing, frequency, and voltage regulation [188]. Slow-charging
facilities typically involve AC charging piles, which are used to charge electric vehicles
through on-board charging machines, as they provide small power but a full charging
speed. The cost of a single AC slow-charging pile is about USD 300–900, and its construction
cost composition is shown in Figure 22. Generally speaking, the cost of AC charging piles
is low, economical, and affordable, and is mostly used in residential charging piles.
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With the gradual spread of electric vehicles, slow charging can no longer meet the
daily needs of users. Fast charging is mainly used for private cars, taxis, and other vehicles
that require emergency charging because the remaining power of the vehicles cannot meet
users’ travel needs [189,190]. Fast charging not only reduces the charging time but also
provides the convenience of using the same charging interface for all electric vehicles,
making it easier to promote and user-friendly. However, fast-charging equipment has
high costs, a large volume, and requires ancillary equipment and a large land area. The
construction input of a single 100 kW DC charging pile is shown in Table 4. The cost of the
equipment (including the cost of the monitoring system) is about 0.07 USD/W and the cost
of the 100 kW DC charging pile is about USD 7300. The cost of civil construction is about
USD 2700–3800 and the cost of the power distribution side equipment is about USD 6400.
Generally speaking, DC charging piles have high costs and fast charging speeds and are
typically used in public parking lots, highway service areas, and other places.



Electronics 2023, 12, 1581 29 of 39

Table 4. Cost analysis of 100 kW DC charging pile.

Investment Section Specific Content Cost (USD)

Charging facilities
(including monitoring)

Charging module, box, relay, electricity
metering system, etc. 7300

Distribution side Box transformers, low-voltage electrical
appliances, electric meters, etc. 6400

Civil construction and materials Building construction, wires, cables, etc. 2700–3800

With advancements in technology, the ability to assemble quick-filling piles has become
possible [191]. In the future, the construction of charging facilities should be based on
unified standards and policies issued by the state, the charging interface should be unified,
the charging mode should be clear, and the charging facilities should be universal so that
the charging needs of different users can be met. In addition, based on existing road traffic,
as well as the building layout of the city, the site selection of charging stations should be
carried out in combination with city and power grid planning authorities to ensure the
safety of personnel and convenient charging for users. Inductive roadbed charging systems
are also a future development trend, as they can continuously charge electric vehicles in
designated charging lanes on roads, thereby increasing the driving range of electric vehicles
and reducing the battery size [192].

9.2. Future Trends in Electric Vehicles

In recent years, the electric vehicle industry has grown rapidly and fast-charging
systems that can charge electric vehicle batteries to more than 80% in 20 min are the focus
of research in this field [193]. Figure 23 shows the strategic planning of charging systems
of some well-known car companies. Mercedes-Benz is expected to launch a 50 kW 800 V
fast-charging model after 2023, which can be charged to 80% in 15–20 min. Audi is expected
to launch the A6 e-tron concept model in 2024, which will be the first pure electric limousine
based on the PPE platform. The power battery capacity is 100 kWh and the NEDC mileage
is 700 km. It can increase the driving range by 300 km with just 10 min of charging and
the SOC can be increased from 5% to 80% in just 25 min of charging [194]. Tesla updated
the Supercharger V3 network in 2021 and the maximum output power has increased from
250 kW to 300 kW. Tesla will launch an 800 V platform and models based on this platform
should be released with 46,800 batteries. The Volkswagen MEB platform has a typical
fast-charging capability, which can achieve a 40 min SOC increase from 30% to 80%. The
company’s next development focus is the scalable system platform, which is expected
to serve as the foundation for the launch of electric vehicles in 2025 [195]. Hyundai and
Kia jointly launched the E-GMP platform, which supports 800 V fast charging. In the
next few years, models based on this platform are expected to be mass-produced [196].
NIO has upgraded its third-generation digital platform NT 3.0, including the electronic
and electrical architecture, electronic control, an intelligent cockpit, and intelligent driving
technology. It is expected to launch related models in 2024 [197]. Li Auto Inc. launched two
platforms: a space-oriented Whale platform and a performance-oriented Shark platform.
The fast-charging performance of the first electric vehicle is 800 V–400 kW and the SOC
increases from 10% to 80% in 10–15 min. It is expected to be mass-produced in 2023 [198].
BYD has launched the e-platform 3.0, which is based on the 800 V platform and can support
a charging power of 228 kW or higher, resulting in a 150 km increase in cruising range
after just 5 min of charging. The platform’s representative models have already entered
mass production, and BYD plans to launch more models in the future [199]. LEAPMOTOR
announced its 800 V ultra-high-voltage electrical platform in 2021, which can support up to
400 V charging and achieve a cruising range of 200 km and above in just 5 min of charging.
The corresponding models will be mass-produced in the fourth quarter of 2024. In 2021,
China Chang’an Automobile Group (CCAG, Chongqing, China) released an 800 V electric
drive platform. The new generation of electric vehicle platform models can increase the
cruising range by 200 km in just 10 min of charging. According to its plans, the company
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will launch two series of products in the future: 450 V and 800 V, covering a voltage range
of 240 V–800 V, to meet power demands ranging from 160 to 300 kW, with a maximum
mileage range of 400–1000 km [200].
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It can be seen from the strategic planning of the above car companies that high-power
fast-charging technology is an inevitable trend for the future development of EVs. However,
overcoming the challenges of fast charging requires detailed research on charging cables,
cooling methods, protection devices, efficient power converter design, battery materials,
and energy storage. As they are an important component of EVs, the market demand
for power batteries is also expanding rapidly. In terms of batteries, improvements in
storage capacity, battery materials, and manufacturing processes are future development
directions [201]. Energy storage can be equipped with supercapacitors, which offer benefits
such as high power density, long life cycle, wide temperature range, and require minimal
maintenance. Batteries can be made of graphene, which has good electrical conductivity
and is lightweight, strong, and tough. In terms of charging efficiency, graphene batteries
have a significantly higher charging capacity than traditional batteries, their service life
is twice that of lithium batteries and four times that of hydrogenated batteries, and their
weight is only about 50% of traditional batteries. However, due to various reasons such
as costs, the large-scale promotion of graphene batteries still faces some problems. The
development of automobile power batteries is expected to focus on long cells and large
modules. By using laminated technology, the energy density can be increased by 5%, the
life cycle can be increased by 10%, and the costs can be reduced by 15%.

V2G aims to use EVs as both a travel tool and a mobile energy storage device [202].
V2G guides EVs to discharge when the power grid is insufficient and charge when the
power grid is at its peak and uses incentives such as electricity prices to realize the interac-
tion between EVs and the power grid. At the same time, EVs can be used as power sources
to power other devices, including vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-
human, vehicle-to-external network, and other application scenarios [203]. V2G provides a
more flexible and economical energy storage mode for the power grid and provides a new
solution for grid connections and the economic dispatch of EVs [204].

10. Conclusions

To further reduce the charging time of EVs, high-power fast charging has become
an important development direction for EV charging technology. This paper discusses
the development status, system architecture, and related standards of electric vehicle fast-
charging systems, the topology and control technology of power converters, the influence
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of high-power fast charging on power batteries, and future development trends. The
topologies of the front-stage AC/DC converter and the rear-stage DC/DC converter for the
fast-charging system are comprehensively analyzed and the advantages and disadvantages
of the related topologies are summarized. Additionally, the control strategies of the front-
stage AC/DC converter and the rear-stage DC/DC converter are studied. The control
target of the front-stage AC/DC converter is to output a stable voltage on the DC side
and the AC side realizes the unit’s power factor operation. The goal of the control target
of the rear-stage DC/DC converter is to achieve ZVS in the full load range, reduce the
current ripple, and improve system efficiency. The promotion of fast-charging technology
for EVs depends largely on the efficiency, cost, safety, reliability, and control methods
of the converter topology. The fast charging of EVs will also have an impact on power
batteries. The optimization of charging methods and improvement of battery materials will
become important factors in the widespread popularity of fast-charging technology. The
application of V2G can effectively reduce the cost of EVs and could become the key to the
popularization of electric vehicles.
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