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Abstract: In recent years, commercial and research interest in service robots working in everyday
environments has grown. These devices are expected to move autonomously in crowded environ-
ments, maximizing not only movement efficiency and safety parameters, but also social acceptability.
Extending traditional path planning modules with socially aware criteria, while maintaining fast
algorithms capable of reacting to human behavior without causing discomfort, can be a complex
challenge. Solving this challenge has involved the development of proactive systems that take
into account cooperation (and not only interaction) with the people around them, the determined
incorporation of approaches based on Deep Learning, or the recent fusion with skills coming from
the field of human–robot interaction (speech, touch). This review analyzes approaches to socially
aware navigation and classifies them according to the strategies followed by the robot to manage
interaction (or cooperation) with humans.

Keywords: socially aware robotics; human motion prediction; deep learning; multi-behaviour
navigation; social navigation

1. Introduction

Society 5.0 represents a new paradigm in which people and artificial beings cooperate
in routines, environments, and the interactions of everyday life [1]. This cooperation is
intended to be natural and intuitive, and the new artificial actors are expected to behave
appropriately. Service robots are one of the technologies with the greatest number of
potential applications in this new social paradigm [2]. They are also one of the most
profoundly affected by the new technical and contextual complexities arising from these
new requirements [3]. Service robots, being inevitably social when used in everyday life
scenarios, face the most challenging technical, ethical, social, and legislative demands. In
particular, Socially Aware Robotics (SAWR) is an emerging area of research that seeks to
understand how cognitive robots can be aware of their social context and use this capability
to behave as more accessible, accepted, and useful devices, being able to establish more
appropriate and effective interactions to assist humans [4]. A robot aiming to exploit
socially enhanced autonomous capabilities needs to perceive its environment and reach a
certain level of understanding of its context. However, to be truly socially aware, a robot
must not only react intentionally to perceived changes, but it must also be able to predict or
learn what the behavior of the humans surrounding it will be, anticipating consequences
and selecting the best possible and most comprehensible action, while respecting social
conventions [5,6].

One of the essential capabilities of most robotic solutions, more deeply affected by these
new social requirements, is navigation. Service robots working in daily life environments
cannot just search for the shortest collision-free path. They should also solve a multi-
variable optimization problem that considers, for example, human comfort and social
rules. As a result, traditional navigation approaches are no longer adequate due to their
limited flexibility, and new proposals arise. The growing importance of the topic has
given rise to several review articles analyzing these proposals in different ways. Concepts
regarding the human factor were highlighted in the survey papers on proxemics ([7,8]),
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and semantic and social mapping ([9]). The review paper by Gao and Huang [10] focused
on the evaluation methods, scenarios, datasets, and metrics commonly used In Previous
socially-aware navigation research. Zhu and Zhang [11] reviewed Deep Reinforcement
Learning (DRL) methods and DRL-based navigation frameworks. They differentiated
between several typical application scenarios: local obstacle avoidance, indoor navigation,
multi-robot navigation, and social navigation. Chik et al. [12] focused on robot navigation
as a hierarchical task, involving a collection of sub-problems that can range from the high-
level decision to reactive avoidance of low-level obstacles. The review highlighted how
the whole navigation stack should evolve to address the problem of dealing with dynamic
human environments, including human detection, tracking, and predictive modeling, at a
more local level, and considering social costs at a higher level.

The paper by Kruse et al. [13] discusses human-aware navigation. In this paper, the
authors state that ‘the robotics and human–robot interaction (HRI) communities have not yet
produced a holistic approach to human-aware navigation’ [13], even though they identified
77 citations between 1995 and 2012 closely related to this topic. They also defined two
axes on which to classify these papers. First, they established four categories: comfort,
naturalness, sociability, and others. In the second axis, the technologies on which the
articles focus are considered. The categories in this second axis are pose selection, global
planning, behavior selection, and local planning.

The present survey extends the previous work of Kruse et al. [13] in two dimen-
sions. On the one hand, it updates the analysis considering new approaches and research
conducted in the last ten years in the field of social navigation. On the other hand, this
survey focuses on those methods in which the robot modifies its behavior in the presence
of another mobile agent, or traces a path (e.g., avoiding disturbing a group of people
talking to each other). Hence, it differs from the work of Kruse et al. [13] as the basis of our
categorization will not be functionality, but the degree to which the method employed for
reacting in the presence of humans is able to learn from previous observations or predict
the near future. Prediction and Learning will be the terms that will guide the literature
search, establishing subgroups in the more global group of social navigation. Moreover,
this survey would like to draw attention to papers that focus on social comfort and explore
how social navigation methods are evolving to equip robots with more human-like skills.
As robots become increasingly similar to humans, understanding the complexities of social
norms and adapting to them becomes more important. These papers shed light on how
robots can be designed to better interact with humans in social situations.

The rest of the paper is organized as follows: Section 2 explains the literature review
process. Results are presented in Section 3. Discussion is provided in Section 4. Finally,
conclusions and future work are drawn in Section 5.

2. Methodology

This section describes the criteria used both to select the set of articles considered for
this review article (Section 2.1) and to organize them into different groups (Section 2.2).

2.1. Article Selection Criteria

We carefully curated a collection of papers on the topics of social navigation, with
a special interest in two keywords, prediction and learning. Our selection process in-
volved a thorough review of the literature, drawing from the works of Kruse et al. [13],
Chik et al. [12], Gao and Huang [10] and Zhu and Zhang [11], and extended with recent
citations. We selected the most relevant papers that explored the areas of social navigation,
comfort, prediction, and learning. These papers were further narrowed down by evaluating
the quality and relevance of the references cited in each article. Finally, we prioritized the
papers that were most frequently cited in previous works.

To gain insight into the number of papers published on our focus topics, we can refer
to the graphs in Figures 1–3. These graphics were generated using data from the Web of
Science (https://clarivate.com/webofsciencegroup/solutions/web-of-science/, accessed
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on 13 February 2023). For the topic (TS = (social AND navigation)) AND TS = (robot),
we obtain 723 results in the range from 1994 to 2022 (data from the current year, 2023,
were not included as the year has not finished and these data could disturb the statistics).
Adding TS = (learning), the number of citations reduces to 207 results (Figure 3). With
TS = (prediction), the number is reduced to 80 results (Figure 2). From this large dataset,
we have covered in this survey 100 papers. Figure 4 compares the papers covered by the
survey by Kruse et al. [13] and the current review.

Figure 1. Web of Science Analyze filter: (TS = (social AND navigation)) AND TS = (robot).

Figure 2. Web of Science Analyze filter: (TS = (social AND navigation)) AND TS = (robot) AND
TS = (prediction).

Figure 3. Web of Science Analyze filter: (TS = (social AND navigation)) AND TS = (robot) AND
TS = (learning).
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Figure 4. Distribution of publications over years considered by the review paper by Kruse et al. [13]
and the current survey.

2.2. Article Classification Criteria

As mentioned above, the goal of socially aware navigation is not only to find a
collision-free path from a starting point to a destination. This navigation process also
requires carefully taking into account the movement of people around the robot, and the
interactions processes between the robot and these people. When the number of people is
small, few interactions are required to avoid possible collisions. People tend to move along
rectilinear trajectories over long periods of time. However, when the density of people
increases, problems arise [14]. In these scenarios, people have to frequently change their
motion states (direction of travel, but also velocity or acceleration) in real time, to avoid
collisions while trying to reach their destinations. Linear models are no longer correct
for modeling interactions (human–robot, but also human–human). The perception of the
robot’s movement by others becomes particularly relevant. Thus, in addition to being safe,
it is important that the motion of the robot is legible, allowing people in the vicinity of the
robot to easily understand its movement intention [15].

Analyzing the evolution of socially aware robot navigation addresses two major topics:
(i) evaluating how robot social skills have made human interactions more comfortable and
natural; (ii) evaluating how algorithms solve navigation in crowded scenarios. Follow-
ing on previous work from several researchers on robot navigation in dense crowds, we
will group in this survey works on robot navigation into three categories [14,16]: (1) reac-
tive approaches; (2) proactive approaches; and (3) learning-based approaches. Moreover,
we added a fourth category: (4) multi-behaviour navigation approaches. In reactive ap-
proaches, the robot reacts to other mobile agents through one-step look ahead strategies [14].
These approaches are typically very efficient (e.g., the social force model [17]). Proactive
approaches predict the behavior of the human and then plan a suitable path. Predictions
can be based on reasoning (assumptions of how agents behave in general), or learning
(justified by observations of how agents behave) [13]. Strategies for prediction can deal with
human motion [18] or intentions [14]. Learning-based approaches aim towards the robot
learning the navigation policy, and adapting it to the target scenario. Deep reinforcement
learning (DRL) has been extensively employed for solving this problem [11,19]. Finally, we
added multi-behaviour navigation approaches as a separate subsection. Significantly, these
methods address the question of whether it can be useful to consider interaction actions,
such as touching, gesturing, or speaking, for the sake of allowing robots to navigate in
dynamic, crowded environments. The importance of being able to coordinate different
robotic functionalities (navigation, dialogue) to solve a navigation goal will grow in the
coming years as service robots actually share the environment with people.
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3. Socially Aware Navigation Approaches

This section develops the proposed taxonomy for classifying socially aware robotic
navigation methods. A table illustrating the methods used as examples of each category in
a concise manner is included at the end of each subsection.

3.1. Reactive Approaches

Robots that navigate in a dynamic or unknown environment can use path planners
based on heuristic grid search, or a sampling-based approach, to obtain high-level routes.
However, while these path planners can provide low-risk routes [20], they must always
be combined with a reactive collision avoidance system. This reactive navigation layer
must operate at a high frequency, to guarantee fast enough obstacle detection and avoid-
ance. Moreover, the presence of different mobile agents in the environment (people or
other autonomous vehicles) makes this reactive, local navigation scheme a basic element
for maintaining a safe environment. These two factors (speed requirements and safety
issues) set the onboard processor of the robot as the adequate device to be executing this
reactive layer.

This section collects articles that deal with reactive, local navigation when there are
other mobile agents in the environment. Being reactive approaches, they may not take into
consideration either prediction or learning. Table 1 assesses the approaches covered in this
section. Most of these methods are based on the concept of Velocity Obstacle (VO), Artificial
Potential Fields (APF), Vector Field Histogram (VFH), or Social Force Model (SFM). The
VO concept was introduced by Fiorini and Shiller [17], and has been widely used to ensure
safe navigation (e.g., Shiller et al. [21], Kluge and Prassler [22], and Fulgenzi et al. [23]).
The VO concept of a moving obstacle Aj to an agent Ri is the set of all those velocities for
Ri that will result in a collision, at some moment in time, with the obstacle. Hence, in each
planning cycle, the agent should choose a velocity different from any of the VOs induced
by the moving obstacles (see Figure 5 (Right)). The APF is a virtual force field approach
initially proposed by Khatib [24]. Briefly, the robot’s motion is controlled by a gravity
force, generated by the target to reach, and repulsive forces, generated by the obstacles.
Yao et al. [25] proposed improving the traditional APF with reinforcement learning in order
to deal with dynamic scenarios. The VFH approach uses a two-dimensional Cartesian
histogram grid as a world model, which is updated continuously with data sampled by
onboard sensors [26]. Babinec et al. [27] modify the VFH* to deal with both static and
moving obstacles. As a relevant disadvantage, it cannot handle non-linear motion.

Table 1. Approaches considered in Section 3.1. The table covers the methods they use for solving the
local navigation problem.

Reference Methods

Fiorini and Schiller [17] Velocity Obstacle (VO)
Shiller et al. [21] Non-Linear Velocity Obstacle (NLVO)
Kluge and Prassler [22] Recursive Probabilistic Velocity Obstacles
Fulgenzi et al. [23] Probabilistic Velocity Obstacle (PVO)

Dynamic occupancy grid provided by a general sensor system.
Palm and Driankov [28] Velocity potential of an incompressible fluid
Babinec et al. [27] Vector Field Histogram (VFH*)
Yao et al. [25] BHPF. Calibrated using the Black-hole potential field deep Q-learning (BHDQN)
Zheng et al. [29] Improved Social Force Model Based on Emotional Contagion and Evacuation

Assistant

Reddy et al. [30] Extend Social Force Model to incorporate the social cues by adding new social
forces
Extends the Geometric approach to incorporate the social cues by selecting the
geometric gap as per the social reference
Hybrid approach combining the social potential field and geometric method
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Figure 5. (Left) Forces of SFM. The resulting force f in the robot Ri is provoked by a static obstacle
(the wall, fiw) and a mobile one Aj ( fij). (Right) The velocity obstacle VOij for a robot Ri induced by
a mobile agent Aj, with velocity vj.

The SFM simulates agent dynamics using interaction forces (Figure 5 (Left)). It allows
expressing the collision-avoiding behavior through a function. The inputs for this function
are the relative and absolute positions and velocities of the mobile agents [31]. The SFM is
a powerful approach for crowd navigation, as discussed in the next section, which presents
several types of modified SFMs proposed for robot navigation and human modeling. For
instance, Zheng et al. [29] propose an SFM based on emotional contagion for evacuation
assistant (ecaSFM). Reddy et al. [30] propose a novel hybrid approach extending the SFM
with geometric constraints. This proposal maintains the proactive nature of the geometric
approach and retains the reactive nature of the SFM.

Finally, it is interesting to include in this list the proposal by Palm and Driankov [28], as
a representative example of reactive proposals not based on the previous approaches. Palm
and Driankov [28] use the behavior of a fluid in the presence of obstacles as a simile.
Then, they propose a local navigation method in which a set of streamlines is continuously
updated. The method is applicable in an environment where there are other mobile
elements such as robots or people.

3.2. Proactive Approaches

Purely reactive methods are not very common in social navigation. When navigating
between people, it is interesting for the robot to consider these people as cooperative
partners. Hence, the robot can interact with people to jointly avoid collisions [32]. This
cooperative approach requires the robot (i) to predict the behavior (i.e., trajectories) of the
people, and then (ii) proactively plan the path to follow. There is a multitude of methods
to predict the behavior of other mobile agents that share the environment with the robot:
from those that assume certain assumptions about how these agents behave in general
(reasoning-based prediction), to those that are justified on the basis of observations of
how these agents behave, usually in a specific environment or under specific conditions
(learning-based techniques) [13]. Subsequent path planning methods include, among
others, modified versions of the SFM [33] or the VO concept [34]. The next subsections
describe the state-of-art of predictive models and path-planning algorithms for proactive
approaches.

3.2.1. Predictive Models

Table 2 lists the approaches described in this section. Regarding predictive models,
initial efforts to model the behavior of other mobile agents, and thus avoid routes that
could lead to collisions, worked with highly deterministic models of motion. No weight
was given to uncertainty, and they typically considered a multi-robot framework. In two
proposals (van den Berg et al. [35], Snape et al. [34]) the concept of Velocity Obstacle was
modified to deal with a scenario where several robots coexist, but where each of them
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works independently. Assuming that all robots employ the same technique for navigation,
the aim of the Reciprocal Velocity Obstacle (RVO) [35] is to avoid the oscillatory behavior
they may adopt when approaching or crossing another robot. The Hybrid Reciprocal
Velocity Obstacle [34] extends the previous approach, setting priorities in the interaction
between robots.

Many methods suggest modifications to the SFM [36–38]. The aim of all these ap-
proaches is to map out a collision-free, smooth route, but one that takes into account the
presence of mobile agents—people or other autonomous vehicles. To achieve this, they
include some interesting techniques. For instance, Zanlungo et al. [36] assume that devia-
tions of the robot from the straight path leading to its goal are only due to avoidance of
collisions with other moving agents, but they predict the time in the future at which the
relative distances to each approaching agent will be at a minimum. Then, they assume that
forces at that time depend on the distance between the mobile agents (circular specification,
CS). Figure 6 schematizes the situation where two approaching agents interact. Forces will
be circular symmetric forces as those used in CS, but based on this future situation, which
is assumed to be the most interesting for the agent since it is when a collision can happen.
Shiomi et al. [38] use a specific version of the SFM, called CP-SFM, to simulate human-like
collision-avoidance behavior in robots for low-density environments, such as shopping
mall corridors. Paths generated by the planner maintain a social distance from people and
respect their personal space.

Figure 6. SFM with explicit collision prediction [36]: the position of the red and blue colored agents
is projected at the time where the minimum distance between them is expected (dashed circles).
For avoiding that situation, the agents will accelerate with the acceleration vectors denoted by the
continuous arrows (drawn both at the present time positions and at the predicted positions). The
dashed arrows (only drawn at the present time positions) are the acceleration vectors if the CS model
is applied without prediction. Permission granted by Editorial EPL (Europhysics Letters).

Engines, such as the Kalman filter, could be used to predict the position of mobile
agents surrounding the robot by incorporating the uncertainty dimension. The problem
is that, when there are several agents, the use of such engines leads to an uncertainty
explosion [39], which can make it impossible for the robot to find a safe path to a target.
To try to control this growth in uncertainty, different models of human motion have been
proposed [40,41]. For instance, Du Toit and Burdick [42] propose directly limiting the
predictive uncertainty of each individual agent. Joseph et al. [43] describe a more complex
motion model: a Gaussian process mixture with a Dirichlet Process prior over mixture
weights. This non-parametric model presents a high computational cost. The problem
is solved in the RR-GP algorithm [44], a clustering-based trajectory prediction solution
that uses Bayesian non-parametric reachability trees to improve the Gaussian prediction.
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Although for dealing with the position uncertainty, more sophisticated individual models
are proposed, this line of research does not consider agent interaction in their models [39].

As previously mentioned, the uncertainty about the person’s future behavior makes it
difficult for a robot to determine the appropriate actions for avoiding collisions. In addition,
non-collision can only be a partial solution, and the robot can be asked to avoid situations
where its behavior disturbs people, for example, due to excessive proximity. In a scenario
where the robot shares the environment with several people, instead of formulating the
behavior of each person, the robot must be able to predict how each person’s behavior
will vary over time. Common approaches for predicting trajectories, such as the Kalman
filter or Particle filters, exhibit different disadvantages for our scenario [45], being more
adequate to those methods that consider in the model a goal-based policy. Thus, they
assume that human behavior is captured in the previously observed trajectories, and the
problem is then to determine to which group of trajectories the current one belongs. For
instance, Bennewitz et al. [46] use models of human motion patterns, which can be learned
using an Expectation-Maximization (EM) algorithm. With this information, the robot can
predict where the person is or where s/he will be. Ziebart et al. [45] proposed using
maximum entropy inverse optimal control to model the goal-directed trajectories of people.
Maximum entropy is also used by Kuderer et al. [47]. Representative features of the people’s
trajectories are analyzed to find the probability distributions that drive their navigation
behaviors. Several prediction functions using the minimum curvature variation concept
were described in Ferrer and Sanfeliu [48]. Built over the Curvature Length Predictor
(CLP), the wCLP weights an average of previous predictions in a limited time window.
Experiments showed that it can quickly recognize the new intention of motion when the
destination changes or unexpected behaviors happen. Kabtoul et al. [49] proposed using a
quantitative time-varying function to model the human–robot cooperation in an interaction
scenario. Using this cooperation estimation, the human motion trajectory is predicted
by a cooperation-based trajectory planning model. Figure 7 provides an overview of the
approach proposed by Ikeda et al. [50]. The approach performs an offline analysis for
estimating sub-goals (and a probabilistic transition model) in the environment (Figure 8).
Then, at run-time, the approach allows estimating the future positions of people based on
the sequence of previously traversed sub-goals and the current velocity.

Figure 7. Overview of the approach by Ikeda et al. [50]. Image granted by author.
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Figure 8. Examples of a distribution of sub-goals in an environment [50].

Instead of predicting trajectories, Luber et al. [51] take advantage of the place-dependency
of human behaviour for building a spatial affordance map. The problem of learning this
spatial model of human behavior is posed as a parameter estimation problem of a non-
homogeneous spatial Poisson process. The spatial affordance map is learned using Bayesian
inference from observations of track creation, matching, and false alarm events, gained by
introspection of a laser-based multi-hypothesis people tracker. The framework is described
for people detection and tracking, but it was for instance integrated into the navigation
scheme proposed by Ferrer et al. [52].

With the aim of taking into consideration human–robot interaction, several authors
have demonstrated that the same proxemic zones that exist in human–human interaction
can be useful to explain human–robot interaction scenarios [53–55]. Sisbot et al. [15] pro-
posed including in the model safety- and visibility-related criteria to control the distance
between the robot and human and keep the robot mostly in the human’s field of view. The
safety, visibility, and hidden zone grids are combined into a single grid to find the most
cost-efficient path. In the work by Svenstrup et al. [56], the behavior of the robot is based
on adaptive potential functions that are adjusted accordingly such that social spaces are
respected. Castro-Gonzalez et al. [57] proposed a method for predicting people’s positions
in crossing behaviors using proxemics. The modified social force model (MSFM) [58] inte-
grates social components (body pose, face orientation, and personal space during motion)
into the classical SFM based on human position. In the MSFM, the short-term intended
direction is described by body pose, and a supplementary force-related face orientation is
added for intention estimation. Face orientation is employed as the best indication of the
direction of personal space during motion. To endow robots with the ability for navigat-
ing dynamic human environments in a socially acceptable manner that would guarantee
human comfort and safety, Truong et al. [33] proposed extending SFM with the Hybrid
Reciprocal Velocity Obstacle technique. The result is the so-called proactive Social Motion
Model (PSMM), which considers not only human states (position, orientation, motion, field
of view, and hand poses) relative to the robot but also social interactive information about
human-object and human group interactions. A survey paper describing the social concepts
of proxemics theory applied in the context of human-aware autonomous navigation was
provided by Rios-Martinez et al. [7], and more recently by Samarakoon et al. [8]. In general,
these navigation algorithms model human–robot interaction, emphasizing on maintaining
the proper safety distances, but they do not consider human–robot cooperation.
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In dense crowds, a common problem of those proactive approaches that take into
consideration the uncertainty in the position of humans or robots is the so-called Freezing
Robot Problem (FRP) [14,39] (Figure 9). Briefly, the problem is that the robot may not
be able to find even one feasible route due to the difference between the predicted and
the real motion of mobile agents. To deal with this problem, the interaction of all agents
with the remaining static and dynamic obstacles must be considered. This strategy is
addressed by SFM-based approaches [59,60] or the so-called optimal reciprocal collision
avoidance (ORCA) approaches [14,61–63]. Farina et al. [60] proposed merging the SFM
with Laumond’s human locomotion models. The resulting Headed SFM is able to reliably
reproduce human motions both in free space and in highly crowded environments. In the
proactive kinodynamic planner,Ferrer and Sanfeliu [59] propose using the Extended Social
Force Model (ESFM) to simplify both the prediction model and the planning system under
differential constraints. The main problem with SFM-based approaches is that parameter
tuning depends on the specific scenario [64]. For computing free routes, ORCA conducts
an optimized search in the feasible geometric space. In the reciprocal n-body collision
avoidance [61], the problem of avoiding collisions between multiple robots is reduced to
solve a low-dimensional linear program. The approach is based on the VO concept. In
the GLMP (Global and Local Movement Patterns) approach [62], the characteristics of
agents’ motion and movement patterns are learned from 2D trajectories using Bayesian
inference. Motion patterns consider local movement ones, corresponding to the current
and preferred velocities, and global characteristics such as entry points and movement
features. The Pedestrian Optimal Reciprocal Collision Avoidance (PORCA) proposed by
Luo et al. [63] is a human motion prediction model that takes into account the human’s
global navigation intention and the local interactions with the robot and other people.
Chen et al. [14] proposed the intention-enhanced ORCA (iORCA). The iORCA employs a
naive Bayesian classifier for estimating the most possible pedestrian destination, and then
it can compute the human velocity. Moreover, to deal with possible changes of intention,
iORCA updates these destinations at each time step. Inspired by the RVO model, the
eRVO model integrates the emotional effect into velocity decision [65]. Generally, ORCA
approaches have shown to be more stable than SFM in low sampling rates and in dense
crowd scenarios [65,66].

Figure 9. The Freezing Robot Problem (FRP). The robot is Ri and the ellipses represent the predictive
covariance. It is not easy for the robot to find a route to the Target.

Data-driven approaches have been also proposed for capturing agent motion con-
sidering interactions with static and dynamic obstacles. Thus, inspired by the success
of Long-Short Term Memory networks (LSTM) in other research tasks, Alahi et al. [67]
proposed the Social-LSTM, a data-driven architecture for predicting human trajectories in
future instants. For capturing the dependencies between multiple correlated sequences,
a social pooling layer is introduced. This allows the associated LSTMs to spatially close
sequences to share their hidden states with each other. Thus, the model can automati-
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cally learn typical interactions that take place among trajectories that coincide in time.
Considering that every person within a crowd implicitly cooperates with each other to
avoid collisions, the Social Attention by Vemula et al. [68] captures the relative importance
of each person when navigating, without emphasizing the proximity. The problem with
these approaches is that they are computationally expensive, and therefore difficult to
incorporate into mobile robots.

Table 2. Approaches considered in Section 3.2.1. The table covers the methods they use for modeling
human motion.

Reference Methods

van den Berg et al. [35] Reciprocal Velocity Obstacle
Snape et al. [34] Hybrid Reciprocal Velocity Obstacles
Zanlungo et al. [36] SFM extended to the near future
Ferrer et al. [37] Social Force Model (SFM)
Shiomi et al. [38] Collision Prediction Social Force Model (CP-SFM)

Trautman et al. [39] Multiple Goal Interacting Gaussian processes algorithm
Large et al. [40] Velocity Obstacle (VO) & Obstacles motion prediction
Thompson et al. [41] Probabilistic Model of Human Motion
Du Toit and Burdick [42] Thresholding the uncertainty
Joseph et al. [43] Gaussian processes (GP) & Dirichlet process (DP) prior over mixture weights
Aoude et al. [44] RR-GP—Learned motion pattern model by combining the flexibility of Gaussian

processes (GP) with the efficiency of RRT-Reach

Ziebart et al. [45] Maximum entropy inverse optimal control
Bennewitz et al. [46] Learned human motion patterns
Kuderer et al. [47] Maximum entropy
Ferrer and Sanfeliu [48] CLP-Time Window Predictor
Kabtoul et al. [49] Quantitative time-varying function to model HR cooperation
Ikeda et al. [50] Sub-goals to retrieve useful information not only for prediction but also for robot

navigation, environment modeling and pedestrian simulation.
Sub-goals used as the nodes of the robot global path planner, and as the nodes
of the planner in the pedestrian simulator

Luber et al. [51] Non-homogeneous spatial Poisson process
Bayesian inference from observations of track creation
Matching and false alarm events
Gained by introspection of a laser-based multi-hypothesis people tracker

Vega et al. [53] Adaptive Spatial Density Function
Asymmetric Gaussian representation for personal space
Inclusion of the space affordances
Probabilistic Road Mapping (PRM)
Rapidly-exploring Random Tree (RRT)
Elastic band algorithm

Mead and Mataric [54] Probabilistic framework for proxemic behavior production in HRI
Mead et al. [55] Heuristic-Based vs. Learned Approaches
Sisbot et al. [15] Safety and visibility related criteria
Svenstrup et al. [56] Adaptive potential functions respecting social spaces
Castro-González et al. [57] Hidden Markov Models for predictions

Ratsamee et al. [58] Modified SFM (MSFM) considering body pose, face orientation and personal
space

Truong and Ngo [33] Proactive Social Motion Model (PSMM)

Ferrer and Sanfeliu [59] Extended SFM (ESFM)
Farina et al. [60] SFM with Laumond’s human locomotion models
van den Berg et al. [61] Reciprocal n-body collision avoidance
Bera et al. [62] GLMP approach-Global and Local Movement Patterns

Pedestrian trajectory data using Bayesian Inference
Ensemble Kalman Filters (EnKF) and Expectation Maximization (EM)

Luo et al. [63] Pedestrian Optimal Reciprocal Collision Avoidance (PORCA) combines with a
Partially Observable Markov Decision Process algorithm (POMDP)

Chen et al. [14] Interactive MPC (iMPC) framework
Intention Enhanced ORCA (iORCA)

Xu et al. [65] Emotional Reciprocal Velocity Obstacles (eRVO)
Alahi et al. [67] Social Long-Short Term Memory networks (Social-LTSM)
Vemula et al. [68] Social Attention

S-RNN architecture
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3.2.2. Navigation Strategies Using Agent Motion Models

Once a model of human motion is available, the next step in a proactive approach is to
define a planner able to find an optimal navigation policy. Table 3 lists methods that aim
towards this objective. Foka and Trahania [69] suggested a unified model for considering
global and local planning (as well as localization). The model is a specific instantiation
of the hierarchical Partially Observable Markov Decision Process (POMDP), called Robot
Navigation-HPOMDP (RN-HPOMDP). The framework estimates the final destination of
all mobile agents, and this information is employed for effective obstacle avoidance. Sven-
strup et al. [70] proposed an algorithm for robot trajectory planning in dynamic human
environments, using a potential field generated from the perceived positions and motions
of people. The problem is solved using a Rapidly Exploring Random Tree (RRT) algorithm
enhanced with a robot motion model and controller, and using a Model Predictive Control
(MPC) approach to execute only a short segment of the planned trajectory. The method
minimizes the cost of traversing the potential field, resulting in comfortable and natural
robot trajectories. Dutoit and Burdick [42] describe an MPC framework for planning in a
dynamic scene. As described in Section 3.2.1, the predicted motion uncertainties of both
the robot and people are set as a hard threshold. Park and Kuipers [71] and Park et al. [72]
proposed combining MPC and the equilibrium point control to provide a model predictive
equilibrium point control (MPEPC) for a wheelchair robot navigating crowds. Taking into
consideration human intention and human–robot interactions, the interactive MPC (iMPC)
framework was proposed by Chen et al. [14]. The iMPC framework applies the iORCA
model in the state transition function to predict human states, and extends this interactive
model with robot constraints.

Based on the SFM, Ferrer et al. [37,52] put the emphasis on the design of socially
aware navigation frameworks, where topics, such as human comfort and safety are of
vital relevance. Ferrer et al. [52] integrated pedestrian intention and interaction into a
scheme for a robot’s human-awareness navigation based on the social forces concept. Their
experiments show that socially aware navigation is well suited for a robot companion task
in open spaces.

To respect people’s personal space, while also avoiding collisions, Rios-Martinez et al. [73]
propose an extension of the RRT algorithm for navigation. The Risk-RRT approach uses a
Gaussian procedure learning for estimating the area occupied by the person (o-space).

Although human intentionality was predicted, in some sense, by Ikeda et al. [50],
the topic is the core of the proposals by Ferrer and Sanfeliu [74] and Palm et al. [75].
The Bayesian Human Motion Intentionality Prediction (BHMIP) employs the Expectation-
Maximization method for estimating destination points [74]. The method has a simple
formulation, low computational complexity and outperforms existing methods such as the
ones proposed by Foka and Trahania [69]. Figure 10 provides a snapshot of the robot Dabo,
used for testing the BHMIP. The proposal by Palm et al. [75] focuses on the recognition
of human intentions in a human–robot interaction scenario. The framework includes a
method for predicting and avoiding collisions by extrapolating human intentions.

Taking into consideration the human–robot interaction factor, Ferrer et al. [76] propose
a socially-aware navigation framework for allowing a robot to navigate, accompanying the
person in a safe and natural way. In this scenario, the robot companion has to deal with
two goals at the same time: to navigate toward the person’s predicted destination, and to
approach the person who accompanies them. The prediction model is based on Extended
SFM (ESFM).

The cooperative navigation planner by Khambhaita and Alami [77] is a tool designed to
plan cooperative trajectories for robots and humans while respecting the robot’s kinematic
constraints and avoiding other non-human dynamic obstacles. The planner could adapt
the robot’s trajectory and propose co-navigation solutions even in confined spaces. It
predicts a plausible trajectory for humans, and plans a corresponding robot trajectory that
satisfies social constraints. The planner generates both human and robot trajectories using
a graph-based optimal solver and balances the efforts between both agents to solve the
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co-navigation task. The approach includes proxemics, time-to-collision, and directional
constraints during optimization. The trajectory optimization uses an elastic band approach
and a least-squares problem is mapped into a hyper-graph representation to adjust the
position and orientation of nodes and minimize the imposed constraints.

Figure 10. The robot Dabo accompanying a person to the desired goal while navigating in a crowded
scenario [74]: (left) image captured from the robot camera; (center) the robot Dabo; (right) the robot
GUI. The green cylinders correspond to people and the orange cylinder corresponds to the target.
Permission by ELSEVIER 5483750554512.

Table 3. Approaches considered in Section 3.2.2. The table covers the methods they use for solving
the navigation problem.

Reference Methods

Svenstrup et al. [70] Rapidly-exploring Random Tree (RRT)
Trajectory Generation Problem
Model Predictive Control (MPC)
Dynamic Potential Field

Foka and Trahania [69] Predictive navigation performed in a global manner with the use of a POMDP
Polynomial Neural Network (PNN)
Future motion prediction
Robot Navigation-HPOMDP (RN-HPOMDP)

Rios-Martinez et al. [73] RISK-RRT algorithm navigation
Learned Gaussian Processes
Personal Space
Model of o-space in F-formations

Park and Kuipers [71] The formulation of the kinematic control law
The pose-following algorithm for smooth and comfortable motion of unicycle
-type robots

Park et al. [72] Model Predictive Equilibrium Point Control (MPEPC) framework
Du Toit and Burdick [42] Motion Planning
Ferrer et al. [52] SFM and prediction information
Ferrer and Sanfeliu [74] Bayesian Human Motion Intentionality Prediction

Sliding Window BHMIP (BHMIP)
Two variants: the Sliding Window BHMIP and the Time Decay BHMIP
Expectation-Maximization method

Palm et al. [75] Recognize the human intention with relative speeds
Collision avoidance by extrapolation of human intentions and heading angle
Compass dial
Fuzzy rules for Human-Robot interactions

Ferrer et al. [76] Socially-aware navigation framework for allowing a robot to navigate
accompanying the person

Khambhaita and Alami [77] Cooperative navigation planner
Trajectory Optimization: Elastic band
Expectation-Maximization method
Optimization framework
Graph-based optimal solver
Time-to-collision and directional constraints during optimization

Kabtoul et al. [78] Cooperative navigation planner

In the same way that we describe in the previous subsection, ignoring the cooperation
between the mobile agents in the path planning step can lead to the freezing of the robot.
In the proposal by Kabtoul et al. [78], proactive and natural maneuvering is suggested for
navigation around people. The approach consists of two main steps. First, the space is
explored and dynamically divided into a set of channels using a local segment of the global
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path. The optimal channel is found using a fuzzy cost model, and its center line provides
the goal path to the local navigation module. To convey a human-like steering behavior,
a smooth lane change maneuver is adapted to travel between channels using a Quintic
transition path. In the final stage, the exact tracking control commands are derived using a
sliding mode control method.

3.3. Learning-Based Approaches

In recent years, many researchers studied methods by which a robot learns the navi-
gation policy adapted to the target environment. Deep reinforcement learning (DRL) was
often used to learn this interaction policy. Approaches such as Collision Avoidance with
DRL (CADRL) [79], Socially-Attentive RL (SARL) [80], and Socially-Attentive Object-Aware
DRL (SOADRL) [81] have been proposed to address this problem. However, the exact
positions of pedestrians can be difficult to estimate in real-life situations. To avoid this
computation, end-to-end (E2E) learning approaches directly map raw sensory inputs to the
desired steering commands. On the other hand, the problem of automating the computa-
tion of the reward function in DRL-based approaches has been addressed using inverse
reinforcement learning (IRL). By learning the reward function directly from the data, IRL
can improve the learning rate and performance of the system. Several IRL approaches were
used to learn social navigation behaviors for robots, including optimizing reward function
parameters using maximum likelihood estimation [82], and modeling IRL from a Bayesian
perspective [83].

3.3.1. Deep Reinforcement Learning and End-to-End Approaches

In recent years, Deep reinforcement learning (DRL) has emerged as a successful tool
for solving those tasks where it is not easy to engineer a direct solution. Briefly, DRL
introduces deep neural networks to solve reinforcement learning problems. A multitude
of approaches for training a collision avoidance policy based on DRL has been proposed
in the last decade, some of which take social awareness into account. Table 4 enumerates
some of these approaches, that are described in this section.

Chen et al. [79] use DRL to train a navigation strategy in a multi-agent scenario
(Collision-Avoidance with DRL, CADRL). The hand-crafted reward function positively
benefits reaching the desired goal and penalizes collisions. This proposal was extended
for considering humans and social norms in Chen et al. [84] (SA-CADRL). Specifically, in
this work, a socially compliant behavior (e.g., passing by the right side) was learned using
a reward function that depends on situational dynamics. The scheme was improved by
Everett et al. [85], who leveraged GPU processing to train multiple agents in parallel, and
Long Short-Term Memory (LSTM) to convert the variable size state of the crowd into the
fixed-size vector. Although these approaches were successful for dealing with multi-agent
navigation, they failed to account for complex interactions among humans [86]. To improve
the comfort of people sharing the crowd with a robot, Hu et al. [87] use social stress indexes
in the reward function and value network of the DRL framework. A multi-layer perceptron
is employed to extract local features and social-attention scores. As in the rest of the
approaches cited in this paragraph, they make use of exact pedestrian positions in the input.
This will be not an easy task to address for a real robot deployed in a real scenario [88].
Gil et al. [89] proposed computing robot actions by a combination of robot velocities learned
by a RL model (AutoRL [90]) and robot velocities computed using an SFM [36].

Previous approaches typically address robot navigation in a crowded environment
as a one-way human–robot interaction problem, experiencing problems when the crowd
grows. To avoid this situation, Chen et al. [80] proposed explicitly modeling the crowd-
robot Interaction (Socially Attentive RL approach, SARL). Self-attention is used to discover
the collective importance of the crowd by considering human–human and human–robot
interactions. Obstacles are however left out of the policies learned by the SARL approach.
This issue is addressed by the SOADRL [81]. This approach extends the SARL by separately
processing information related to static and dynamic objects. Moreover, the SOADRL
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addresses the problem of navigation in crowds with sensors that only offer a limited field of
view. As with the SA-CADRL, the SARL and SOADRL make use of the exact mobile agents’
position in the input. To deal with the problem of a large-sized crowd, Chen et al. [91]
suggested enabling the system to identify those humans in the crowd that are most critical
for navigation. The proposal uses a graph representation to learn this policy, which encodes
information about the crowd and predicts human attention scores in the navigation task.
A graph convolutional network is trained based on human gaze data, which accurately
predicts human attention to different agents in the crowd as they perform a navigation task.
The learned attention is integrated into the graph-based reinforcement learning architecture.
The problem of partial observability (due for example to sensor limitations, occlusions,
or perception uncertainty) is considered by Gao et al. [92]. To achieve this, the proposal
makes use of a recurrent neural network (RNN) (the so-called gated recurrent unit (GRU))
to infer the unobservable states. To respond in real-time to human behaviors, Samsani
and Muhammad [86] proposed modeling Danger Zones for the robot. These zones are
formulated by taking into account real-time human behavior, and then they encode all
possible actions that people can take at a given time. The robot is trained to avoid these
danger zones for safe and secure navigation.

With the help of deep neural networks, DRL can apply end-to-end (E2E) learning,
i.e., to learn a black box model, extract features from captured high-dimensional data and
learn complex policies. Thus, they avoid the need for detection and efficient tracking of
people. From a general point-of-view, where the goal is to directly map raw sensory inputs
to desired steering commands, the learning process can be summarized as follows [93]:

• the robot moves according to a given action and obtains information from the envi-
ronment (observations) and a reward;

• following a policy, and given the captured observation, an action is generated;
• the policy is updated by an RL-based algorithm.

The robot finally gets the optimal policy to achieve the goal by repeating the learning
process. In order to use DRL in an E2E robot navigation context, the whole problem
setting must be stated and translated into an RL framework [94]. For instance, to avoid
collisions, Long et al. [93] proposed directly mapping raw 2D laser measurements to desired
motion commands using a 4-hidden-layer neural network. Shi et al. [95] proposed an E2E
navigation framework that translates sparse laser-ranging results into movement actions.
The goal of using this highly abstract data as input is that robots trained by simulation
can be also deployed in real environments. The proposal shows robust navigation but
in relatively simple environments. The Role Playing Learning (RPL) [96] endows a robot
with appropriate group behaviors when it is traveling with a human companion. This E2E
proposal uses neural networks to map sensory data to velocity outputs while adhering to
social norms. The RPL process is formulated under an RL framework and optimized using
Trust Region Policy Optimization (TRPO). To directly learn control strategies from visual
input, Mnih et al. [97] combined a convolutional neural Network (CNN) with a Q learning
algorithm (DQN network model). Lee and Yusuf [98] mapped the data from an RGB-D
camera to steering commands. A Deep neural network is employed for detecting the target,
and the collision avoidance and navigation are addressed by a DQN model (or a double
DQN (DDQN)). The approach is able to deal with static and dynamic obstacles, but it does
not consider social factors.

Previously described E2E planning approaches use RL. Another possibility is to use a
supervised learning scheme to imitate expert demonstrations (imitation learning, IL). IL is
sample efficient and, given training data, a navigation model could be found quickly [99].
On the other hand, IL is conceptually less robust than RL [100], as RL allows the robot
to learn from its own mistakes during training [101]. Pfeiffer et al. [99] proposed a data-
driven E2E motion planner, where the robot learns to navigate as the human user likes. To
achieve this, expert demonstrations of how to navigate in a given training environment are
provided. Using this data, the aim is not only to replicate the provided demonstrations in
one specific scenario, but rather to be able to learn collision avoidance policies and transfer
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them to previously unseen environments. As Figure 11 shows, a single model based on
the TensorFlow framework [102] is used for extracting information and for estimating
the steering commands. IL and RL are combined by Pfeiffer et al. [100] into a single
target-driven, mapless navigation scenario. The Reinforced imitation learning (R-IL) uses
expert demonstrations to pre-train the navigation policy, and then applies a Constrained
Policy Optimization (CPO) [103] for incorporating constraints during RL training. The
authors demonstrate that this scheme can reduce the training time, to reach the same
performance level that plain RL, by a factor of 5. Pfeiffer et al. [99,100] test their solutions
in a static environment. The CrowdMove approach [104] is a multi-robot, multi-scenario,
and multi-stage training (3M) framework. It employs a 4-hidden-layer neural network as a
nonlinear function approximator to the navigation policy, and extends the Proximal Policy
Optimization (PPO) [105] to the multi-robot scenario. Experiments demonstrate that the
navigation policy can achieve autonomous navigation for different mobile platforms in a
large variety of crowd environments.

Figure 11. Structure of the CNN employed by Pfeiffer et al. [99]. Two residual building blocks
provide the structure of the CNN part [106], which takes the input data (laser data) and provides
the feature vector to the FC part. The FC layer of the model fuses this feature vector with the target
information to obtain the translational and rotational steering commands. L1 regularization is applied
to all model parameters.

Long-term planning and learning for navigating within other mobile agents have
been also combined as separate (but intimately tied together) modules. Instead of the
E2E previous solutions, the aim here is to allow the motion planner to estimate the path
and decompose it into a set of subgoals, being the learned low-level controller in charge
of adapting the route to the dynamics of the current situation. Gao et al. [107] proposed
combining a path planner with a neural-network motion controller (the intention-net). The
intention net maps images to motion controls in an E2E scheme. The path planner uses an
a priori 2D map to compute the paths. This planned path provides the intentions to the
intention-net layer. The navigation system proposed by Pokle et al. [108] also combines a
path planner and machine learning. Here, the global planner computes the routes toward
a goal, and a deep local trajectory planner and velocity controller provides the motion
commands. The low-level motion controller is responsible for avoiding obstacles and also
for respecting the space of nearby pedestrians. Significantly, both approaches demonstrated
that this scheme outperforms an end-to-end framework where planning guidance is not
considered. Pérez-D’Arpino et al. [109] proposed a navigation stack that combines motion
planning and RL. The RL component learns to handle the local interactions with other
mobile agents as it pursues the globally planned trajectory. Choi et al. [110] proposed a
framework where the DRL learns navigation policies that adapt to a wide range of reward
weightings and other navigation parameters. Then, a Bayesian deep learning method is
used for optimizing navigation parameters to human preferences.
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Table 4. Approaches considered in Section 3.3.1. The table covers the methods for DRL and E2E
approaches.

Reference Methods

Chen et al. [79] Decentralized Multi-agent Collision Avoidance algorithm based on a novel
application of deep reinforcement learning

Chen et al. [84] SA-CADRL, a multi-agent collision avoidance algorithm that considers and
exhibits socially compliant behaviors
Time-efficient navigation policy that respects common social norms
Reinforcement learning framework

Everett et al. [85] Collision avoidance algorithm, GA3C-CADRL, that is trained in simulation
with deep RL without requiring any knowledge of other agents’ dynamic
Long Short-Term Memory (LSTM)
LSTM that enables the algorithm to use observations of an arbitrary number
of other agents

Samsani and
Muhammad [86] Human Behavior Resemblance Using Deep Reinforcement Learning

The Danger Zones are formulated by considering the real time human behavior
Hu et al. [87] Deep reinforcement learning framework (DRL) and the value network

The DRL framework incorporating these social stress indexes
Dugas et al. [88] Reinforcement Learning of Robot Navigation in Dynamic Human Environments

NavRepSim environment is designed with RL applications in mind
Gil et al. [89] Social Force Model (SFM) allowing human-aware

Two Machine Learning techniques: Social navigation and Neural Network (NN)
RL technique

Francis et al. [90] PRM-RL:Probabilistic road-maps (PRMs) as the sampling-based planner and
reinforcement learning-RL method in the indoor navigation context

Chen et el. [80] Crowd-Robot Interaction (CRI)
Attention-based Deep Reinforcement Learning

Liu et al. [81] Imitation learning and deep reinforcement learning approach for motion planning
in such crowded and cluttered environments

Chen et al. [91] Graph convolutional network (GCN) for reinforcement learning to integrate
information
Attention network trained using human gaze data for assigning adjacency values.

Gao et al. [92] Learn an efficient navigation policy that exhibits socially normative navigation
behaviors
Convolutional social pooling layer that robustly models human–robot
co-operations and complex interactions between pedestrians
Partial observability in socially normative navigation

Long et al. [93] Decentralized sensor-level collision avoidance policy for multi-robot systems
Policy gradient-based reinforcement learning algorithm

Gromniak and
Stenzel [94] End-to-end Deep reinforcement learning

Shi et al. [95] Navigation strategy based on deep reinforcement learning (DRL)
Conventional A3C algorithm, an ICM A3C model was proposed

Li et al. [96] Role Playing Learning (RPL)
NN policy is optimized end-to-end

[97] A deep Q-network (DQN), combine reinforcement learning with a deep neural
networks

Lee and Yusuf [98] Deep reinforcement learning for autonomous mobile
The trained DQN and DDQN policies are robot navigation in an unknown
environment evaluated in the Gazebo testing environment
Two types of deep Q-learning agents, such as deep Q-network and double deep
Q-network agents

Pfeiffer et al. [99] Data-driven end-to-end motion planning approach for a robotic platform
End-to-end model is based on a CNN
Learn navigation strategies

Pfeiffer et al. [100] Imitation learning(IL) and reinforcement learning (RL)
Tai et al. [101] A map-less motion planner was trained end-to-end through continuous control

deep-RL from scratch
The learned planner can generalize to a real non-holonomic differential robot
platform without any fine-tuning to real-world samples

Fan et al. [104] Multi-robot, multi-scenario, and multi-stage training framework
Gao et al. [107] Two-level hierarchical approach:Model-free deep learning and model-based path

planning
Neural-network motion controller, called the intention-net, is trained end-to-end to
provide robust local navigation
Path planner uses a crude map
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Table 4. Cont.

Reference Methods

Pokle et al. [108] Hierarchical planning and machine learning
Traditional global planner to compute optimal paths towards a goal
Deep local trajectory planner and velocity controller to compute motion
commands
Combines traditional planning with modern deep learning techniques

Pérez-D’Arpino
et al. [109] Reinforcement learning to learn robot policies

The proposed model uses a motion planner that provides a globally planned
trajectory whereas the reinforcement component handles the local interactions
needed for on-line adaptation to pedestrians

Choi et al. [110] Novel deep RL navigation method that can adapt its policy to a wide range of
parameters and reward functions without expensive retraining
Bayesian deep learning method

3.3.2. Inverse Reinforcement Learning

One of the major issues to solve when designing a DRL-based scheme is the choice
of the reward function. Thus, a bad choice can dramatically impact learning rate and
performance [111]. One alternative to the hand-crafted setting of the reward function
is to learn this function directly from the data. Inverse Reinforcement Learning (IRL) is
a good mechanism for addressing this learning process. Table 5 presents some recent
approaches that use IRL in the context of robot social navigation. Ziebart et al. [112]
proposed a probabilistic approach based on the principle of maximum entropy that allows
optimizing the parameters of a reward function using maximum likelihood estimation
(MLE). The scheme was used by Henry et al. [82] to learn human-like navigation behavior in
crowded environments. Specifically, the approach learns from example paths by estimating
values such as crowd density on the fly using Gaussian processes. The performance of the
approach was evaluated within a realistic crowd simulation and resulted in natural paths
that blended seamlessly with existing crowd movements. Pérez-Higueras et al. [113] also
proposed IRL for social navigation. However, instead of using the costs for path plans,
they employ them to learn local execution policies and provide steering commands to the
robot. The global path planner is based on Dijkstra’s algorithm and the local planner is
an extension of the Trajectory Roll-out algorithm [114]. Vasquez et al. [115] compared IRL
and manual tuning in the learning of the parameters of a reward function. They proposed
evaluation metrics to benchmark these techniques. The results from simulations using two
IRL approaches and several feature sets are reported and evaluated using objective and
subjective performance metrics. Obtained results demonstrated that IRL-learned reward
parameters are better than manually tuned ones. The maximum entropy approach was
used by Kretzschmar et al. [116] to learn the parameters of a joint trajectory distribution of
all navigating agents in an environment, including the robot itself. Hamiltonian Markov
chain Monte Carlo sampling is used to compute the feature expectations over the resulting
high-dimensional continuous distributions. While learning a joint distribution over all
agents allows for high-quality inference, it does not scale to moderately populated settings
(e.g., a few dozen agents).

Wang et al. [117] proposed a Neural Network Rapidly-exploring Random Trees (NN-
RRT*) planner for generating robot paths in human–robot interaction environments. Based
on this planner, they propose the NRTIRL framework. Figure 12 provides an overview of
the framework. Briefly, the idea is to compare planned routes generated by the NN-RRT*
and demonstration routes generated by human volunteers. To achieve this, features of
demonstration and planned routes are provided to the neural network to obtain their
corresponding cost. If their difference is higher than an allowable error, the feature vector
of the planned route is used as input, and the cost of the demonstration route is used as the
output of the neural network. The neural network is then optimized until the difference
between demonstration and planned routes is lower than this allowable error. When the
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parameters of the neural network converge, the new NN-RRT* planner is updated and able
to generate routes that are more similar to the ones provided by humans.

Figure 12. Overview of the NRTIRL [117].

Ramachandran and Amir [118] proposed modeling IRL from a Bayesian perspective
(BIRL) and solving reward learning and apprenticeship learning using a modified Markov
Chain Monte Carlo (MCMC) algorithm. The reward is modeled as a random variable
vector that determines the distribution of expert states and actions. The distribution of the
rewards which best explains expert trajectories is then inferred. Kim et al. [83] use BIRL to
learn a linear reward function over features extracted from RGB-D cameras on a robotic
wheelchair. The proposed framework consists of three modules: feature extraction, BIRL,
and path planning. The feature extraction module extracts information from a RGB-Depth
sensor, the BIRL module uses expert demonstrations to learn a cost function that considers
social variables, and the planning module uses a three-layer architecture to optimize the
global and local paths while avoiding obstacles. Okal and Arras [119] proposed a new
approach to modeling socially normative behavior in robots using MDPs and a modified
version of the BIRL. They focused on spatial robot motion behaviors and use a graph-based
representation to integrate task-specific constraints into the MDP. The use of this graph-
based representation allows the authors to instantiate global planners such as RRT or A*
using the rewards learned for local navigation.

Table 5. Approaches considered in Section 3.3.2. The table covers the reviewed methods for IRL.

Reference Methods

Ziebart et al. [112] Maximum Entropy Inverse Reinforcement Learning
Inverse reinforcement and imitation learning

Henry et al. [82] Inverse Reinforcement Learning with
Gaussian Processes for environmental

Pérez-Higueras et al. [113] Inverse reinforcement learning
Global path planner- Dijkstra’s algorithm

Gerkey and Konolige [114] DARPA Learning Applied to Ground
Globally optimal paths on a cost map

Vasquez et al. [115] Compare IRL based learning methods
Motion Planning -grid-based GPU

Kretzschmar et al. [116] Hamiltonian Markov Chain Monte Carlo (MCMC)
Learn a model of the navigation behavior of cooperatively
navigating agents such as pedestrians
Voronoi graph of the environment

Wang et al. [117] Neural Network Rapidly-exploring Random Trees
A cost function based on neural network

Ramachandran and Amir [118] Bayesian IRL (BIRL)
Reward learning is an estimation task
Markov Decision Process
Apprenticeship learning task

Kim et al. [83] Path planning module
Inverse Reinforcement Learning
Framework for socially adaptive path planning in dynamic
environments
Generating human-like path trajectory

Okal and Arras [119] Graph-based representation of the continuous
New extension of BIRL
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3.4. Multi-Behavior Navigation Approaches

When people move in an environment where there are many other people, it is not
easy to behave like a rigid object, whose aim is to reach a goal without touching these
other people. We usually have to ask for permission to pass, sometimes even interrupting
a conversation, informing with gestures of our intentions, or even giving a light touch so
that a person moves slightly to let us pass. This scenario, which is complex to translate to a
robotic agent as it involves mixing originally different functionalities, implies integrating
the navigation stack with other modules present in the software architecture. This integra-
tion can be done by incorporating all these functionalities into the navigation framework
(as we would do for a robot that follows a person, for example, by integrating the person
detector into the navigation stack) or by allowing all these functionalities to cooperate in a
single shared representation of the environment. In this section, we present a few examples
of approaches (Table 6) that concatenate actions associated with different functionalities for
reaching a navigation goal (multi-modal behaviors). The first of the integration options
discussed above is the one used by Kamezaki et al. [16] and Dugas et al. [120]. The second
is the one proposed by Vega-Magro et al. [121].

Allowing a robot to switch behaviors depending on the context entails entering the
field of self-adaptation. In the proposal by Chen et al. [122], after estimating a local trajectory
for obstacle avoidance based on predicted mobile agents’ routes, the robot can choose a
travel model for navigation according to the traffic state. Freitas et al. [123] proposed a
framework that allows a robot to change its navigation configuration depending on the
context (e.g., aborting a mission when the power autonomy level is low and the robot is
redirected to the charging station). Some of these context changes are related to the presence
of people in the environment. However, this work does not really focus on enabling a robot
to navigate naturally and socially correctly between people. Using the MROS model-based
framework, Bozhinoski and Wijkhuizen [124] presented a similar approach that adapts the
local planner configuration at run-time to satisfy a set of quality requirements. None of
these methods consider other action skills for the robot apart from moving through the
environment.

The IAN (Interaction Actions for Navigation) approach [120] is defined as a high-
level, multi-behavior, interaction-aware planning for navigation in unstructured, human-populated
environments. Briefly, the approach allows the robot to choose a specific navigation behavior
based on the observed state of the environment. These behaviors combine actions associated
with different robotic functionalities (multi-modal behaviors). The first behavior considers
a static or sparsely dynamic scenario and consists of a motion planner based on the local
velocity field. RVO is used for modeling mobile agents. In the second behavior, the robot is
able to verbally announce that it is moving, while indicating the direction of movement with
its hand. The third behavior is employed by the robot to pass through very close people in
a highly populated scenario. The Dynamic Window Approach (DWA) is employed as a
local planner. When the DWA cannot find a non-zero solution, the robot moves at a very
low speed, with its arm forward, reaching its own base footprint, and announcing verbally
that it is passing through the people.

The SNAPE framework [121] emphasizes that a robot needs social behaviors and
cooperation from humans to navigate socially. The core of the proposal is the use of the
CORTEX software architecture for robotics [125,126]. This architecture deploys a set of
software agents surrounding a graph-based world model. These agents are organized
into five layers (perception, social, navigation, human–robot interaction, and high-level
planning). Using CORTEX, the SNAPE framework manages all the information flow, from
the perception of the environment to behavior planning. However, planning is considered
not only at the behavior level, but also at the dialogue and task-planning levels. The
decision maker coordinates the activity at all layers. For instance, when the robot detects
that a person is blocking its route, it can approach this person, draw its attention with a
specific dialogue, and ask permission to pass.
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Based on an inducible SFM (i-SFM), Kamezaki et al. [16] propose a reactive, proactive,
and inducible way-point-i-SFM fused-path planning method (the proximal crowd naviga-
tion (PCN) approach). The PCN considers proximity but also physical touching for tracing
the routes, and uses i-SFM for predicting human motions. The PCN is able to predict the
movement of the people in the robot’s surroundings, generate multiple paths including
physical-touch paths using the way-point method, and determine the route taking into
consideration the movement efficiency and the degree of crowd invasion.

Table 6. Approaches considered in Section 3.4. The table covers multi-behavior navigation approaches
and multi-modal behavior navigation approaches.

Reference Methods

Chen et al. [122] Travel model selection according to the traffic state
Freitas et al. [123] Self-adaptation based on QoS metrics

Planning encoded in Behaviour Trees. CORTEX
software architecture

Bozhinoski and Wijkhuizen [124] Self-adaptation based on MROS framework
Quality models for adapting the local planner
configuration at run-time

Kamezaki et al. [16] Proximal Crowd Navigation (PCN) approach
(proximity and physical-touching).
inducible SFM (i-SFM) for predicting human motion.

Dugas et al. [120] The IAN framework
Interaction actions (saying, touching, and gesturing)
for navigating in crowded scenarios

Vega-Magro et al. [121] The SNAPE framework
CORTEX cognitive software architecture

4. Discussion

Robot navigation within humans has been a goal of the robotics community for
decades. Reactive approaches, such as the ones presented in this study, were designed to
handle dynamic scenarios, but have severe constraints (e.g., constant velocities for moving
obstacles) that do not allow them to handle complex environments. These approaches do
not model humans and their not always predictable behavior. Moreover, they cannot take
into account multi-agent behaviors, such as joint planning. To deal with these problems,
proactive approaches focus on human modeling and reciprocal planning. They have faced
several problems, related to, for example, giving relevance to social comfort (practically
covered by most of the proactive and learning-based approaches), the interaction with
humans but also with groups of humans, or the Freezing Robot Problem. The problem of
the first approaches for modeling human motion was solved by considering goal-based
policies. Considering that people are moving towards certain goals, the robot can project
their motion (trajectories) on a map and trace a route for avoiding them. However, these
goals are not necessarily available to the robot. Given the positions in a map of all people
surrounding the robot, proxemics can be used for extending this map, taking into account
social norms. In addition to space, other factors need to be taken into account. Traits such
as body posture and facial expressions can help the robot to be more approachable and
predictable, further improving its ability to function in social environments. As we review
in this work, proactive approaches have evolved to manage human–robot interaction
and, subsequently, human–robot cooperation. Cooperative planning provides navigation
efficiency and also human acceptability [120]. In parallel, learning-based approaches have
emerged in this last decade to learn motion planners. As data-driven approaches, the
major strength of these methods is that they are able to estimate a practical human model
without having to specify social norms, as they are implicitly present in the data. In recent
years, the major limitation was that these approaches need large data sets, which were
captured from virtual scenarios. The great difference between the simulation environment
and the real-world one is the major challenge to transfer the trained model to a real
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robot. Virtual-to-real approaches are currently able to generalize the learned planners
and to satisfactorily deployed them in unseen real environments [101]. It is clear that
real-world experiments involving actual people and uncontrolled environments are crucial
to validating the effectiveness of social navigation. These experiments reveal the challenges
and complexities that arise in real-life situations, providing valuable insights into how
robots can improve their navigation skills.

The use of databases to calibrate or train the system is usually necessary in all methods
examined. These datasets are usually obtained by recording pedestrian trajectories with
cameras or sensors in specific environments, or are collected by experts. Relying solely
on recorded datasets may not be good practice, as the goal is to generalize pedestrian
behavior, which requires a variety of datasets from different sources. In the case of proactive
methods, the use of real data is common. For example, the Edinburgh Informatics Forum
Pedestrian Database was successfully used by Ferrer and Sanfeliu [48,74]. Others, such as
Luber et al. [127] and Ferrer and Sanfeliu [74], used The Freiburg People Tracker. However,
this is not the case, as mentioned above, for learning-based methods. These usually describe
the tools used to generate virtual learning environments, which enable them to obtain the
volumes of data needed to successfully complete the training. For these methods to be
successful in real environments, the data used for prediction or learning must be as realistic
and diverse as possible. Therefore, it is crucial to collect data sets from a variety of sources
and experts.

Two relevant topics have begun to be taken into account in the most recent proposals.
On the one hand, the possibility for the robot to handle different behavioral options, and
that, depending on the context, the robot itself self-adapts its behavior. Self-adaptation
is a topic widely addressed in robotics, with specific proposals related to navigation and
including parameter reconfiguration, algorithm changes, or even reconfiguration of the
architecture itself [123,124]. Although it has not been analyzed in depth in this survey,
some references were added to Section 3.4. On the other hand, navigation has started to
be considered as a task that is not only about finding a path free of obstacles, or that this
path is as close as possible to the one a person would follow, but may require specific skills
that we would not include a priori in a navigation stack. Thus, to avoid getting stuck in
an environment densely crowded with people, the robot may need to talk to people, or
even push them lightly. This multi-modal collaboration scenario can be useful for a robot to
become more socially aware, allowing it, for example, to greet people it crosses paths with.

5. Conclusions and Future Work

This survey analyzes the problem of robot navigation in every day, crowded environ-
ments. The analysis of recent studies highlights the advancements in robot navigation,
particularly in the area of social navigation. Although purely reactive proposals were
presented, when a mobile robot is deployed in an environment where people move around
freely, it becomes necessary for this robot to predict the movement of these other agents.
The use of prediction enables the robot to quickly adapt and optimize its navigation, To
generate these predictions, navigation algorithms have evolved from a human–robot inter-
action scenario to a human–robot cooperation one, where it is expected that people will
proactively help the robot to find a free and safe path. However, the complexity and variety
of human behavior in the real world can make this assumption fail. Recent approaches
propose that the mobile robot can interact with people not only because their paths may
cross on the map, but more actively, through gestures, vocalization and touch, to require
their help in navigating [16,120,121]. As a signaling mechanism for conveying an intention
to humans, incorporating features such as body posture and gestures also contributes
to making the robot appear more friendly and predictable to humans, leading to better
human–robot interactions and an overall improved experience.

Future work in this field should focus on thoroughly reviewing existing experiments
and exploring ways to further improve robot performance. It is also important to keep
abreast of the latest developments and advances in this field. In addition, as mentioned
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above, it could be interesting to analyze methods using record data and methods using test
databases and to analyze the behavior of the methods in real environments.
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