
Citation: Huang, J.; Liu, X.; Guo, T.;

Zhao, Z. A High-Performance

FPGA-Based Depthwise Separable

Convolution Accelerator. Electronics

2023, 12, 1571. https://doi.org/

10.3390/electronics12071571

Academic Editor: Alexander

Barkalov

Received: 26 February 2023

Revised: 22 March 2023

Accepted: 23 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A High-Performance FPGA-Based Depthwise Separable
Convolution Accelerator
Jiye Huang 1,2 , Xin Liu 1,2 , Tongdong Guo 1,* and Zhijin Zhao 3,*

1 The School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China;
hjynet@hdu.edu.cn (J.H.)

2 Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China
3 The School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: a393131715@gmail.com (T.G.); zhaozj03@hdu.edu.cn (Z.Z.)

Abstract: Depthwise separable convolution (DSC) significantly reduces parameter and floating
operations with an acceptable loss of accuracy and has been widely used in various lightweight
convolutional neural network (CNN) models. In practical applications, however, DSC accelerators
based on graphics processing units (GPUs) cannot fully exploit the performance of DSC and are
unsuitable for mobile application scenarios. Moreover, low resource utilization due to idle engines
is a common problem in DSC accelerator design. In this paper, a high-performance DSC hardware
accelerator based on field-programmable gate arrays (FPGAs) is proposed. A highly reusable
and scalable multiplication and accumulation engine is proposed to improve the utilization of
computational resources. An efficient convolution algorithm is proposed for depthwise convolution
(DWC) and pointwise convolution (PWC), respectively, to reduce the on-chip memory occupancy.
Meanwhile, the proposed convolution algorithms achieve partial fusion between PWC and DWC,
and improve the off-chip memory access efficiency. To maximise bandwidth utilization and reduce
latency when reading feature maps, an address mapping method for off-chip accesses is proposed.
The performance of the proposed accelerator is demonstrated by implementing MobileNetV2 on an
Intel Arria 10 GX660 FPGA by using Verilog HDL. The experimental results show that the proposed
DSC accelerator achieves a performance of 205.1 FPS, 128.8 GFLOPS, and 0.24 GOPS/DSP for input
images of size 224× 224× 3.

Keywords: convolutional neural network; depthwise separable convolution; field programmable
gate array; hardware accelerator; MobileNetV2

1. Introduction

Convolutional neural networks (CNNs) have been widely studied and applied to
various computational vision tasks such as image classification, target detection, and au-
tonomous driving due to their excellent performance [1–3]. For a long time, the mainstream
line of thinking has been to improve the accuracy by increasing the network depth and
complexity. However, it is difficult to implement deep networks with high computa-
tional density in embedded devices with limited computational resources, low power
consumption, and high real-time characteristics. Therefore, lightweight convolutional
neural network (CNN) design methods have attracted extensive research.

Network pruning and quantization were first proposed to reduce the computational
complexity and resource consumption of deep networks. Subsequently, lightweight designs
for the convolutional structure itself, such as depthwise separable convolution [4] and group
convolution, have been widely used. Compared to group convolution, DSC has higher
efficiency due to fewer parameters and floating operations [5], and is the most popular
lightweight design method for CNN models to our knowledge.

DSC-based CNN models are being used extensively in mobile terminals, placing new
demands on the power consumption and computing power of the platforms. GPUs offer

Electronics 2023, 12, 1571. https://doi.org/10.3390/electronics12071571 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12071571
https://doi.org/10.3390/electronics12071571
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8359-4868
https://orcid.org/0009-0004-4179-350X
https://orcid.org/0000-0002-1564-8171
https://orcid.org/0000-0002-5408-0574
https://doi.org/10.3390/electronics12071571
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12071571?type=check_update&version=1

Electronics 2023, 12, 1571 2 of 20

excellent intensive computing performance and are often used to implement traditional
convolutional accelerators. However, power consumption and volume limitations make it
difficult to use GPU accelerators in embedded mobile devices. In addition, DSC is greatly
different from the traditional standard convolution (STC) in terms of computational struc-
ture, and the performance of GPU-based accelerators for DSC cannot reach the theoretical
value due to the high MAC/FLOPs ratio of DSC [6]. The accelerators based on application-
specific integrated circuits (ASICs) are designed for specific networks and offer higher
processing efficiency and lower power consumption compared to GPU-based accelerators.
However, the long design and iteration cycles of ASICs and the rapid iteration of network
model updates make it difficult to take full advantageof ASICs. FPGAs have powerful paral-
lel computing capabilities and can process multiple data streams simultaneously to achieve
high throughput. In addition, FPGA-based accelerators have lower power consumption
compared to GPU-based accelerators and shorter design cycles compared to ASIC-based
accelerators. Therefore, FPGAs have attracted much attention in the implementation of
various DSC-based lightweight CNN accelerators.

Limited on-chip resources and off-chip memory access bandwidth are the two major
bottlenecks in implementing FPGA-based CNN accelerators. The key step in acceleration
is to maximise the utilization of on-chip computing resources and off-chip access band-
width, and reduce the utilization of on-chip memory resources. Pipelining is a common
technique for accelerating algorithms in FPGAs, and DSC can also be accelerated by using
pipelined hardware structures. Ref. [7] proposes an FPGA-based DSC accelerator with all
the layers working concurrently in a pipelined fashion to improve the system throughput
and performance. However, only a small 10-layer DSC model was deployed on FPGAs in
Ref. [7]. In fact, DSC-based networks typically have extremely deep network depth and
high complexity, such as MobilenetV2 which is a 54-layer network. When a deep DSC
model is deployed by using a fully pipelined architecture, the computational resources
consumed will be significantly higher. In response to this problem, partial pipeline struc-
tures are widely used. Ref. [8] proposes to design a separate DWC engine in addition
to the STC engine. By optimising the scheduling strategy, the two engines can operate
efficiently in a pipelined fashion, and the engine size is planned according to the difference
in computation volume between the different layers. However, since there are multiple
engines in the accelerator, including the STC engine, DWC engine, pooling engine, and
elementwise engine, when switching between different types of layers, it is not guaranteed
that all engines work in parallel in a pipeline fashion, which will lead to some engines
being idle. Ref. [9] uses a single PWC accelerator and a DWC accelerator individually.
The DWC accelerator can be pipelined after the PWC accelerator, or it can bypass the
PWC convolution accelerator to match the DWC in MobileNets, reducing off-chip memory
accesses and increasing inference speed. However, some engines will be idle when the com-
putation does not satisfy the order in which the PWC layer is computed before the DWC
layer, or when the PWC accelerator is bypassed. Other designs [10–14] that use a partially
pipelined architecture have similar engine idle problems, which reduce resource utilization.
In contrast to the pipeline architecture is the single-engine architecture. The single-engine
architecture was originally used in standard convolutional accelerators [15], and some
high-performance DSC accelerators [6,16–19] also use this architecture. Ref. [16] was the
first to propose an FPGA acceleration framework for DSC, designing a computational
engine with configurable modes and sizes to accommodate multiple operations, including
DWC and PWC, as well as an in-channel multiplexed data caching approach that reduces
off-chip memory bandwidth requirements, and finally implementing the MobileNetV2
network on an Arria10 Soc with an image classification speed of 266 FPS. However, it
does not propose a solution for the first standard convolutional layer and the last fully
connected layer, nor does it address how residual structures can be efficiently implemented
in hardware.

In summary, existing FPGA-based DSC accelerator designs can be divided into three
categories according to the strategy of using a pipelined structure. Accordingly, there are

Electronics 2023, 12, 1571 3 of 20

three different strategies for designing computational engines. They are (1) a fully discrete
dedicated engine design strategy, which corresponds to a fully pipelined architecture. In
this architecture, each computational layer has its own dedicated engine. However, the
strategy is not suitable for deep DSC networks due to the large amount of computational
resources consumed. (2) The second is a partially discrete dedicated engine design strategy,
which corresponds to a partially pipelined architecture. The strategy focuses on the design
of PWC and DWC dedicated compute engines, as well as other types of engines. Ideally,
the individual engines would be able to perform parallel computations in a pipelined
fashion to reduce off-chip accesses and improve accelerator performance. However, as
the accelerators switch between different types of layers, the order of the layer inputs
does not match the order in which the accelerators are expected, which inevitably leads to
some compute engines being idle, thus reducing resource utilization. (3) Thirdly, we have
single-engine architecture. Instead of designing dedicated engines for different types of
layers, multiple computations are achieved by configuring the computational modes of
a single engine, which has the advantage of making full use of computational resources.
However, the performance of single-engine accelerators is usually limited by the bandwidth
of off-chip memory access. In addition, as the calculation process of DSC is significantly
different from standard convolution, using a traditional STC engine to calculate DSC will
cause the engine to idle, resulting in a waste of processing elements.

The main contributions of this work are as follows.

1. A scalable and highly reusable multiplication and accumulation engine (MAE) is
proposed to solve the engine-idling problem caused by the separate dedicated engine
architecture, and the MAE is compatible with different types of computation.

2. An efficient convolution algorithm is proposed for DWC and PWC, respectively, to
reduce the on-chip memory occupancy. Meanwhile, the two algorithms achieve layer
fusion between PWC and DWC and improve off-chip memory access efficiency.

3. An address-mapping method for off-chip access is proposed. This maximises band-
width utilization and reduces latency when reading feature maps.

The remainder of this paper is organized as follows. Section 2 briefly describes the
CNN and depthwise separable convolution. Section 3 presents the design of the proposed
accelerator, including the detailed computational engine design and two methods for DSC
acceleration. Section 4 gives the results of the performance evaluation of the accelerator.
Finally, Section 5 summarizes the content of this article.

2. Background
2.1. Convolutional Neural Network Components

CNNs are a special class of neural networks that are typically used for processing
two-dimensional data such as images and video, and the core idea of the CNN is to use
convolutional operations to extract spatially structured features from the input data. It
usually consists of a convolutional layer, a pooling layer, an activation function layer, a fully
connected layer and other structures. Several of the basic structures of CNNs mentioned in
this paper are described below.

2.1.1. Convolutional Layer

The convolutional layer is used to extract features and is the most computationally
intensive part of the entire network. Figure 1a shows a schematic of the convolutional
computation. A convolution kernel is multiplied by the corresponding input feature
window and accumulated to obtain a pixel value at the corresponding position of the
output feature map. If stride is 1, the computational formula can be expressed as follows:

OFSTC(co, h, w) =
IC

∑
ci=0

K

∑
k0=0

K

∑
k1=0

IFSTC(ci, h + k0, w + k1)× KERSTC(co, ci, k0, k1) + BSTC(co), (1)

Electronics 2023, 12, 1571 4 of 20

where co ∈ OC, h ∈ Fout, w ∈ Fout. IFSTC is the input feature map of size Fin × Fin × IC.
KERSTC is the convolution kernel of size K × K × IC×OC. OFSTC is the output feature
map of size Fout × Fout ×OC. BSTC is the bias of size 1×OC.

=OC

Fin

Fin

IC

Fout

Fout
OC

...

IC

K

IFSTC

*

KERSTC OFSTC

K

(a)

*

...

1
1

IC

OC

IC

IC

K
K Fin

OC

DWC PWC

*

b

IFDWC KERDWC OFDWC/IFPWC KERPWC OFPWC

Fin

Fin Fin Fout

Fout

Figure 1. Comparison of the computational flow of STC and DSC. (a) The computational flow of
standard convolution. (b) The computational flow of depthwise separable convolution. (∗) represents
the operation of convolution.

2.1.2. Activation Function Layer

The nonlinear layer, also known as the activation function layer, acts on the output of
the convolutional layer and can eliminate the linearity of the convolutional computation to
reflect the deeper meaning of the network. Common activation functions can be classified
into saturated activation functions including the sigmoid function, tanh function, etc., and
unsaturated activation functions including the ReLU function and leaky ReLU function.
For hardware deployment, unsaturated activation functions are easier to map to hard-
ware structures and are therefore used in some lightweight neural network models. The
ReLU6 function, which suppresses maximum and negative values, is primarily designed
to accommodate low-precision floating-point or fixed-point computing environments. Its
mathematical expression is

ReLU6(x) = min(6, max(0, x)). (2)

2.1.3. Global Pooling Layer

The pooling layer is used to downscale and remove redundant information. As a
special type of pooling layer, the global pooling layer is usually used in the deeper layers
of the network, before the fully connected layer. The global pooling layer converts a
single-channel feature map of size Fin × Fin to a 1× 1 size.

2.1.4. Fully Connected Layer

The fully connected layer maps the distributed features computed by the previous
layer of the network to the corresponding sample labels. The fully connected layer is
computed in a similar way to the convolutional layer and can be seen as a 1× 1 sized
convolutional kernel convolving a 1× 1 sized feature map.

Electronics 2023, 12, 1571 5 of 20

2.2. Depthwise Separable Convolution

Depthwise separable convolution is a form of factorized convolution which factorize a
STC into a DWC and a 1× 1 convolution called a PWC [20]. Whereas STC filters the inputs
and combines them into a new set of outputs in one step, DSC splits this operation into
two steps. In DWC, the input data is first grouped by channels, and each group undergoes
a convolution operation. Subsequently, PWC is employed to combine the results from
different channels.

A comparison of the computational flow of STC and DSC is shown in Figure 1. STC
sums the multiplication results of the input feature (IF) and the convolution kernel (KER)
of IC channels to obtain a output feature (OF) of single channel, while DWC only sums the
multiplication results of a single channel to obtain the output feature of the same channel.
PWC can be considered as an STC with a special convolution kernel size of 1× 1.

Assuming the size of the input feature map is Fin × Fin × IC, the convolution kernel
size is K× K× IC×OC, and the stride is 1. The total weights and the total multiplication
operations of the STC can be represented as follows, respectively:

WSTC = K× K× IC×OC (3)

MULTSTC = K× K× Fin × Fin × IC×OC. (4)

The total weights and total multiplication operations of the DSC are

WDSC = K× K× IC + IC×OC (5)

MULTDSC = K× K× Fin × Fin × IC + Fin × Fin × IC×OC. (6)

The ratio of DSC over STC on weights, multiplication operations are calculated
as follows:

RW =
WDSC
WSTC

=
1

OC
+

1
K2 (7)

RMULT =
MULTDSC
MULTSTC

=
1

OC
+

1
K2 . (8)

From Equations (7) and (8), it can be seen that the DSC can significantly reduce the
number of weights and the computational complexity of convolution compared to the
standard convolution. Therefore, it has been used by many excellent lightweight CNN
models [20–26].

3. Design of Accelerator
3.1. Overall Architecture

The overall architecture of the proposed accelerator is shown in Figure 2, which details
the main modules and the flow of instructions and data.

When the accelerator is started, the initialization instructions will first be generated
by the Init Instruction Generator, and then the network weights and biases are read from
external flash into on-chip memory. Simultaneously, the address mapping generator is
initialized according to preset network variables. Then, the reading feature instruction
is generated by the reading instruction generator, which acts on the memory controller.
The latter sends a read instruction via the Avalon-MM bus to the off-chip memory, which
returns the data after several clock cycles in a pipelined fashion. All read data is buffered
in the BRAM and distributed to different buffers by the data arbiter. When the biases,
weights, and input features are ready, convolution calculation is preformed by MAE, and
the output features are written back to DDR4 via the address-mapping generator. Write
feature instructions are generated by the write instruction generator and the write process

Electronics 2023, 12, 1571 6 of 20

is similar to the read process. Arbitration between different instructions is performed by
the ins arbiter. For framework compatibility and portability considerations, the system is
divided into three clock domains including the data processing clock domain, calculating
clock domain, and instruction processing clock domain. The calculating clock domain is
tuned to the performance of the hardware platform.

Off-chip Memory(DDR4) Flash

Avalon-MM Bus

BRAM Data Arbiter
Memory

Controller

Weights

Loader

Bias

Loader

Feature

Loader

Shortcuts

Loader

Multiplexed Buffer

Block

Feature

Buffer

PE PE PE PE

Address Mapping

Generator

In
s.

A
rb

it
e
r

Init.Instruction

Generator

Read/Write

Instruction Generator

Network Variables

Data Processing

Clock Domain

Calculating

Clock Domain FPGA

Ins.Processing

Clock Domain

Instruction generator

Instruction

Input Data

Output Data

...

Weights

Bias

Image

Feature Map

Shortcuts

MAE

Figure 2. The overall architecture of the proposed accelerator.

3.2. The Scalable Multiplication and Accumulation Engine

To address the problem of low utilization of computational resources caused by idle
engines during the running phrase, we propose a multiplexed scalable multiplication and
accumulation engine that is compatible with multiple types of computation. In this section,
the structure and variable parameters of the proposed calculation engine are explained in
detail. In addition, the utilization of the engine for different calculations is analysed.

The block diagram of the proposed MAE with N processing elements (PEs) is shown
in Figure 3. Each PE in the MAE contains a multiplication vector with MS2 multipliers, an
add tree with MS2 inputs, an accumulator logic block, two adders for bias and residual
summation, and a ReLUn (e.g., ReLU6) logic block. N PEs are used in parallel in each
MAE. The proposed MAE is scalable in size and can be adapted to various FPGA platforms
with different amounts of resources by configuring MS and N. For MS, two modes are
available—MS = 3 and MS = 4—and the default is MS = 4. Since 3 × 3 is a common
convolution kernel size in CNNs, and for DSC-based CNNs (e.g., MobilenetV2), the number
of channels of the feature map is usually an integer multiple of 16, the modes MS2 = 9
and MS2 = 16 are more friendly for PWC and DWC. A discussion of the utilization of
the proposed MAE will follow below. In addition, resource utilization and accelerator
performance can be easily balanced by adjusting the number of PEs, and the default is
N = 16.

The input of each PE consists of MS2 weight feature pairs, an inverse residual, and a
bias. Assume that the number of weight feature pairs required by a valid output of PE in a
single convolution calculation is M. M is equal to K × K for DWC and IC for PWC. The
accumulation number of the accumulator logic block is determined by M and MS and can
be expressed as

A =

⌈
M

MS2

⌉
, (9)

where d•e represents the operation of rounding up. The accumulator logic block works
continuously, and intermediate data is temporarily cached in REG or on-chip buffer as
shown in Figure 3. Compared to REG, the on-chip buffer requires more memory resources

Electronics 2023, 12, 1571 7 of 20

and can cache more data. Normally, the DWC calculation uses REG to accumulate directly,
and part of the PWC is temporarily stored in the on-chip buffer, because the size K of the
DWC filter is usually fixed and relatively small, and the channel depth IC of the PWC filter
is a dynamic value and relatively large. For DWC with a fixed K × K convolution kernel,
the default accumulation number is

ADWC =

⌈
K2

MS2

⌉
. (10)

As for PWC, IC is a dynamic variable that varies from layer to layer, and the preset
accumulation number is

APWC =

⌈
IC

MS2

⌉
. (11)

..
.

Shortcut

m

m

Bias

Shortcut

n

6

0

ReLUn
REG

On-chip
 buffer

H-Swish

Out0

..
.

Shortcut

m

m

Bias

Shortcut

n

6

0

ReLUn
REG

On-chip
 buffer

H-Swish

Out0
..

.

Shortcut
m

m

Bias

Shortcut

n

6

0

ReLUn
REG

On-chip
 buffer

H-Swish

Out0

N
..

.

Weights

Features

Shortcut

Mul Vector
MS

2
-input

Add-tree

MS
2

D
a
ta

 I
n

p
u

t

Bias

Shift Regs

Shortcut

Valid

Accumulator Logic Block

0

M

U

X

Activation Function

REG

On-chip
buffer

ReLUn

Out0

Accumulation

Number

9-input mode: MS=3

16-input mode: MS=4 PE

Figure 3. Block diagram of multiplication and accumulation engine.

The sum of the shortcut and bias is strictly aligned with the time sequence output of
the of the accumulator. In the layer without inverse residuals, the shortcuts are set to zero.
The ReLUn logic block is implemented by two comparators. It is worth noting that ReLUn
is placed at the end of each layer, while the inverse residual is placed before RelUn. The
inverse residual is a spanning summation operation between layers. In terms of execution
order, the inverse residual is usually executed after ReLUn, while in the proposed MAE
the inverse residual summation is deployed before ReLUn. This is because in a number of
DSC-based CNNs (e.g., MobileNetV3), ReLUn appears only within the bottleneck block,
while the inverse residual summation appears after the output layer of the bottleneck block.
Thus, ReLUn and inverse residual summation do not appear simultaneously. Therefore,
the proposed MAE prioritises the residual summation to reduce the number of pipelines.

The different types of computation are prenormalised to DWC and PWC before the
computation starts. The STC filter of size K× K× IC is replaced by the PWC filter of size
1× 1× IC× K2. Like STC, the FCL and GPL layers are also suitable to deployment as a
PWC layer. The role of the softmax layer is to assign class labels based on probabilities.
Since class labels are assigned by sorting the FCL output, which is less computationally
intensive, softmax is not deployed on the accelerator. Note that if necessary, softmax can be
implemented quickly on a Nios II processor. Batch normalization can be merged into the
weight and bias of the convolution layer, which is a common method [27,28]. In addition,
the inverse residual, which can be called a shortcut, should also be merged into the bias
because it always lags the convolution calculation.

Electronics 2023, 12, 1571 8 of 20

We analyze the scalable parameters MS and N by calculating the MAE utilization. In
the proposed MAE, the multipliers and adders are approximately equal in number, and
the PE utilization for convolution (e.g., DWC or PWC) can be represented by the valid
multiplication load percentage. For the MAE to work properly, a zero-fill complement to PE
is required for layers where the total number of multiplications is not an integer multiple of
MS2, and the zero-fill multiplication is referred to as an invalid multiplication load. If the
stride is 1, the MAE utilization for DWC and PWC with the convolution order proposed in
Section 3.3 can be expressed as

UDWC =
IC× K2 × Fin

2⌈
IC
N

⌉
× N ×

⌈
K2

MS2

⌉
×MS2 × Fin

2
(12)

UPWC =
IC×OC× Fin

2⌈
IC

MS2

⌉
×MS2 ×

⌈
OC
N

⌉
× N × Fin

2
. (13)

According to Equations (12) and (13), both UDWC and UPWC are independent of
the size of the input feature map. UDWC is related to IC and K, and UDWC reaches its
maximum value when IC is an integer multiple of N and K2 is an integer multiple of MS2.
UPWC is determined by IC and OC, and the MAE utilization for PWC is highest when
IC is an integer multiple of MS2 and OC is an integer multiple of N. We determined the
default values of MS and N by analyzing IC, OC and K of MobilenetV1, MobilenetV2,
and MobilenetV3.

3.3. Two Efficient Convolution Algorithms

Reducing on-chip memory and improving off-chip memory access efficiency are two
other focuses of this paper in addition to improving the engine utilization. In this section,
we first analyse the on-chip memory resources required for four common DSC computation
sequences based on the minimum cache and access cells shown in Figure 4. Subsequently,
an efficient convolution algorithm is designed for DWC and PWC, respectively, under
the condition of minimising on-chip memory to improve the PWC layer writing DDR4
efficiency and reduce the latency of reading feature maps.

n

...
...

PE with MS
2
 weight-feature

pairs inputs

m n
Features

Weights
MAE

Unit

1
1

Figure 4. The schematic of minimum cache and access units.

Assume that the minimum cache and access unit for feature maps and weights contains
m data, and n units are filled into n PEs in parallel, as shown in Figure 4. Furthermore,
the unit consisting of m interchannel data is called a pointwise unit (PU), as shown in
Figure 5a,b, while the unit containing m intrachannel data is called a depthwise unit (DU),
as shown in Figure 5c,d. Similarly, the interchannel first loop order is called pointwise loop
(PL), as represented by the red arrows in Figure 5a,c, and the intrachannel first loop order
is called depthwise loop (DL), as represented by the red arrows in Figure 5b,d.

Electronics 2023, 12, 1571 9 of 20

1
1

1
1

1

m

1

m

(a) (b) (c) (d)

Figure 5. Four convolution orders based on the minimum cache and access unit. (a) The convolution
order with pointwise unit and pointwise loop (PUPL). (b) The convolution order with pointwise
unit and depthwise loop (PUDL). (c) The convolution order with depthwise unit and pointwise loop
(DUPL). (d) The convolution order with depthwise unit and depthwise loop (DUDL).

The cached data mainly includes input feature maps and weights, and compared to
the former the latter is less and occupies a smaller cache, so the input feature map cache
size is mainly considered. In order to avoid frequent updating of the weight buffer, both
DWC and PWC multiplex the weight data. The DWC features of different input channels
are filled into respective PEs, while the PWC features of different input channels are filled
into the same PE. Take DWC with PUDL convolution order, as shown in Figure 5b, as an
example. We use the structure shown in Figure 6 to perform the sliding window operation.
The minium cache size of input features before starting convolution calculation is

BUFDWC(PUDL) = (Fin × (K− 1) + K)×m×Q, (14)

where Q is the quantified bit width. Similarly, the cache size of DWC and PWC with the
various convolution orders are calculated, and the results are shown in Table 1. Compared
to Fin and IC, m, n and K are usually taken as smaller values. Thus, by analyzing Table 1, it
is clear that for DWC, the PUDL convolution order requires the smallest buffer size. For
PWC, the PUDL convolution order requires the same buffer size as PUPL and is smaller
than the other two orders. However, the PWC calculation with PUDL order requires
additional resource to store intermediate results and a more complex control strategy
compared to with PUPL order. Therefore, in terms of the minimum preconvolution feature
cache size, PUPL is the most efficient convolution order for PWC. In summary, the use
of the PUDL order to calculate DWC, along with the PUPL order to calculate PWC, can
minimize the preconvolution feature cache size.

Row buffer 1

Row buffer 2

Input Unit Slide Window

m

K

K
Fin

Figure 6. The line buffers for DWC with PUDL convolution order.

Electronics 2023, 12, 1571 10 of 20

Table 1. The minimum preconvolution feature cache size and output order for DWC and PWC with
various convolution orders.

Convolution Order Convolution Type Minimum Cache Size (bit) Output Order

PUPL DWC ((Fin + 1)× (K− 1)× IC + m)×Q PUPL
PWC 0 PUDL

PUDL DWC (Fin × (K− 1) + K)×m×Q PUDL
PWC 0 PUDL

DUPL DWC (Fin × IC× (K− 1) + m× n)×Q DUPL
PWC m× n×Q PUDL

DUDL DWC (Fin × (Fin × (n− 1) + K− 1) + m)×Q DUDL
PWC (F2

in × (n− 1) + m)×Q PUDL

In addition, although the use of the above two convolution orders can effectively
reduce on-chip memory, the proposed MAE using a unified architecture requires a large
number of off-chip memory accesses [5], which can negatively impact the overall perfor-
mance of the accelerator. On the other hand, with the advancement of semiconductor
processes and architecture design, the data transfer rate of double data rate SDRAM has
reached a considerable level. Sequential reads or writes make efficient use of DDR4 band-
width, whereas random reads or writes can negatively affect the use of DDR4 bandwidth.
We found that the DSC accelerator can only access the DDR4 with a relatively small burst
length in most cases because the output order of the feature map of the previous layer is
different from the input order of the feature map of the next layer. Therefore, by designing
the convolution order to achieve partial fusion between PWC and DWC, the burst length
of DDR4 accesses can be improved, which in turn improves the overall performance of
the proposed DSC accelerator. Based on the above analysis, we designed an efficient
convolution order for DWC and PWC, respectively.

Figure 7 shows the diagram of the two proposed efficient convolution orders, which
can achieve partial fusion of PWC and DWC. For presentation purposes, the input feature
maps are divided into Slice, Fragment, Block, and Map based on the minimum cache
and access unit, which is shown in Figure 4. DWCPUDL uses the order of PUDL for the
computation, and the detailed algorithm is shown in Algorithm 1. The input features
and weights are stored in the multiplexed buffer block and feature buffer, respectively, as
shown in Figure 2. By default, m is equal to n. The m data in each PU are filled into n PEs
separately, and the calculation starts when each PE is filled with K× K data. If K× K is not
divisible by MS2, when K× K is less than MS2, zero is filled to make up the inputs, and
when K× K is greater than MS2, the calculation is split into multiple times.

Similarly, PWCPUPL uses the order of PUPL for the calculation, and the Algorithm 2
shows the details. m× n weights are first stored in the multiplexed buffer block. When the
feature buffer is fully filled with m input features which come from the same PU, the PU
is copied n times to form m× n weight feature pairs with the preprepared weights, and
the weight feature pairs are then filled with n PEs. The m data which from the same PU
are filled into the same PE, and the inputs are supplemented to MS2 by a similar way as
DWCPUDL. When IC is greater than MS2, the calculation is split into multiple times.

Moreover, the output order of Fragment of PWCPUPL is the same as the input order
of Slice of DWCPUDL. Therefore, the output of PWCPUPL can be written to consecutive
DDR4 memory cells with a large burst length. This approach reduces the latency of DDR4
accesses and improves the performance of the proposed accelerator.

Electronics 2023, 12, 1571 11 of 20

Fin K

K

1
1

Slice Slice

Fragment
Fragment

IFDWC OFDWC KERDWC

K

K

1
1

IFPWC OFPWC KERPWC

1
1

n

OC

...

1
1

Fragment

Block Block

Fragment

Map

Map

Fin

Fout

Fout

Fin

Fin

Fout

Fout

(a)

(b)

Figure 7. The diagram of convolution order for DWCPUDL and PWCPUPL. By default, m is equal
to n. (a) DWC calculation using pointwise unit and depthwise loop. K× K×m weights are stored
in the on-chip buffer, and are updated after the calculation of a Fragment. Input feature maps need
to be read only once. (b) PWC calculation using pointwise unit and pointwise loop. The weights
are stored in on-chip buffer and updated to another n× IC after the calculation of each Map. Input
feature maps need to be read multiple times. (∗) represents the operation of convolution.

Algorithm 1: DWC calculation with PUDL convolution order.
Input: Input feature map IFDWC and convolution kernel KERDWC. (∗) refers to

the convolution operation.
Output: Output feature map OFDWC.

1 for blockIF = 0; blockIF < BLOCKIF; blockIF ++ do
2 for m0(IF) = 0; blockIF < m; m0(IF) ++ do
3 for k0 = 0; k0 < K; k0 ++ do
4 for k1 = 0; k1 < K; k1 ++ do
5 Put KERDWC[blockIF][m0(IF)][k0][k1] into the multiplexed buffer

block.

6 for f ragIF = 0; f ragIF < FRAGEMENTIF; f ragIF ++ do
7 for sliceIF = 0; sliceIF < SLICEIF; sliceIF ++ do
8 for m1 = 0; m1 < m; m1 ++ do
9 Put IFDWC[blockIF][f ragIF][sliceIF][m1] into the feature buffer.

10 if f ragIF > K− 1 and sliceIF > K− 1 then
11 OFDWC[blockOF][f ragOF][sliceOF][m1(OF)] = IFDWC[blockIF][2 :

0][2 : 0][:] ∗ KERDWC[blockIF][:][:][:]

Electronics 2023, 12, 1571 12 of 20

Algorithm 2: PWC calculation with PUPL convolution order.
Input: Input feature map IFPWC and convolution kernel KERPWC. (∗) refers to the

convolution operation. (•)×n refers to a copy of (•) for n times.
Output: Output feature map OFPWC.

1 for mapIF = 0; mapIF < MAPIF; mapIF ++ do
2 for n0 = 0; n0 < n; n0 ++ do
3 for m0 = 0; m0 < m; m0 ++ do
4 Put KERPWC[mapIF][n0][m0] into the multiplexed buffer block.
5 if m0 == m and n0 == n then
6 for blockIF = 0; blockIF < BLOCKIF; blockIF ++ do
7 for f ragIF = 0; f ragIF < FRAGEMENTIF; f ragIF ++ do
8 for sliceIF = 0; sliceIF < SLICEIF; sliceIF ++ do
9 for m1 = 0; m1 < m; m1 ++ do

10 Put IFPWC[blockIF][f ragIF][sliceIF][m1] into the
Feature Buffer.

11 if m1 == m then
12 Make n copies of

IFPWC[blockIF][f ragIF][sliceIF][:].
13 OFPWC(temp)[blockOF][f ragOF][sliceOF][n0(OF)]+ =

IFPWC(×n)[blockIF][f ragIF][sliceIF][:
] ∗ KERPWC[mapIF][:][:]

14 if slice == SLICE then
15 OFPWC[blockOF][f ragOF][sliceOF][n0(OF)] =

OFPWC(temp)[blockOF][f ragOF][sliceOF][n0(OF)]

3.4. Address-Mapping Method

Although the off-chip memory access efficiency is improved by designing the PWCPUPL
and DWCPUDL convolution orders, it is still limited by the reading burst length when
switching from the DWCPUDL to the PWCPUPL layer. In this section, we first analyse the
reasons for the constrained read burst length of the PWCPUPL layer, and then propose an
address-mapping method for the output feature map in off-chip memory to maximize
bandwidth utilization when reading the features of PWCPUPL layer.

As mentioned earlier, the reason for the low DDR4 access efficiency when switching
from DWCPUDL to PWCPUPL is that the output order of the former is different from the
input order of the latter. If the output features are written directly to off-chip memory in the
default DWCPUDL output order, there are two scenarios when reading the input features
required by PWCPUPL from external memory.

• Input features are read into the accelerator from off-chip memory at large burst
lengths from contiguous addresses, where the data is contiguous but must be heavily
cached on-chip because the data order does not match the expected input order of
the PWCPUPL.

• Input features are read into the accelerator from discrete external memory cells at a
small burst length, where the data order matches the desired computational order of
the PWCPUPL but the off-chip memory access is inefficient.

Neither of above two scenarios can achieve a balance between on-chip memory and
off-chip memory access efficiency. Considering that when accelerating DSC, the same
output feature map is only written to DDR4 once, while the same input feature map needs
to be read out of DDR4 one or more times, the bandwidth gain from read optimization of
the feature map data is greater than that from write optimization. Therefore, the address

Electronics 2023, 12, 1571 13 of 20

mapping method is designed to allow external memory to be read in efficient sequential
bursts without requiring large amounts of on-chip memory resources. As shown in Figure 8,
the DWC outputs features in the order of PUDL, while the next layer of PWC reads features
in the order of PUPL. Usually, the output features of DWCPUDL are by default stored in
continuous external memory cells along the burst direction, while in the proposed method
they are stored in discrete cells according to precalculated addresses, while ensuring that
the input features of PWCPUPL can be accessed in the expected input order at large burst
lengths. Assuming that the minimum cache and access unit still consists of m data and
the counts in the three dimensions of OFDWC are slice, f rag and block, the offset address of
each DWCPUDL output unit is expressed as

ADDRo f f set =

⌈
OC
m

⌉
× (Fin × (f rag− 1) + (slice− 1)) + block. (15)

1
1

Slice

Fragment

OFDWC

1

IFPWC

1
111

Fragment

Block

Map

Fout

Fin

Fin

Fout

External Memory

C
o
lu

m
n

Bank

Figure 8. The address mapping between the output unit of DWCPUDL and the input unit
of PWCPUPL.

The address-mapping method above describes the relationship between the feature
output order and the offset address of each DWCPUDL output unit. At the stage of writing
back to off-chip memory, the final address must be calculated based on the stored base
address of the current layer, and the final address can be expressed as

ADDR f inal = BAl + ADDRo f f set, (16)

where BAl is the base address of the current layer. The number of off-chip memory
addresses occupied by each feature matrix is equal to the total number of units contained
in the features of that layer. Therefore, the base address of each layer can be calculated by
accumulating layer by layer, and can be quickly obtained by looking up the table.

4. Evaluation
4.1. Implementation Consideration

To evaluate the accelerator, we first verified the simulation. MobileNetV2-1.0-224
was run on Matlab, and all intermediate features were saved layer by layer as standard
results. Next, the accelerator architecture was simulated with VCS and Verdi, and all
effective outputs of the MAE were compared with the standard results. After ensuring a
characteristic error of almost zero, the accelerator was deemed to operate normally. Finally,
synthesis and power consumption estimation were carried out with Quartus Prime 18.1 Pro.
Due to time and personnel constraints, we have completed partial hardware deployment.

Numerical precision is an extremely important factor that directly affects the through-
put and inference accuracy of accelerator. Using a lower-precision bit width can yield
exponentially higher throughput and processing performance than deploying network
with floating point. However, the lower numerical precision makes it difficult to meet the

Electronics 2023, 12, 1571 14 of 20

flexibility and compatibility when deploy networks with different quantization strategies
by using the same accelerator architecture. For example, the processing element and data
flow of the whole accelerator architecture may need to be modified to accommodate the
new number format when changing the quantization strategy. If the numerical precision
is expanded, the data flow often needs to be reconsidered, and conversely if it is reduced,
compatibility can be achieved through parallel processing, as shown in Figure 9. In most
FPGAs, DSPs can be flexibly configured as single floating point or double fixed point
multipliers and adders, and there is virtually no increase in DSP requirements after paral-
lelization. It is easy to be downward-compatible with lower bit width but hardly easy to be
upward-compatible with higher bit width for a fixed accelerator architecture. Moreover,
considering that 32-bit floating-point is the standard format for parameter training and
a common format for image classification, 32-bit floating-point was chosen as the basic
numerical precision of the proposed accelerator architecture, while 16-bit quantization
strategy is an alternative according to the resource and the need of performance.

Data Flow

PE with MS2

weight-feature

pairs inputs

n PE with MS2

weight-feature

pairs inputs

n

PE with MS2

weight-feature

pairs inputs

n

Data Flow

32-bit floating-point
16-bit fixed-point

Figure 9. Parallelization-compatible processing method after data bit width is reduced.

Furthermore, the proposed accelerator is a lightweight accelerator, so multiple parallel
accelerator cores can be deployed if the FPGA resource and DDR4 bandwidth allow. A
similar deployment strategy was used in Ref. [29]. We deploy two parallel floating-point
accelerators according to the resource and off-chip access bandwidth of the FA506T. The
block diagram of the evaluation system is shown in Figure 10. The Nios II processor is used
for result processing and network configuration. The softmax layer is not implemented in
accelerator, so the accelerator ends with the FCL. The Nios II receives the output from the
accelerator and sorts it to obtain the final classification result. In addition, Nios II is also
used to modify the parameters of the network, such as the size of the feature map. As part
of the accelerator system, its resource and power consumption is retained in the evaluation.

FA506T

DDR4 DDR4 DDR4

Avalon Bridge

Accelerator Framework

Core0 Core1 Core2

Nios II

FPGA

Figure 10. Block diagram of the evaluation system. The number of accelerator cores is configurable,
which is determined by FPGA resource and off-chip access bandwidth.

Electronics 2023, 12, 1571 15 of 20

4.2. Implementation Results
4.2.1. FPGA Resource Utilization and Burst Length

The performance of the proposed accelerator architecture is demonstrated by imple-
menting the MobileNetV2-1.0-224 network using Verilog HDL on the Intel Arria 10 GX 660
(10AX066K3F40E2SG) FPGA, which contains 251, 680 ALMs, 2131 M20K, and 1687 DSP
blocks. The proposed accelerator runs at 200 MHz, and Table 2 shows its overall resource
utilization. The proposed accelerator is a lightweight accelerator and uses only 16.73% of
the ALMs, as shown in Table 2, even when two accelerator cores are used simultaneously.
A total of 578 of the 1118 M20Ks are used to build the weight and feature buffers, and the
rest are used to synchronize the DDR4 data. A total of 1082 DSPs are used, and almost all
DSPs are used to implement the floating point MAE proposed in Section 3.2.

Table 2. FPGA resource utilization.

ALM M20K DSP

Utilization 42,116.7 (16.73%) 1118 (52.46%) 1082 (64.14%)

Figure 11 shows the burst length for the reading and writing of DDR4 of each layer. By
using the two convolutional algorithms proposed in Section 3.3, the output feature of the
PWC can be written into contiguous DDR4 memory cells with a large burst length when
switching from the PWC layer to the DWC layer. For example, when the input image size
is 224× 224× 3, the writing burst length is set to 32 for all PWC layers (e.g., layers 4, 7, 10,
etc.) preceding the DWC layer in the first 33 layers. In contrast, the writing burst length is
set to 1 for all PWC layers (e.g., layers 3, 6, 9, etc.) following the DWC layer. Similarly, by
using the address mapping method proposed in Section 3.4, all PWC layers are able to read
the input feature map with a large burst length. It can be seen from Figure 11 that all PWC
layers have read burst lengths greater than 15, and the largest read burst length reaches 70
(e.g., layers 43, 46, 49, etc.).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

bu
rs

t l
en

gt
h

 write
 read

Figure 11. Burst length for the reading and writing of DDR4 of each layer.

4.2.2. Comparison with CPU Implementation

Figure 12 shows the total multiplication and addition of each layer of Mobilenet-
1.0-224, including the calculation of the batch normalization layer. Figure 13 shows the
CPU running time of each layer, obtained by calculating the average time to process
50 images consecutively. In Ref. [30], the general trend of the CPU running time curve is
approximately the same as that of the total multiplication and addition curve. However,
the same conclusion was not drawn from the measurements of this work. Figure 14 shows
the running time of each layer on the proposed accelerator.

Electronics 2023, 12, 1571 16 of 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

0
5

10
15
20
25
30
35
40
45

m
ad

d
(m

ill
io

n)

Figure 12. Total multiplication and addition of each layer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ru
nn

in
g

tim
e (

m
s)

Figure 13. CPU running time of each layer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

0.025

0.05

0.075

0.10

0.125

0.15

0.175

0.20

ru
nn

in
g

tim
e (

m
s)

Figure 14. Accelerator running time of each layer.

The version of the CPU used for testing is 12th Gen Intel(R) Core(TM) i7-12700H.
Network inference and runtime measurements are based on pytorch 1.13.0 and torchvision
0.14.0. For the CPU under test, the proposed accelerator achieves a speed-up of 14 times for
an image of size 224× 224× 3.

4.2.3. Comparison with FPGA Implementations

Table 3 shows the performance comparison between the proposed accelerator and
previous FPGA-based accelerator implementations. It can be seen that for 224× 224× 3
input images, our accelerator achieves a maximum inference speed of 205.1 FPS, and
a maximum throughput of 128.8 GFLOPS. Moreover, most accelerators use fixed 16-bit
or even lower precision, and it is unfair to compare performance based on literal values
for inference speed and throughput. DSP efficiency comparisons are more intuitive for

Electronics 2023, 12, 1571 17 of 20

accelerator implementations that use different platforms and network architectures. For
a fair comparison, the GOPS/DSP values are normalized to 16-bit, where the values for
32-bit systems are multiplied by 2, which uses the same normalization method used in
Ref. [5]. It can be seen from Table 3, after normalization, our proposed accelerator has the
highest DSP efficiency.

Table 3. Comparison of performance with pervious FPGA-based accelerators and traditional platforms.

Work Network Platform Bit-Width Frequency
(MHz) FPS GOPS GFLOPS DSP DSP Efficiency 1

(GOPS/DSP)

M. Sandler’18 [4] MobileNetV2 CPU - - 13.3 - - - -
G. Li’22 [6] MobileNetV2 XC7Z100 16-bit 200 371.4 222.8 - 1163 0.19

W. Ding’19 [7] DS-CNN Arria10 GX 1150 16-bit 180 - 98.9 - 712 0.14
L. Bai’18 [16] MobileNetV2 Arria10 SX 660 16-bit 133 266.2 170.6 - 1278 0.13
B. Liu’19 [30] MobileNetV2 Zynq 7100 float 32-bit 100 - - 17.11 1926 0.02

Proposed MobileNetV2 Arria10 GX 660 float 32-bit 200 205.1 - 128.8 1082 0.24
1 For a fair comparison, it is normalized to 16-bit, where the value of a 32-bit system is multiplied by 2, which uses
the same normalization method as Ref. [5].

Table 4 shows the comparison of resource utilization with reference FPGA-based
single-engine accelerators. For a fair comparison, we normalize the logical resource usage
to the number of LUTs and FFs for accelerators using different platforms. In an Arria 10
FPGA, an ALM contains 2 LUTs and 4 regs, so the normalized number of LUTs and FFs
is equal to the original number of ALMs multiplied by 2 and 4, respectively. And as can
be seen from Table 4, our proposed accelerators use the least amount of logical resources
after normalization. Moreover, the DSP usage and GOPS/DSP comparisons show that we
use fewer DSPs and achieve higher efficiency per DSP compared to the reference design.
This is due to the use of highly reusable MAEs, which greatly improves the utilization of
computational resources and solves the problem of idle engines in the inference phase. In
addition, the two efficient convolution algorithms proposed in Section 3.3 achieve a partial
fusion of the PWC and DWC layers, which, combined with the proposed address mapping
method in Section 3.4, improves off-chip memory access efficiency and reduces accelerator
data access latency.

Table 4. Comparison of resource utilization with reference FPGA-based accelerators.

L. Bai’18 [16] G. Li’22 [6] Proposed

Platform Intel
Arria10 SX660

Xilinx
XC7Z100

Intel
Arria10 GX660

Bit width 16-bit 16-bit float 32-bit
Logic Usage ALM 82K LUT 183K/FF 231K ALM 42K

Normalized 1 Logic Usage LUT 164K/FF 328K LUT 183K/FF 231K LUT 84K/FF 168K
DSP Usage 1278 1163 1082

Memory Usage (Mb) 24.5 - 13.3 2

Normalized 3 Memory Usage 49 - 13.3
GOPS/W - 12.5 -

GFLOPS/W - - 7.8
GOPS/DSP 4 0.13 0.19 0.24

1 An ALM in an Arria 10 FPGA contains 2 LUTs and 4 regs. 2 Total block memory bits. 3 It is nomalized to 32-bit,
where the value of a 16-bit system is multiplied by 2. 4 It is nomalized to 16-bit, where the value of a 32-bit system
is multiplied by 2.

4.3. Evaluations on Other Networks

We evaluated MobileNetV3-Small based on the proposed accelerator framework.
However, due to the constraints of time and the experimental platform, only the estimated
results are given here. Since the main bottleneck of the single-engine architecture used in

Electronics 2023, 12, 1571 18 of 20

this paper is the off-chip access bandwidth, we use the total number of off-chip accesses as
a measure. Assuming that each off-chip access takes one clock cycle, off-chip accesses and
computations are performed in a pipelined fashion, the input image size is 224× 224× 3,
and the accelerator runs at 200 MHz. It can be seen from Table 5 that the proposed
accelerator can also achieve a competitive acceleration result for MobileNetV3-Small.

Table 5. Evaluation result for MobileNetV3-Small.

Network Bit Width Frequency
(MHz)

Total Off-Chip Memory
Accesses (Million) FPS

MobileNetV3-Small 117.7 200 1.80 222.1

5. Conclusions

This paper presents a high-performance FPGA-based DSC accelerator. The main
objective of this paper is to solve the common engine idling problem in DSC accelerator
design and to maximise the utilization of on-chip computational resources and off-chip
access bandwidth. To address the engine-idle problem, we propose a scalable and highly
reusable MAE to accommodate different computations including DWC, PWC, etc. Based
on the proposed MAE, an efficient convolutional algorithm is proposed for DWC and PWC,
respectively, to reduce the on-chip memory occupancy. At the same time, the proposed
two convolutional algorithms achieve partial fusion of PWC and DWC to improve the
efficiency of writing to off-chip memory. An address mapping method for off-chip access is
proposed to maximise bandwidth utilization and reduce latency when reading the input
feature map of the PWC layer. The performance of the proposed accelerator is demonstrated
by implementing the MobileNetV2-1.0-224 network on an Intel Arria 10 GX660 FPGA. The
proposed accelerator uses a 32-bit floating point and runs at 200 MHz. For an input image
of size 224× 224× 3, our accelerator achieves a maximum inference speed of 205.1 FPS
and a maximum throughput of 128.8 GFLOPS. The accelerator achieves a 14× speed-up in
inference compared to a general-purpose CPU implementation. In addition, we use DSP
efficiency to measure the computational resource utilization of the FPGA-based accelerator,
and the proposed accelerator has a DSP efficiency of 0.24 GOPS/DSP, which is higher than
the reference design.

Author Contributions: Conceptualization, J.H. and Z.Z.; methodology, J.H. and Z.Z.; software, X.L.;
validation, X.L. and T.G.; formal analysis, X.L.; investigation, T.G.; data curation, X.L.; writing—
original draft preparation, X.L.; writing—review and editing, J.H.; supervision, J.H.; project adminis-
tration, J.H.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under Grants U19B2016.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural

Networks. Remote Sens. 2021, 13, 4712. [CrossRef]
2. Wang, Y.; Zhang, W.; Gao, R.; Jin, Z.; Wang, X. Recent advances in the application of deep learning methods to forestry. Wood Sci.

Technol. 2021, 55, 1171–1202. [CrossRef]
3. Guo, Z.; Huang, Y.; Hu, X.; Wei, H.; Zhao, B. A Survey on Deep Learning Based Approaches for Scene Understanding in

Autonomous Driving. Electronics 2021, 10, 471. [CrossRef]

http://doi.org/10.3390/rs13224712
http://dx.doi.org/10.1007/s00226-021-01309-2
http://dx.doi.org/10.3390/electronics10040471

Electronics 2023, 12, 1571 19 of 20

4. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

5. Li, B.; Wang, H.; Zhang, X.; Ren, J.; Liu, L.; Sun, H.; Zheng, N. Dynamic Dataflow Scheduling and Computation Mapping
Techniques for Efficient Depthwise Separable Convolution Acceleration. IEEE Trans. Circuits Syst.-Regul. Pap. 2021, 68, 3279–3292.
[CrossRef]

6. Li, G.; Zhang, J.; Zhang, M.; Wu, R.; Cao, X.; Liu, W. Efficient depthwise separable convolution accelerator for classification and
UAV object detection. Neurocomputing 2022, 490, 1–16. [CrossRef]

7. Ding, W.; Huang, Z.; Huang, Z.; Tian, L.; Wang, H.; Feng, S. Designing efficient accelerator of depthwise separable convolutional
neural network on FPGA. J. Syst. Archit. 2019, 97, 278–286. [CrossRef]

8. Wu, D.; Zhang, Y.; Jia, X.; Tian, L.; Li, T.; Sui, L.; Xie, D.; Shan, Y. A high-performance CNN processor based on FPGA for
MobileNets. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications (FPL),
Barcelona, Spain, 8–12 September 2019; pp. 136–143.

9. Lin, Y.; Zhang, Y.; Yang, X. A Low Memory Requirement MobileNets Accelerator Based on FPGA for Auxiliary Medical Tasks.
Bioengineering 2023, 10, 28. [CrossRef] [PubMed]

10. Liu, X.; Yang, J.; Zou, C.; Chen, Q.; Yan, X.; Chen, Y.; Cai, C. Collaborative Edge Computing With FPGA-Based CNN Accelerators
for Energy-Efficient and Time-Aware Face Tracking System. IEEE Trans. Comput. Soc. Syst. 2022, 9, 252–266. [CrossRef]

11. Shang, J.; Zhang, K.; Zhang, Z.; Li, C.; Liu, H. A high-performance convolution block oriented accelerator for MBConv-Based
CNNs. Integr.-Vlsi J. 2023, 88, 298–312. [CrossRef]

12. Wang, X.; Tian, T.; Zhao, L.; Wu, W.; Jin, X. Exploration of Balanced Design in Resource-Constrained Edge Device for Efficient
CNNs. IEEE Trans. Circuits Syst.-Express Briefs 2022, 69, 4573–4577. [CrossRef]

13. Choi, K.; Sobelman, G.E. An Efficient CNN Accelerator for Low-Cost Edge Systems. ACM Trans. Embed. Comput. Syst. 2022,
21, 44. [CrossRef]

14. Xuan, L.; Un, K.F.; Lam, C.S.; Martins, R.P. An FPGA-Based Energy-Efficient Reconfigurable Depthwise Separable Convolution
Accelerator for Image Recognition. IEEE Trans. Circuits Syst.-Express Briefs 2022, 69, 4003–4007. [CrossRef]

15. Yu, X.; Wang, Y.; Miao, J.; Wu, E.; Zhang, H.; Meng, Y.; Zhang, B.; Min, B.; Chen, D.; Gao, J. A data-center FPGA acceleration
platform for convolutional neural networks. In Proceedings of the 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), Barcelona, Spain, 8–12 September 2019; pp. 151–158.

16. Bai, L.; Zhao, Y.; Huang, X. A CNN Accelerator on FPGA Using Depthwise Separable Convolution. IEEE Trans. Circuits
Syst.-Express Briefs 2018, 65, 1415–1419. [CrossRef]

17. Fan, H.; Liu, S.; Ferianc, M.; Ng, H.C.; Que, Z.; Liu, S.; Niu, X.; Luk, W. A real-time object detection accelerator with compressed
SSDLite on FPGA. In Proceedings of the 2018 International Conference on Field-Programmable Technology, Naha, Japan,
10–14 December 2018; pp. 14–21.

18. Liang, Y.; Lu, L.; Jin, Y.; Xie, J.; Huang, R.; Zhang, J.; Lin, W. An Efficient Hardware Design for Accelerating Sparse CNNs With
NAS-Based Models. IEEE Trans.-Comput.-Aided Des. Integr. Syst. 2022, 41, 597–613. [CrossRef]

19. Chang, L.; Zhang, S.; Du, H.; Chen, Y.; Wang, S. A Reconfigurable Neural Network Processor With Tile-Grained Multicore
Pipeline for Object Detection on FPGA. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2021, 29, 1967–1980. [CrossRef]

20. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

21. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International conference on Computer Vision, Seoul, Republic of Korea,
27 October 2019–2 November 2019; pp. 1314–1324.

22. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

23. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

24. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

25. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine
Learning, PMLR, Virtual, 18–24 July 2021; pp. 10096–10106.

26. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

27. Fan, H.; Luo, C.; Zeng, C.; Ferianc, M.; Que, Z.; Liu, S.; Niu, X.; Luk, W. F-E3D: FPGA-based acceleration of an efficient 3D
convolutional neural network for human action recognition. In Proceedings of the 2019 IEEE 30th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), New York, NY, USA, 15–17 July 2019; Volume 2160, pp. 1–8.

28. Ma, Y.; Suda, N.; Cao, Y.; Seo, J.s.; Vrudhula, S. Scalable and modularized RTL compilation of convolutional neural networks onto
FPGA. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne,
Switzerland, 29 August–2 September 2016; pp. 1–8.

http://dx.doi.org/10.1109/TCSI.2021.3078541
http://dx.doi.org/10.1016/j.neucom.2022.02.071
http://dx.doi.org/10.1016/j.sysarc.2018.12.008
http://dx.doi.org/10.3390/bioengineering10010028
http://www.ncbi.nlm.nih.gov/pubmed/36671600
http://dx.doi.org/10.1109/TCSS.2021.3059318
http://dx.doi.org/10.1016/j.vlsi.2022.10.012
http://dx.doi.org/10.1109/TCSII.2022.3183258
http://dx.doi.org/10.1145/3539224
http://dx.doi.org/10.1109/TCSII.2022.3180553
http://dx.doi.org/10.1109/TCSII.2018.2865896
http://dx.doi.org/10.1109/TCAD.2021.3066563
http://dx.doi.org/10.1109/TVLSI.2021.3109580

Electronics 2023, 12, 1571 20 of 20

29. Knapheide, J.; Stabernack, B.; Kuhnke, M. A high throughput MobileNetV2 FPGA implementation based on a flexible architecture
for depthwise separable convolution. In Proceedings of the 2020 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, 31 Augus–4 September 2020; pp. 277–283.

30. Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution.
Electronics 2019, 8, 281. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics8030281

	Introduction
	Background
	Convolutional Neural Network Components
	Convolutional Layer
	Activation Function Layer
	Global Pooling Layer
	Fully Connected Layer

	Depthwise Separable Convolution

	Design of Accelerator
	Overall Architecture
	The Scalable Multiplication and Accumulation Engine
	Two Efficient Convolution Algorithms
	Address-Mapping Method

	Evaluation
	Implementation Consideration
	Implementation Results
	FPGA Resource Utilization and Burst Length
	Comparison with CPU Implementation
	Comparison with FPGA Implementations

	Evaluations on Other Networks

	Conclusions
	References

