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Abstract: Federated Learning (FL) is an effective framework for a distributed system that constructs
a powerful global deep learning model, which diminishes the local bias and accommodates the
successful aggregation of locally trained models with heterogeneous datasets. However, when
local datasets have the non-IID attribute, the optimization metric tends to diverge or show unstable
convergence in the trajectory space. This paper delves into building a global model for the distributed
Smart Grid environment, with regionally cumulated three solar energy datasets from January 2017 to
August 2021 in a decentralized power grid in South Korea via FL. This distributed energy network
involves local properties and physical distance between the regions, which raises a fundamental
question of “Will time-serially curated non-IID local features be effective in constructing a global
regression model?”. This paper probes this question by leveraging FL and conducts the theoretically
viable non-IID case-by-case convergence analysis, providing the interpretation of the embedded
temporal non-IID features and application on real-world data. Moreover, most of the FL studies
predetermine the global update period, which lacks applicability when adapting FL in actual practice.
As FL is a cumulative-basis structure, the update term is a crucial factor that needs to be carefully
selected. This paper articulates this problem and explores the effective update period via multiple
experiments on the 4.5 years of solar energy dataset, and to the best of my knowledge, this is the first
literature that presents the optimal update period in the FL regression in an energy domain.

Keywords: convergence optimization; decentralized power grid environment; federated learning
regression; IID and Non-IID local dataset; solar energy prediction

1. Introduction

The distributed environment is a practical setting that independently curates local
datasets, which reflect the intrinsic attributes and properties that may vary in each local
environment. In such settings, Federated Learning (FL) [1] is known to be a suitable ar-
chitecture that accommodates the successful aggregation of heterogeneously trained local
models that mirrors its local environments. It reduces regional bias and enhances generaliz-
ability without transmitting all the local datasets into one primary server, which guarantees
local data privacy. However, when periodically accumulated local datasets are not indepen-
dent and identically distributed (non-IID), the global model in FL tends to diverge without
obtaining a smooth convergence trajectory in the learning space. This condition typically
occurs in the real-world system and has been suggested as a significant issue that needs to
be solved for further implementation of FL to achieve successful utilization.

One of the distributed system domains that show an interest in utilizing FL is Smart
Grid. Smart Grid is a decentralized-oriented power grid network architecture that adap-
tively accommodates the best utilization of electricity resources that consist of multiple
agents (prosumers), synchronously producing and consuming energy by forecasting the
future energy amounts. As a vast dataset volume is being generated in the Smart Grid
environment in real-time (e.g., multimodal sensors), and the conventional process such
as transmitting raw dataset, combining, storing, and preprocessing into an ideal format,
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then training the model inside a global server is a heavy process, and is not systemati-
cally suitable in such decentralized environment. Moreover, the energy dataset involves
valuable information, such as correlation to national security or companies’ and users’
privacy; its security must be preserved. FL provides a breakthrough to those problems,
offering solutions to efficiently operate the existing processes and to preserve data privacy.
Smart Grid is a paradigm that operates in a parallel fashion; it optimizes the allocation of
available resources (i.e., Distributed Energy Resources; DER) and energy inside the discrete
geographical area (e.g., Micro-Grid), which is an ideal environment for applying FL, as
shown in Figure 1.
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Figure 1. Federated Learning architecture visualization in solar energy generation environment.

However, to effectively adapt FL in a Smart Grid, it encounters several realistic
hindrances. Establishing a high-performance deep learning forecasting model is crucial,
which requires data engineering and extracting salient features that directly and deviously
affect the target variable. The primary issues of FL in a dispersed energy grid to predict the
DER can be summarized as follows.

Non-deterministic attribute—Obfuscates the future strategy: The FL with an objective
function being classification has been widely studied concerning convergence analyses [2]
and applications [3,4] since it assumes that the existing label types are predefined, which
makes comparatively a straightforward setting. However, regression is a relatively arduous
task compared to classification since the expected output vector is mostly continuous
within the time domain, which must be accompanied by an assumption that the local
datasets share similar distribution-wise statistical features to extract information. Such
stochastic attribute increases the efforts of fine-tuning the single global model in FL to
build a successful management system and hinders the stable convergence of the iteratively
aggregated global model.

Data-level limitation—non-IID in real practice: In actual practice, most datasets fre-
quently encompass the skewed, biased distribution with non-IID attributes. The target
distribution range and observed time domain properties may vary in each local dataset.
Additionally, data loss may incur triggered by equipment malfunctions, low bandwidth,
etc., which will unbalance the dataset volume at the local level. These unexpected anoma-
lies enhance the difficulty of maintaining the identical setting in the system, which will
dilute the similarity of the input features.

Algorithmic-level limitation—Unstable convergence: FL is essentially an iteratively
cumulated process that non-linearly trains the parameters and linearly aggregates the
selected locals. Thus, a poorly trained local model and ineffective selection among the
network will trigger the global model to suffer unstable convergence that generates a biased
model, or it may incur divergence (i.e., client drift [5]) in the worst case.
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This paper adopts the FL framework in a non-IID scenario that accommodates the
effective convergence optimization in the non-IID local dataset while predicting the quanti-
tative energy utilization (e.g., energy production, consumption to target) for constructing
future response strategies. This work conducts a theoretical convergence analysis while
inserting a biased dataset and discovering the preeminent periodical global updates. The
presented empirical experiment results validate this claim via training a real-setting solar
power energy generation dataset from January 2017 to August 2021 in three disparate loca-
tions in South Korea [6]. Furthermore, we explore the periodical training effect and update
the central global model in the real-world environment, presenting the optimal update
period that converges, returning the lowest loss value among the suggested candidates
of the update scheme. To the best of my knowledge, this is the initial study that offers
the effective update period selection of the regression-based task in FL, also investigating
the time-series non-IID property analysis with practically viable cases. The summary of
contributions of this research is as follows:

• This work defines the viable case-by-case scenarios of the locally collected non-IID
dataset. It suggests a quantification scheme of the non-IID degree in a regression-based
FL network with both local and global perspectives. To the best of my knowledge,
this is the first study that covers the domain of local non-IID attributes in the FL
regression task.

• This work suggests theoretical convergence analysis in FL regression optimization
based on the quantitative degree of IID and non-IID attributes at the local training
dataset, proposing a practical training approach to enhance the convergence rate of
the global model.

• This work validates the suggested analysis through multiple experiments in the FL
model with the distributed solar energy generation dataset in specific regions of South
Korea within the period of January 2017 to August 2021 to empirically vindicate the
usability and performance of the suggested FL regression and update periods in future
applications in the Smart Grid system.

The contents covered in this paper are organized as follows: Section 2 illustrates
the milestones concerning FL in energy prediction in the Power Grid environment and
previous footprints of non-IID-related FL studies. Section 3 covers the preliminaries of FL
and explicates the non-IID and IID attributes in FL regression, which defines the feasible
non-IID cases suited for actual practice. Section 4 illustrates the estimated dataset’s non-IID
degree and performs convergence analysis of the FL regression with multiple experiments.
Finally, Section 5 concludes this study by offering insights and core elements that need to
be covered in future studies.

2. Related Works

FL is a diversely implemented architecture for optimizing the power grid system for
pragmatic energy usage [7,8] via collaboration with geographically dispersed AI models.
Diverse studies were suggested to design a cost-effective structure in such an energy-grid
system, analyzing the challenges and issues from multiple perspectives, such as resource
allocation, convergence analysis [3,4], and network cost [9]. Zhai et al. [10] applied the
FL algorithm in dynamic network bandwidth settings in edge computing in the power
grid. Liu et al. [11] brought the concept of horizontal and vertical FL and implemented
those concepts into predicting power consumption. They merged the encryption algo-
rithm while transferring information between the local and the server to ensure privacy.
Since privacy concerns are a significant issue in the Smart Grid, studies were conducted to
mitigate the vulnerability through FL. Wen et al. [12] proposed the energy theft anomaly
detection model in the FL network and compared its detection performance with other
models. Zhao et al. [13] designed the anomaly detection scheme in the solar farm data to
prevent the injection attack. FL-based blockchain technologies were also studied in the
smart environment [14]. Al-Quraan et al. [15] presented a cost-efficient measure concerning
communication and computation by processing the collected data in a Smart Grid envi-
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ronment. Additionally, Wang et al. [16] analyzed the consumer’s characteristic dataset,
leveraged privacy-enhanced PCA to diminish the features, and applied it to the ANN
for target attribute identification. Zhao et al. [17] applied differential privacy into FL to
enhance the security of local-level LSTM that predicts the energy consumption of individual
households’ datasets. Similarly, privacy-preserving FL was recently studied in energy grid
environments, most of them to achieve the secure aggregation of local information at the
global level [18,19]. Petrangeli et al. [20] performed energy forecasting on the distributed
residential household areas with an energy dataset measured from multimeters, and they
empirically showed the trade-off between privacy and performance. Likewise, previous
studies that dealt with FL in specific energy grid settings were mainly on the rudimentary
steps of adapting the FL toward achieving classification-based tasks.

The primary objective of FL in a Smart Grid is to aggregate the local information
and collaboratively produce the constructive measure by predicting the target unit, such
as energy demand (i.e., base load and peak load) and energy production (i.e., renewable
energy). To investigate related works, Taïk et al. [21] conducted individual short-term load
forecasting by FL in distantly proximate houses in the state of Texas, USA, and applied a
real-world dataset to build a robust prediction model in FL. Zhang et al. [22] introduced an
efficient data-management FL system trained through deep reinforcement learning in IIoT
settings. Moreover, FL was widely implemented in energy demand learning (EDL) domains,
and Saputra et al. [23] adopted EDL in the distributed data of electric vehicles, predicting
the energy demand in Dundee city, UK. Huang et al. [24] propounded FL in parking service
estimation and resource allocation via LSTM and applied Stackelberg game theory and
reinforcement learning to enhance the utility of the parking lot operations. FL scheme
is also used in non-intrusive load monitoring (NILM) in the power grid and technology
in a distributed environment to analyze the power consumption data for constructive
usage [25,26]. These initial approaches proposed the novelty and proof that FL is indeed
an effective structure to be applied in the power system. On the other hand, most of these
studies do not involve practical usage, as the FedAvg tends to be vulnerable to classification
problems while non-IID data are fed into the model.

When it comes to non-IID, although in a different field compared to this study, mul-
tiple literature were presented to minimize the effect of a non-IID using the clustering
algorithm. Nightingale et al. [27] suggested energy forecasting schemes using multiple
clusters to categorize the clients with similar attributes using K-means and scored lower
RMSE and MAPE compared to conventional FL, which offers that sorted models with
spatial information perform better. Similarly, Brigg et al. [28] leveraged the clustering
method in FL (FL + HC; hierarchical clustering) and built an energy forecasting model
with a non-IID dataset. This manuscript lies in a similar context in dealing with a non-IID
dataset. Although studies [29,30] exist that explore the classification task in non-IID settings,
existing works did not thoroughly investigate the intrinsic properties of the serially curated
non-IID dataset, which fundamentally limits the utilization of further regression-oriented
application domains. This work offers a theoretical analysis of possible case-by-case non-
IID scenarios and applies the analysis in a real-life setting to validate the claim. Moreover,
this work provides intuitive explanations by exploring interior features that it involves
non-IID attributes to essentially comprehend the time-serial statistics.

FL is a cumulative process that iteratively updates the global model after local-level
aggregation, and the optimal update period is considered critical to building a high-
performance global model. This period agenda has recently been intensely studied by
Yan et al. [31] with various criteria, including batch size, weight decay, learning rate
annealing, etc. Most of the conventional FL studies pre-set the update period, which is a
significant matter when designing an applicable system in the Smart Grid scenario. This
work articulates this issue and utilizes 4.5 years-period dataset to demonstrate the training
impact of a multiple global update period. Furthermore, this work offers the optimal
updating term based on empirical analysis that realizes the best performance.
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3. FL Regression: Trained with Non-IID and IID
3.1. Federated Learning

FL has become a successful framework as the locally curated dataset volume has vastly
increased [32], and transmitting, preprocessing, managing, and training those datasets
only in a centralized system undisputedly requires high cost. Moreover, more distributed
systems are adopting a decentralized collaboration since locally acquired heterogeneous
information is valuable for discovering local and global knowledge and reducing bias.
Furthermore, FL preserves the privacy and security of the edge dataset. It iteratively
builds a powerful global model by aggregating the local clients [33], which is generalizable,
locally and time-wise agnostic, not overfitted to a particular distribution. In general,
when the target incorporates robust spatiotemporal features, this is a well-suited task in
FL, where it productively aggregates the embedded features. However, when the target
domain must embrace diversity, FL may not be the best alternative, and preserving those
heterogeneities may be appropriate. Nevertheless, one particular setting will plausibly
trigger the overfitting; thus, contemplating the locals that share similar features is helpful.
Therefore, examining the target environment is critical to evaluate the potential effect of
FL. Our Smart Grid is considered befitting since clients share high-level features, and
acquiring those subtly different distributions helps avoid overfitting and construct a global
model. The basic formula of the global model in FL (FedAvg [1]) is indicated as follows
Equations (1)–(5).

G(T) 3W(T) :=
1

n(R)∑
n(R)
i=R[0]W

(T,t)
i (1)

W(T,t)
i :=

{
∪∀jw

(T,t)
i,j ,∪∀jb

(T,t)
i,j

}
(2)

R := { l|1 ≤ l ≤ n(∪∀ii)}s.t.R ⊆ ∪∀ii (3)

W(T,t+1)
i = W(T,t)

i − η
∂L
(

h(T,t)
i ,yi

)
∂W(T,t)

i

s.t. lim
t→t

(
min
∀i

L
(

f
(

D(T)
i , W(T,t)

i

)
, y(T)

i

))
: W(T,1)

i →W(T,t)
i

(4)

f (T)
(

u(t)
∀j · x

(t)
∀j + w(t)

∀j · h
(t)
∀j + b(t)∀j

)
→ h(T,t) ∈ Rd (5)

Note that the variables and parameters used in this study are listed in Notations. The
individual model Mi(·) are identical regression model types, and n

(
∪∀k`(∃i,k)

)
= c ∈ N

since (1) is a pairwise and elementwise computation inside a matrix form, where
n(W∀i) = ĉ ∈ N and when (n(W∀i) 6= n(W∀i′)) or

(
n
(
∪∀k`(∃i,k)

)
6= n

(
∪∀k`(∃i′ ,k)

))
9

lim
T→T

(
lim
t→t

(
min
∀i

L
(

h(T,t)
i , y

)))
[2,5].

3.2. Non-IID Cases in Regression-Based FL

This section defines the non-IID cases in the regression-based FL environment, which
globally modifies the global model with two perspectives. First, this section describes
the FL cases with the data-structural view in Section 3.2.1 and construes the FL-structural
standpoint in Section 3.2.2.

3.2.1. Non-IID Cases with a Structural View

The feasible cases are as follows:

• Case A. n
(

D(T,t)
(∃i,train)

)
6= n

(
D(T,t)

(∃i′ ,train)

)
s.t. i 6= i′ and Di =

(
∪∀jxj,∪∀jyj

)
.
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• Case B. ψ
(
D
(
∪∀jy(∃i,j)

)
,D
(
∪∀jy(∃i′ ,j)

))
� 0 s.t. i 6= i′ and n

(
∪∀jy(∃i,j)

)
=

n
(
∪∀jy(∃i′ ,j)

)
in (5).

• Case C. 1
∪∀j1 ∑∀j

(
δ
(

y(i,j), y(i′ ,j)
))
� 0.

Case A indicates the different amount of data in each local while identical epoch
(i.e., global/local). Assorted environmental factors such as low bandwidth and faulty
sensors may incur data loss in identical sampling rate and data acquisition frequency. Case
B illustrates the different distribution of ∪∀jyj in ∃i and ∃i′, representing the condition
of yi. This value can be utilized to measure the quantitative quality of a particular local
dataset to serve as the standard for selecting Ml∈R. It implements the Kullback–Leibler
divergence in (6) to compute the density difference of y(i,i′), and determine as non-IID

when it satisfies Case B. Depending on the environmental characteristic, D
(
∪∀jy(∃i,j)

)
may

have unique distribution, such as yi ∼ N
(
µ(y∀i), σ2(y∀i)

)
, yi ∼ Gamma(α, β), etc., and

when σ
(
∪∀iD

(
∪∀jy(∃i,j)

))
≈ 0, the most frequent D

(
∪∀jy(∃i,j)

)
becomes the ground truth.

The left term in Case C shows the time-dependent distribution difference δ(yi, yi′) in (7).
On the other hand, Case B does not consider the time-series attribute, which may incur
the risk of unstable convergence while training the local models. Typically, time-series
datasets embed the temporal-domain features that must be utilized to obtain (4). Thus, this
is designated as another metric for the non-IID dataset.

ψ

(
D
(
∪
∀j

y(∃i,j)

)
,D
(
∪
∀j

y(∃i′ ,j)

))
:= ∑
∀j

D
(
∪
∀j

y(∃i,j)

)
log

D
(
∪∀jy(∃i,j)

)
D
(
∪∀jy(∃i′ ,j)

) (6)

δ(yi, yi′) := yi − yi′ in elementwise and pairwise f ashion

s.t. yi = ∪∀j
y(i,j), yi′ = ∪∀j

y(i′ ,j) (7)

3.2.2. Non-IID Cases in FL-Structural View

The training in FL has three primary levels: individual local client-level training with
t epoch, aggregation of every local client in a single global T communication round, and
training with T → T global round. The categorization of the cases via three levels is as
follows: (∃i, ∃T) ≺ (∀i, ∃T) ≺ (∀i, ∀T).

• Case 1.
(

M(∃T)
∃i , M(∃T)

∃i′

)
→ case A or B or C .

• Case 2.
(

M(∃T)
∃i , M(∃T)

∃i′

)
9 case A or B or C.

• Case 3.
(

M(∃T)
∀i , M(∃T′)

∀i

)
→ case A or B or C .

• Case 4.
(

M(∃T)
∀i , M(∃T′)

∀i

)
9 case A or B or C.

• Case 5.
(

M(∀T)
∀i ,M

)
→ case A or B or C .

• Case 6.
(

M(∀T)
∀i ,M

)
9 case A or B or C.

The inputs were formulated by (2 ∼ 4) : M(T=1,t=1)
i → M(T=T,t=t)

i 3W(T,t)
i in

Equations (1)–(3), where
(
∪∀jx(i,j), yi

)
∈ Di. Case 1 and 2, respectively, exhibit the non-IID

and IID cases, where both are adjusted at the local client level. In the IID case, we know
that n

(
D∃T
∃i
)
= n

(
D∃T
∃i
)
, ψ
(
D(∃T)
∃i ,D(∃T)

∃i′

)
, 1
∪∀j1 ∑∀j(δ(yi, yi′)) ≈ 0, which M(∃T)

∃i ≈ M(∃T)
∃i′ .

When the two inputs satisfy any cases of A, B, and C, this designates it as non-IID. Likewise,
Cases 3 and 4 indicate the non-IID and IID case in the single global communication level,
which incorporates all existing local clients (i.e., or only the selected few, depending on

the FL aggregation algorithm). Case 4 shows that M(∃T)
∃i ≈ M(∃T′)

∃i . In Cases 5 and 6,
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M→ lim
T→T

(lim
t→t

(min
∀i

µ
(
L
(
M(T,t)

i , M(T,t)
i

))
)) is the robust model trained with an ideal local

dataset that guarantees convergence. Moreover, M(T,t)
i ≈ M(T,t)

i in Case 6, which is the
supreme model presenting the highest performance.

3.3. IID Dataset in FL Regression

A locally extracted IID dataset assumes a particular distribution, and such an attribute
is beneficial. When the target system shares the analogous features that hold the IID
attribute with specific distribution, this neglects the limitations that hinder the convergence,
such as the geographical distance among the system becoming meaningless. With a unique
convergence that trains the local model independently, Mi 3 Wi conducts (4), (5) and
satisfies lim

t→t

(4) : min
t=1

L
(

h(t)
∃i , y(t)

∃i

)
→ min

t=t

L
(

h(t)
∃i , y(t)

∃i

)
in parallel in ∀i. Then the server

performs (1), where 1
∪∀i1 ∑∀i Mi := G(T). This case holds the following assumption.

Assumption 1. D
(

x(∃i,∀ f ), y∃i

)
≈ D

(
x(∃i′ ,∀ f ′), y∃i′

)
and 1

∪∀j1 ∑∀j

(
δ
(

x(i, f ), x(i′ , f ′)

))
≈ 0,

which does not satisfy cases A, B, and C.

This assumption will preserve the properties of the independently trained local models,
which share similar features at a high-level while (3) and (4) achieve min

∀i
L
(

h(∀t)
i , y(∀t)

i

)
,

thus
(

∆Wi
(t) ≈ ∆Wi′

(t)
)
∈ Rd. Furthermore, additive measures such as regularization

schemes (e.g., batch normalization) will enhance the similarity in the convergence trajectory

such that E
[(

Ŵ
(t)
i − µ

(
∪∀tŴ

(t)
i

))(
Ŵ

(∃t)
i′ − µ

(
∪∀tŴ

(t)
i′

))]
· 1

σ

(
∪∀tŴ

(t)
i

)
·σ
(
∪∀tŴ

(t)
i′

) > 0,

where Ŵ
(t)
i =

∆W(t)
i −µ

(
∪∀t∆W(t)

i

)
σ
(
∪∀t∆W(t)

i

) . Let Di = ∪fxf, such that xf =
{

x(f,t1)
, x(f,t2)

, . . . , x(f,tn)

}
,

which indicates a time-series dataset aligned with tn∈N. In D(T,t)
i , D(T,t′)

i ↔ D(T,t)
i where

(t′ 6= t) ≤ t, when (8), where φ(t, q) refers to a multivariate function, and q is a set
of variables, then (9) must be met if n

(
D(∃T,∀t)

i

)
and ∆t(T)s =

∣∣∣t(T)s − t(T+1)
s

∣∣∣ are not
deterministic. In FL, M∀i gradually updates (3) in a synchronous fashion; thus, (10) is
computed where τ indicates the sampling rate per second and ε is the error term. Based
on (10), this sets the optimal T in (11) that ensures high-performance training, and Section 4
empirically validates this claim.

∪
∀T

D(T,∀t)
i = φ(t, q) ≈ β · sin(α · t) · d

dt
φ′(t, q) (8)

min n
(

D(∃T,∀t)
i

)
> 2απ s.t. α ∈ N (9)

∣∣∣∣∣∣∆t(T)
∣∣∣∣∣∣ · τ = n

(
D(T,∀t)

i

)
+ ε (10)

(T = T + 1)→
∣∣∣∣∣∣∆t(T) · τ

∣∣∣∣∣∣ ≈ n
(

D(T,∀t)
i

)
> 2απ (11)

4. Property and Performance Analysis of FL Regression

As the renewable energy source is an unstabilized power source due to inconstant
generative output patterns that vary throughout time, this section implements FL exper-
iments to predict the solar energy generation amount in solar power plants [6] in three
regions of South Korea. By conducting multiple experiments on such non-IID sundry envi-
ronments, this literature focuses on analyzing the primary properties of regression-based
FL in each subsection.
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4.1. Dataset Analysis

The acquired dataset [6] was imported from the public portal provided by the Ko-
rean government, which shows the solar power generation amount in the solar power
plants located in the three provinces (Sejong-si, Youngnam-gun, Ansan-si; L1, L2, L3). The
cumulation period was from 1 January 2017 to 31 August 2021 with hourly measurements.
Such a time-domain dataset has two main repeated periodical data time-unit frames: day
(24 h) and year. Monthly, weekly, and seasonally do not show a cyclic pattern, which was
not considered. The generation amount repeatedly displays a similar trend in those two
units, such that n

(
D(∃T)

i

)
= 24 or 8760, and δ

(
D(∃T)

i , D(∃T)
i′ s.t. n

(
D(∃T)

i

)
= 24 or 8760

)
�

δ
(

D(∃T)
i , D(∃T)

i′ s.t. n
(

D(∃T)
i

)
6= 24 or 8760

)
.

The following figures show the ideal sample and the defective sample of daily en-
ergy collection. Figure 2a displays a smooth curve starting around 7:00 a.m., reaches
its peak at 13:00 p.m., and halts the generation around 20:00 p.m. Let this ideal form
be (12). In (12), max S(th)→ d

dtS′(th) = 0 , and 12 ≤ argmax S(th) ≤ 14. Therefore,

d
dtS′(argmax S(th)± c) < d

dtS′(th 6= argmax S(th)± c), 2 ·
(

1+2c
24

)
≈

n
(
∪∀th

(th→(S(th)≈0))
)

24 ,
where c ∈ N indicates the proximal hours surrounding argmax S(th), and this explains
Figure 2c,d. In contrast, Figure 2a,b consists of unstable peaks without intuitive periodical
variation, which has the form of (13) and the most distinctive large density at S(th) ≈ 0.

S(th) =

i f 6 < h < 20, S(th) ≈ e
− 1

2 (
th−µ(∀th)

σ(∀th)
)

σ(th)
√

2π
+ ε

otherwise, S(th) ≈ 0
(12)

S(th) =

i f 6 < h < 20, S(th) ≤ e
− 1

2 (
th−µ(∀th)

σ(∀th)
)

σ(th)
√

2π
+ ε

otherwise, S(th) ≈ 0
(13)
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The non-IID property resembles risk while collaborating to aggregate the individual local
models. It was noted that the predefined non-IID case C to quantify its internal non-IID degree,
where 1

∪∀j1 ∑∀j(δ(yi, yi′)) � 0. Case C is computed through ∪years
1
24 ∑t=24

i=1
(∣∣L̂i − L̂i′

∣∣) ≡
(7) := δ̂(Li, Li′), and L̂(i,j) = ∪∀j L̂(i,j), s.t.L̂(i,j) =

L(i,j)−max
∀j

L(i,j)

max
∀j

L(i,j)−min
∀j

L(i,j)
. Table 1 displays the

µ
(
δ̂(Li, Li′)

)
± σ

(
δ̂(Li, Li′)

)
in each year and the overall values combined for all the periods.

Based on this, assuming that the dataset shares similar features in the synchronous time
domain, it is certain that the degree of the non-IID attribute is: δ̂(L2, L3) > δ̂(L1, L3) >
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δ̂(L1, L2). Additionally, although L∀i shares a synchronous direct source, the geographical
distance between the entities should be pondered. The relationship of the Euclidean distance
is (L2, L3) ≈ 330 > (L1, L3) ≈ 230 > (L1, L2) ≈ 130, where the unit is kilometers, which is
identical to the degree of non-IID. This can be roughly interpreted as the proximal distance is
likely to share analogous features, and utilizing those factors can be beneficial; this claim is
validated in Section 4.3.

Table 1. δ̂(Li, Li′ ) values.

δ̂(L1,L2) δ̂(L1,L3) δ̂(L2,L3)

2017 1.60 ± 0.85 1.55 ± 1.03 1.86 ± 0.90
2018 1.66 ± 0.95 1.60 ± 0.99 1.86 ± 0.91
2019 1.57 ± 0.88 1.60 ± 0.99 1.83 ± 0.91
2020 1.71 ± 0.75 1.61 ± 1.00 1.97 ± 0.86

August 2021 1.87 ± 0.87 1.64 ± 0.97 1.98 ± 0.86
Overall 1.67 ± 0.87 1.60 ± 1.00 1.89 ± 0.89

4.2. Training RNN-Based Models in Local Client

Based on the collected dataset (Di ∈ Li), the experiment initially implements the
three RNN-based models: LSTM, GRU, and BiLSTM, to train the solar energy generation
amount. The training dataset is nominated with the other two Di (xf=Di ) in the initial
experiment setting, and the training label is target Di′ (e.g., i = 1, 2, i′ = 3). The second
experimental setting inserts all the D∀i 3 xf=Di in the training dataset to train the single
model (e.g., i = 1, 2, 3, i′ = 1 or 2 or 3). The third experiment independently trains
three RNN-based models (Mi) with their unique Di. Every experiment had an identical
model structure with 1000 epochs, RNN-based model (64)-Dense (64)-Dense (32)-Dense
(1), 32 batch size, Adam optimizer, ReLU activation function, mean-absolute-error loss
function, 20% validation split from the training dataset, training dataset were January
2017–December 2020, and test dataset were January 2021–August 2021. The results of
experiments 1 and 2 are shown in Figure 3, and experiment 3 is shown in Figure 4.
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expected, with an average value of 58,202.96 (Local 1), 62,592.67 (Local 2), and 635,606.56 
(Local 3) in LSTM. Local 3 shows the worst performance, approximately ten times larger 

Figure 3. RNN-based models’ training MAE result for experiments 1 and 2: rows 1–3 and column
1 display the MAE-LSTM, BiLSTM, and GRU with training dataset (D1, D2) and target dataset D3.
Figures in rows 1–3 and columns 2–3 show MAE-LSTM, BiLSTM, and GRU with training dataset
(D1, D3), (D2, D3), and target dataset D2.D1, respectively. Figures in rows 4–6 columns 1–3 was
trained with (D1, D2, D3), and their target set was D1, D2, D3, respectively.
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scale of 0–1200, and row 2 has a narrow scale of 0–100. Figures in row 3 show the BiLSTM result, and
row 4 shows the GRU result. The Figures in sequential columns in each row indicate local 1,2, and 3.
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Compared to other experiments, the MAE of experiment 1 reveals to be lower than
expected, with an average value of 58,202.96 (Local 1), 62,592.67 (Local 2), and 635,606.56
(Local 3) in LSTM. Local 3 shows the worst performance, approximately ten times larger
than the other two local models. However, the average data value for all locals is 250,251.28,
which the unit itself is considered large. This implies that a training dataset that incorpo-
rates past data is the compelling feature that must be fused. Assuming from the general
knowledge that a more quality dataset volume enhances the performance, experiment 2
spends more resources than experiment 1 with additional features (i.e., an identical unit of
target labels with a different period). The training was successful, lowering the average of
MAE to 9.66 (Local 1), 71.93 (Local 2), and 75.47 (Local 3), which is a far better achievement
than experiment 1. However, experiment 3 surpasses this with 1.28 (Local 1), 12.20 (Local 2),
and 27.50 (Local 3). This implies that FL performance is unlikely to be superior to the
locally trained model when forecasting its individual target value. The following subsection
explicates this in detail. The overall results are shown in Table 2.

Table 2. Final training result for experiments 1–3.

Experiment 1

Local 1 Local 2 Local 3

Train Val Train Val Train Val

LSTM 60,298.26 58,202.96 64,383.79 62,592.67 662,806.25 635,606.56

GRU 60,169.04 58,801.27 64,059.05 64,715.78 640,914.86 641,708.94

BiLSTM 59,735.69 58,777.66 64,374.08 65,708.52 646,646.01 651,371.92

Experiment 2

Local 1 Local 2 Local 3

Train Val Train Val Train Val

LSTM 39.41 9.66 93.16 71.93 374.10 75.47

GRU 47.73 36.67 30.86 27.75 443.16 310.01

BiLSTM 41.74 58.56 35.78 12.73 56.57 59.75

Experiment 3

Local 1 Local 2 Local 3

Train Val Train Val Train Val

LSTM 21.56 1.28 27.41 12.20 159.37 27.50

GRU 29.86 19.76 32.15 6.80 204.22 30.82

BiLSTM 22.43 1.81 14.13 8.16 119.58 16.97

4.3. Merging Heterogeneous Local Models in FL

The MAE of the individual local models in Section 4.2 results shows that
MAE(L1) < MAE(L2) < MAE(L3) in experiments 1–3. This relation corresponds to
δ̂(L2, L3) > δ̂(L1, L3) > δ̂(L1, L2)↔ non-IID degree: L3 > L2 > L1. Furthermore, Figure 5
shows the heatmap that displays the Pearson correlation of the yearly period
dataset. PCC

(
L(i,year), L(i′ ,year′)

)
> 0, 0.71 ≤ PCC

(
L(i,year), L(i′ ,year′)

)
≤ 0.79, and

0.87 ≤ PCC
(

L(i,year), L(i′ ,year)

)
≤ 1, where PCC(x, y) denotes the Pearson Correlation

Coefficient of input x, y, and year 6= year′, i 6= i′. This implies that the unmatched period
encompasses a relatively low statistical feature than the equivalent year dataset, which is
likely to be a non-IID dataset in terms of the period (i.e., dates rotate with the years).

Based on the locally trained models with a monthly dataset with 70 epochs, it merges
them to create G and iteratively propagates the lim

T→48
G(T) → L(T)

∀i (i.e., 12 months, 4 years),

where the overall training epoch is 70 · 12 · 4 = 3360. The result is shown in Figure 5, where
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the loss values are trained from G(T−1,t=70)
(train=L∃i)

→ f
(

D(T)
∃i

)
, minL

(
f
(

D(T)
∃i , W(T,t)

∃i

)
, y∃i

)
→

W(t+1)
∃i = ∆W(t)

∃i + W(t)
∃i , and L( f (Di), yi); training and validation datasets are shown in

Figure 6a,b. At every global epoch, a surge in loss is observed. Although
lim

T→T=48
( lim

t→t=20
L
(

f
(

D(T)
∃i , W(T,t)

∃i

)
, y∃i

)
) ≈ 0, which satisfies the objective function,

1
∑∀i 1 ∑

∀i
W(T)

i = G(T) → L
(

f
(

D(T)
∃i , W(T,t=t)

∃i

)
, y∃i

)
< L

(
f
(

D(T)
∃i , W(T+1,t=1)

∃i

)
, y∃i

)
.

Figure 6c–f shows the loss of initial and final local epoch L( f
(

D(T)
∃i , W(∀T,t=1)

∃i

)
,

L( f
(

D(T)
∃i , W(∀T,t=70)

∃i

)
, and results show that L( f

(
D(T)
∃i , W(T>2,t)

∃i

)
tend to converge. Note

that the LSTM layer was used in local models.
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(
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This denotes that after the merge in global communication, further training must be
accompanied for optimal convergence, and the following experiment proves this. After
1000 local epochs in the LSTM model, the experiment merged the locals, and the outcomes
were unsatisfactory while predicting the three test datasets, generating the MAE average
shown in Table 3. Furthermore, experiments were conducted on the different combinations
of locals while aggregation, such as combining only local models (1, 2), (2, 3), and (1, 3).
The results are shown in Table 3, along with the performance mentioned above.

Lemma 1. Loss in FL regression (i.e., L(y, f (x)) := 1
n ∑∀i(yi − f (xi))

2) converges such

that lim
T→T

(lim
t→t

L
(

f
(

D(T)
i , W(T,t)

i

)
, y∃i

)
) ≈ 0 in the Rd loss space where (T, t, d) ∈ N, while

1
∑∀i 1 ∑∀i W(T)

i = G(T) → L
(

f
(

D∃i, W(T,t=t)
∃i

)
, y∃i

)
< L

(
f
(

D∃i, W(T+1,t=1)
∃i

)
, y∃i

)
.

Theorem 1. Based on Lemma, additional local training is required s.t. (T, t) ≥ 2, after
1

∑∀i 1 ∑∀i W(T)
i = G(T) → lim

T→T
(lim

t→t

(min
∀i

L
(

f
(

D(T)
∃i , W(T,t)

∃i

)
, y∃i

)
)) in FL regression.

Proof of Theorem 1. Empirical experiments—Experiments results in Table 2 and Figure 5
show that the theorem is true. Note that if (T, t) = 1→ ∆W(t)

i = ∅ , and (T, t) > 1 →
∆W(t)

i 6= ∅, and ∆W(t)
i > 0, it satisfies (3). �
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Table 3. Average MAE result for local combinations.

Local 1 Local 2 Local 3

FedAvg (L1, L2, L3) 472,308.44 516,164.47 1,334,568.25
FedAvg (L1, L2) 183,788.52 220,938.30 1,605,387.38
FedAvg (L1, L3) 11,498.82 30,333.07 1,790,837.25
FedAvg (L2, L3) 228,898.06 201,307.98 2,012,914.50

4.4. Federated Learning on Periodical Update

This section focuses on exploring the impact of global periodical collaboration, which
is considered a vital factor while achieving convergence in FL. While total epochs are
identical, the experiment considers three following periodical aggregation cases:

• Case A. Daily update period, such that t = 24, and T = c
t

in (3).
• Case B. Monthly period, such that t = 24 · Days, and T = c

t·Days in (3).

• Case C. Yearly period, such that t = 24 · Days ·Months, and T = c
t·Days·Months in (3).

All the cases have identical total epochs (= t ·T = 3384) and equivalent layer struc-
tures using LSTM and hyperparameters to former experiments in this Section 4. Case
A results are shown in Figure 7a,b, with unstable convergence and relatively high loss
values. Case B was already conducted and delivered in Figure 6a,b, and case C results are
displayed in Figure 7c,d. In general, case C had the best performance, with a much smaller
loss (i.e., when observing the scale of the suggested Figure 7a–d and stable trajectory
compared to other cases). This implies that more local database volume will incorporate
better convergence when training FL.
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5. Conclusions

FL is a collaborative framework in a distributed system that accommodates a synergy
effect among locally trained models with independently collected datasets from its unique
environment. Aggregating the independently trained heterogeneous models construct
a powerful global model by absorbing various features that enhance generalization and
reduce bias. FL regression is widely impacted by the spatiotemporal features, where FL
operates in a decentralized system that subsumes the geographical distance between the
local units, and such curated datasets tend to be non-IID, which must take account of the
timely global update with period while training the FL. The learning trajectory of FL is
most likely to diverge when the adjustments are asynchronous or the assemblage does not
mitigate the heterogeneous properties. This implies that combining diverse and unique
local models trained with non-IID datasets in FL must be effectively aggregated in a way
that directs the global model to return a high prediction rate.

This paper explores regression models in the FL, defining the frequent non-IID cases
in real-life regression problems and discovering the temporal non-IID combination method
via theoretical analysis and empirical experiments. This work utilized the solar energy
generation dataset acquired from the three regions in South Korea and trained three types of
RNN-based models, and showed that the improvement of conglomerating local regression
models in the FL network correlates to the non-IID degree of the local dataset. This paper
quantitively assessed the local non-IID degree by examining the dataset and observing the
FL performance, which validated that the non-IID attribute hinders convergence during
iterative aggregation in regression. This paper also suggested and proved that the global
update period is a decisive factor that determines the performance of the FL through
multiple experiments with a 4.5-year-long dataset, which is a novel approach and pragmatic
matter that must be optimized when applied to a real-practice Smart Grid environment.

This study offers a collaboration scheme to build an efficient FL-based regression
model that can be utilized in the decentralized power grid system, which encompasses the
geographical features that are primarily nonadjacent and independently operate to each
neighbor’s power source. Through theoretical analysis and experiments suggested in this
study, the author hopes this FL research provides the practical approach and perspective to
a successful operation in a diversified disseminated energy grid system such as Smart Grid
and Micro Grid via FL.
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Notations

Notation Definition Notation Definition
G Global model t Local epoch
W Set of global parameters T Global epoch
W Tensor shape of parameters t Number of local epoch
w, b 2d vector of weights and bias T Number of global epoch
i, i′ Local client index (i 6= i′) L(·) Loss function of input
j, j′ i’s parameter index (j 6= j′) u, h Set of hidden units
c, ĉ Constant `, k Layer, Layer index
D Dataset ε Error term
R Required number of i Rd Loss space with d dimensions
D(·) Distribution of input η Learning rate
ψ(a, b) Kullback Leibler divergence of a, b M Ideal benchmark dataset

https://www.data.go.kr/data/15003553/fileData.do
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M Local model ts or h Time unit s: sec, h: hour
σ(·) Standard deviation of the input f Set of feature; f ∈ f
µ(·) Average of the input x ∈ x Input
τ sampling rate per second y ∈ y Ground truth
φ(·) multivariate function L1 Sejong-si
q multivariate function L2 Youngnam-gun

L3 Yansan-si
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