
Citation: Moshawrab, M.; Adda, M.;

Bouzouane, A.; Ibrahim, H.; Raad, A.

Reviewing Multimodal Machine

Learning and Its Use in

Cardiovascular Diseases Detection.

Electronics 2023, 12, 1558. https://

doi.org/10.3390/electronics12071558

Academic Editors: Francisco

Luna-Perejón, Lourdes Miró

Amarante and Francisco

Gómez-Rodríguez

Received: 2 March 2023

Revised: 14 March 2023

Accepted: 25 March 2023

Published: 26 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

Reviewing Multimodal Machine Learning and Its Use in
Cardiovascular Diseases Detection
Mohammad Moshawrab 1,* , Mehdi Adda 1 , Abdenour Bouzouane 2, Hussein Ibrahim 3,* and Ali Raad 4

1 Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski,
300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada

2 Département d’Informatique et de Mathématique, Université du Québec à Chicoutimi, 555 Boulevard de
l’Université, Chicoutimi, QC G7H 2B1, Canada

3 Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada
4 Faculty of Arts & Sciences, Islamic University of Lebanon, Wardaniyeh P.O. Box 30014, Lebanon
* Correspondence: mohammad.moshawrab@uqar.ca (M.M.); hussein.ibrahim@itmi.ca (H.I.);

Tel.: +1-(581)624-9394 (M.M.)

Abstract: Machine Learning (ML) and Deep Learning (DL) are derivatives of Artificial Intelligence
(AI) that have already demonstrated their effectiveness in a variety of domains, including healthcare,
where they are now routinely integrated into patients’ daily activities. On the other hand, data
heterogeneity has long been a key obstacle in AI, ML and DL. Here, Multimodal Machine Learning
(Multimodal ML) has emerged as a method that enables the training of complex ML and DL models
that use heterogeneous data in their learning process. In addition, Multimodal ML enables the
integration of multiple models in the search for a single, comprehensive solution to a complex problem.
In this review, the technical aspects of Multimodal ML are discussed, including a definition of the
technology and its technical underpinnings, especially data fusion. It also outlines the differences
between this technology and others, such as Ensemble Learning, as well as the various workflows that
can be followed in Multimodal ML. In addition, this article examines in depth the use of Multimodal
ML in the detection and prediction of Cardiovascular Diseases, highlighting the results obtained
so far and the possible starting points for improving its use in the aforementioned field. Finally, a
number of the most common problems hindering the development of this technology and potential
solutions that could be pursued in future studies are outlined.

Keywords: multimodal machine learning; multimodal learning; data heterogeneity; data fusion;
model heterogeneity; model fusion; diseases prediction; cardiovascular diseases; Internet of Things;
smart wearables

1. Introduction

Artificial Intelligence (AI) has experienced rapid growth over the past two decades.
The concept of AI has been around since 1950, and the term itself was coined in 1965 at
the Dartmouth Summer Workshop, which is considered the founding event of AI as a
field [1]. However, the growth in Information and Communication Technologies (ICTs)
and the increasing power of computers have contributed significantly to the increasing
feasibility and adoption of AI [2]. AI technologies are becoming more advanced and
are capable of analyzing enormous amounts of data, learning from past experiences,
and making predictions based on patterns and trends [3]. Despite the popularity of
AI, there is no single definition for this technology. Researchers in [4], for example,
defined it as a set of tools and techniques that use principles and devices from various
fields, such as computation, mathematics, logic, and biology, to address the problem
of realizing, modeling, and mimicking human intelligence and cognitive processes.
Furthermore, the authors define in [5] AI as the study of an “Intelligent Agent”, i.e.,
machines that are able to recognize and understand their environment and consequently
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take appropriate actions to increase their chances of achieving their goals. In an attempt
to unify definitions, the authors defined in [6] AI as a program that can cope in an
arbitrary world no worse than a human. These different definitions reflect the different
competencies of AI, which explains the diversity of AI implementations in our daily lives.

Machine Learning (ML) [7], Deep Learning (DL) [8], Federated Machine Learning
(FL) [9], and Multimodal Machine Learning [10] are all well-known and popular derivatives
of the AI concept that have been adopted by users and applied in various aspects of our
daily lives. These different branches of AI are depicted in Figure 1. In this context, Machine
Learning is defined as a field of study that focuses on the development of algorithms and
statistical models that enable computer systems to learn from data and make predictions
or decisions without being explicitly programmed. It involves the application of various
approaches, such as supervised and unsupervised learning, Reinforcement Learning, and
Deep Learning, that allow computers to automatically improve their performance on a
given task through experience [7].

Figure 1. Artificial intelligence branches.

On the other hand, Machine Learning has demonstrated high efficiency in solving
classification and regression problems. Machine Learning’s ability to extract meaningful
insights and patterns from vast and complicated datasets and use this knowledge to make
accurate predictions, automate decision making, and enable intelligent systems to learn
and adapt in real-time is fundamental to its success. This success has led researchers from
different fields to implement ML algorithms, and their efficiency can be observed in various
fields, such as:

• Healthcare services [11–13];
• Image, speech and pattern recognition [14,15];
• Internet of Things (IoT) and smart cities [14,16];
• Cybersecurity and threat intelligence [17];
• Natural language processing and sentiment analysis [18];
• User behavior analytics and context-aware smartphone applications [14,15];
• E-commerce and product recommendations [14,15];
• Sustainable agriculture [19];
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• Industrial applications [20].

1.1. Machine Learning Domain Challenges

The great success of Machine Learning is not magic but the result of its ability to
analyze large amounts of data at high speed and with high accuracy. However, the field
of ML still suffers from various challenges and obstacles arising from different problems.
Table 1 below summarizes the Machine Learning challenges and categorizes them based
on their source. These challenges have been extensively studied in the literature, and more
details can be found in several articles, such as [9,21–23].

Table 1. Machine Learning domain common challenges.

Group Challenges

Data-Related
Challenges [21,22]

Data Availability and Accessibility [23]
Data Locality [16]

Data Readiness [23]

Data Heterogeneity
Noise and Signal Artifacts

Missing Data
Classes Imbalance

Data Volume Course of Dimensionality
Bonferroni principle [24]

Feature Representation and Selection

Models Related
Challenges [25,26]

Accuracy and Performance
Model Evaluation
Variance and Bias

Explainability

Implementation-Related
Challenges [23,27]

Real-Time Processing
Model Selection

Execution Time and Complexity

General
Challenges [25,26]

User Data Privacy and Confidentiality
User Technology Adoption and Engagement

Ethical Constraints

1.2. Heterogeneity: Motivation(s) behind Multimodal ML

Advances in sensor technologies, storage concepts, communication networks, and
other tools have driven data collection [28]. According to recent figures from Statista [29],
the total amount of data generated worldwide will reach 64.2 zettabytes or 6.42 × 1016

Megabytes in 2020. This increase exceeded predictions due to increasing demand as a
result of the COVID-19 pandemic, as more individuals worked and studied from home and
increasingly used utilized home entertainment alternatives. For the above reasons, data
volumes are expected to reach 180 zettabytes in the next five years by 2025.

However, these data differ in type, structure, format, usability, lifespan, and other
aspects. This heterogeneity poses several challenges in Machine Learning, as it can make
it difficult to use data from different resources to gain useful insights or build accurate
models. There are many types of heterogeneity, the most common of which are listed
below [21,30,31]:

• Structured vs. unstructured data: structured data are highly organized and usu-
ally follow a specific schema, while unstructured data have no predefined structure
or organization;

• Numeric vs. categorical data: Numeric data are quantitative and can be expressed as
numbers, while categorical data are qualitative and represent discrete values, such as
colors, types, or labels;

• Temporal data: This type of data contains time-stamped information and can be used
to analyze patterns and trends over time;
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• Multimodal data: This type of data combines different types of information, such as
text, audio, images, and videos.

Thus, dealing with heterogeneous data requires careful processing and feature engi-
neering to put the data into the form required for a single Machine Learning model [31].
In addition, multiple preprocessing steps may be required to analyze heterogeneous data,
such as normalization, scaling, or other steps. In some cases, however, it may seem impos-
sible to analyze heterogeneous data, even though training the model with this variety of
resources improves its feasibility and increases confidence in its predictions.

For example, Magnetic Resonance Imaging (MRI) analysis using ML models has
shown high efficiency in predicting Cardiovascular Diseases (CVDs), as shown in [32]. In
addition, smart wearables equipped with ML models are also highly feasible in predicting
cardiac disease, as shown in [33]. In addition, the use of Electronic Health Records (EHRs)
collected from various health centers such as clinics, hospitals, or smart homes is also a
good source for Cardiovascular Disease prediction using ML algorithms [34]. However,
trying to merge these three types of data seems to be technically impossible because the first
data source, namely MRI images, are stored in the form of medical electronic image files,
and the data collected by wearables are structured data, while EHRs can be a collection
of both structured and unstructured data, free text reports, medical examination data, or
other formats. In the real world, a physician may analyze all of these data to make a more
accurate diagnosis, though it is not easy to analyze these data sets simultaneously using
the same model. This case is illustrated in Figure 2 below.

Figure 2. Prediction of CVDs with heterogeneous data—a showcase.

In this context, Multimodal Machine Learning is proposed as a solution to the challenge
of data heterogeneity in ML. Multimodal ML gives models the ability to analyze different
data within the same ML workflow, whether by merging different datasets, by merging
different models, or both, to arrive at a single result, such as the diagnosis of CVDs in
the showcase mentioned above [10]. The ability to analyze these heterogeneous data with
multiple views can be of varying importance to a learning task. Therefore, merging all
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of these data sets and treating them with equal importance is unlikely to lead to optimal
learning outcomes [30].

1.3. Machine Learning and Healthcare

The importance of health to human life cannot be overstated, as it is essential
for meeting basic needs, pursuing goals, maintaining relationships, and having an
adequate quality of life, and poor health can have significant financial and societal
consequences. Therefore, researchers are constantly striving to improve the quality
of healthcare services. In this context, Artificial Intelligence and its branches, such as
Machine Learning and Deep Learning, have been incorporated into healthcare services
due to their high feasibility and usability in this field. Machine learning, in particular,
is a powerful tool that has the potential to revolutionize healthcare in many ways [35].
ML has made remarkable progress in healthcare, not because of any mystical powers,
but because of its superior data processing capabilities compared to those of humans.
Because of its speed and precision, thousands of AI applications have already been
developed for healthcare, making it a potentially revolutionary tool for solving a wide
range of healthcare problems [36].

Machine Learning has been used in various areas of healthcare. Whether diagnosing
diseases or even predicting diseases, it has proven to be very useful. Moreover, the devel-
opment of communication tools, such as smart wearables equipped with Machine Learning
and Deep Learning models, has opened the door to real-time continuous monitoring. In
this context, smart wearables have shown high feasibility in predicting various diseases
such as Cardiovascular Diseases [33], diabetes [37], liver disease [38], fatigue and stress [39],
mental illness [40], and many other diseases [41]. In addition, ML models have been used
to increase the efficiency of healthcare decision systems [42]. In addition, ML has also been
used in the field of genomic medicine [43]. Overall, ML has succeeded in transforming
health services and creating personalized digital health services that support physicians
and improve the overall quality of public health [44].

Therefore, considering the importance of healthcare, it is urgent to improve the effi-
ciency of ML. The use of state-of-the-art methods and the removal of obstacles to progress
are essential to improving performance. The challenges described previously are reflected
in the barriers to expanding the use of ML in healthcare, which are common to all ML
implementations across all diseases. With this in mind, new solutions that could help
promote the use of ML will lead to improved applications in a variety of settings.

1. Define the scope of the review: Clearly define the scope and objective of the
review article. What is the main topic or research question that the review aims to
address? What specific subtopics or themes will be covered? 2. Identify the key concepts
and themes: Based on the scope and objective of the review, identify the key concepts
and themes that will be discussed in the article. These should be organized in a logical
and coherent manner that supports the overall objective of the review. 3. Develop a
framework for presenting the review: Once the key concepts and themes have been
identified, develop a framework for presenting the review. This could involve organizing
the content chronologically, thematically, or conceptually, depending on the nature of
the review and the key concepts and themes identified. 4. Clearly articulate the review
framework: Finally, clearly articulate the review framework in the introduction or early
sections of the review article. This will help to orient readers to the overall structure and
organization of the review and make it easier for them to follow the content. Overall, the
goal is to provide a clear and structured overview of the review article that highlights
the key concepts and themes and guides the reader through the content in a logical and
coherent manner.

1.4. Review Framework: Scope, Outline and Main Contributions

In this article, Multimodal Machine Learning is explored, and its role as a solution
to the challenge of heterogeneity is detailed. In addition, the use of Multimodal ML in
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Cardiovascular Disease detection and prediction is technically reviewed to support its use
in this field.

1.4.1. Scope of Research

To achieve the objectives of the study, Multimodal Machine Learning has been
explored, along with the data fusion concept, which is the basis of the technology under
study. In addition, the technical perspectives of Multimodal ML are studied, and the
workflows related to it are examined. Furthermore, a comparison between Multimodal
ML and other known techniques is made in order to distinguish between these different
techniques. On the other hand, distinct areas where Multimodal ML is used are inspected,
and a comprehensive overview of its application in Cardiovascular Diseases, including
the state of the art, is therefore obtained. In addition, these implementations were
analyzed from different perspectives to understand the limitations and future areas of
research. Finally, the challenges and future recommendations associated with advancing
this field are reviewed.

1.4.2. Research Questions

The scope of the article defined in the previous section is summarized by the research
questions mentioned in the list below:

• What is Multimodal Machine Learning?
• What are the motivations for this technology?
• What are the technical perspectives on which Multimodal ML is based?
• What are the differences between Multimodal ML, classical ML, Multimodal datasets,

ensemble ML and other techniques?
• What are the existing Multimodal ML frameworks, and what contributions do each make?
• What is the state of the art in the use of Multimodal ML in CVD prediction, and what

technical summaries can be derived?
• What challenges still impede progress in this area, and what approaches could be

taken to overcome these issues?

1.4.3. Outline

To answer the above questions, the article is outlined as follows. In Section 2, Multi-
modal ML is reviewed from various angles, including technical definition(s), differences
from other domains, such as classical ML, ensemble ML and others, available frameworks,
and other details. Then, in Section 3, the use of Multimodal ML technology in CVD detec-
tion and prediction is presented by listing the state of the art in this field and discussing the
technical details of the implementations mentioned in the literature. Later, in Section 4,
the challenges that hinder progress in this field are discussed, and therefore, some future
perspectives that could help in overcoming these challenges are proposed. This article
attempts to answer the following questions:

1.4.4. Comparison with Previous Review Frameworks

The topic of Multimodal ML has been a hot and trending topic in recent years. As
a result, numerous studies have already addressed this topic, with a large proportion
of these studies reviewing Multimodal ML. However, this article proposes several new
ideas that add to the knowledge of Multimodal ML. First, this study proposes a technical
study for Multimodal ML that, on the one hand, helps to understand this technology
and distinguish it from other existing AI techniques. Moreover, none of the previous
studies proposed a technical review for the use of this technology in CVD detection and
prediction. Moreover, this review discusses in detail the challenges and future ideas in
this field to help future researchers select the most relevant ideas on which to build their
future work.
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1.4.5. Key Findings and Contributions

Consequently, this article is rich in various new points that contribute to the body of
knowledge on Multimodal ML:

• Discuss fusion and its fundamental role in defining the structure of Multimodal ML;
• Establish clear and precise boundaries to distinguish between Multimodal ML, tradi-

tional ML, multimodal datasets, multilabel models, and ensemble learning;
• Propose a new description for the different workflows that can be followed in the

implementation of Multimodal ML algorithms;
• Discuss existing frameworks in the area of Multimodal ML and evaluate the contribu-

tions to this area;
• Review and discuss the state of the art of Multimodal ML in the diagnosis of CVDs;
• Examine the technical details associated with these implementations;
• Present completely and in detail the challenges that hinder Multimodal ML and

the possible future perspectives that can be pursued to increase the efficiency of
the technology.

2. Materials and Methods: What Is Multimodal ML?

The human mind processes information from multiple senses simultaneously. Some-
times it is not enough to just hear about a problem; individuals need to see it for themselves
in order to make an informed judgment. For Artificial Intelligence to expand its knowledge
of the world, it must be able to process a variety of information sources that may contradict
each other. This principle also applies to the field of AI known as Machine Learning (ML),
where Multimodal Machine Learning focuses on using numerous data sources to achieve a
single goal by leveraging complementary information in a unified computational frame-
work. The ability to explore diverse data increases predictive power and leads to more
accurate and reliable results, making Multimodal Machine Learning a multidisciplinary
topic with tremendous efficiency and amazing potential [5,10].

2.1. Overview and Definition(s)

Despite the fact that Multimodal Machine Learning is a popular and young research
area that has received much attention, it is still in its infancy [4–6,45]. As a result, there is
no single and universally accepted definition. Nevertheless, all definitions lead to the same
concept: the ability to analyze different data sets to reach a single conclusion. For example,
the authors describe in [4] Multimodal ML as the ability to evaluate data from Multimodal
datasets, identify a common phenomenon, and use complementary knowledge to learn
a complex task. Multimodal datasets are described in this way as data seen with many
sensors, where the output of each sensor is called a modality and can be associated with a
dataset. Similarly, the authors of [5] describe Multimodal ML as the integration of multiple
data sources collected by different instruments, devices, or techniques, followed by the
analysis of these merged data using different ML architectures. In addition, Multimodal
Machine Learning is described in [10] as an area that aims to develop intelligent models
that can process and link data from many sources.

2.2. Multimodal ML and Data Fusion

Multimodal ML brings together data from multiple and disparate modalities to iden-
tify a single task. The discipline behind merging data from multiple sources is called data
fusion. More specifically, data fusion is defined as “the process of combining data to refine
state estimates and predictions” [5]. According to the Joint Directors of Laboratories Data
Fusion Subpanel (JDL), the technique of “data fusion” is a must for processing more than
one type of data [46]. The authors in [46] support this definition by explaining that any
process that deals with associating, correlating, or combining data from one or more sources
to obtain enriched information is called a process that uses data fusion. In data fusion,
given the novelty of the literature, there is no consensus on how best to combine different
data, especially since there are four different techniques for implementing data fusion,
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which may have many names depending on the context and research area [5,46,47]. These
different approaches are illustrated in Figure 3:

• Early Fusion: also called Low-Level Fusion, is the simplest form of data fusion in
which disparate data sources are merged into a single feature vector before being
used by a single Machine Learning algorithm. Therefore, it can be referred to as a
multiple-data, single-algorithm technique.

• Intermediate Fusion: is also referred to as Medium-Level Fusion, joint fusion, or
Feature-Level Fusion, and occurs in the intermediate phase between the input and
output of a ML architecture when all data sources have the same representation format.
In this phase, features are combined to perform various tasks such as feature selection,
decision-making, or predictions based on historical data.

• Late Fusion: also known as decision-level fusion, defines the aggregation of deci-
sions from multiple ML algorithms, each trained with different data sources. In
addition, various rules are used to determine how decisions from different classifiers
are combined, e.g.,:

– Max-fusion
– Averaged-fusion
– Bayes’ rule-based
– Even rules learned using a metaclassifier

• Hybrid Fusion: defines the use of more than one fusion discipline in a single deep algorithm.

Figure 3. Data fusion approaches.

Based on the information in [4,5], early fusion is the most common form of fusion,
which has the advantage of converting all data into the same representation that can
be classified using robust classical models, such as Support Vector Machines or Logistic
Regression. However, when the input modalities are particularly uncorrelated and have
widely varying dimensionality and sampling rate, it is easier to use a late fusion approach.
In addition, both early and late fusion offer the most flexibility in terms of the number of
models that can be used to analyze the data, but there is no conclusive evidence that late
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fusion is better than early fusion because its performance is highly problem dependent.
Alternatively, intermediate fusion provides more flexibility in terms of how and when
representations learned from Multimodal data are fused. Table 2 discusses the different
features of each approach.

Table 2. Data fusion approach specifications.

Attribute Early Intermediate/Joint Late/Decision

Ability to handle missing data no no yes
Scalable no yes yes
Multiple models needed no yes yes
Improved accuracy yes yes yes
Voting/weighting issues no yes yes
Interaction effects across sources yes yes no
Interpretable yes no no
Implemented in health yes yes yes

2.3. Multimodal ML: Technical Perspectives

The goal of Multimodal Machine Learning, also known as Multimodal Deep Learn-
ing, is to develop algorithms and models that can interpret and learn from data across
multiple modalities, such as text, audio, images, and video. Multimodal ML is a thriving
research area with the potential to transform a wide range of applications, from speech
recognition and language translation to autonomous cars and medical imaging, among
many other areas. Multimodal ML, from a technical perspective, encompasses the var-
ious approaches, algorithms, and architectures used in creating and evaluating these
models. Data preprocessing, feature extraction, model architecture, training methods,
evaluation criteria, generalization, interpretability, and scalability are the most common
possible viewpoints. Understanding the technical aspects of Multimodal ML is essential
for developing efficient models that can leverage complementary instances across many
modalities and make more accurate and robust predictions in the real world. Therefore,
the technical perspectives of Multimodal ML are described below.

2.3.1. Data Preparation

Because Multimodal data are often complex and heterogeneous, they must be thor-
oughly processed before they can be used to train the model. The first step is to recognize
the many modalities in action, then learn how to preprocess them, and finally, merge them
into a single representation that can be fed into the model [4,5,10].

2.3.2. Model Architecture

Multimodal data can be represented in a variety of ways, including concatenation,
fusion, and attentional mechanisms. Choosing the right architecture that can handle the
multiple modalities and learn a combined representation is crucial depending on the data
and the task to be solved [46,47].

2.3.3. Training Strategies

Pretraining individual modalities, joint training of all modalities, and training individ-
ual models and combining them at the time of inference are all viable options for training
Multimodal ML models. Selecting the right training methods is a crucial step in achieving
the desired goal [4,5,10].

2.3.4. Evaluation Metrics

Following the performance metrics used to evaluate classical ML algorithms, accuracy,
precision, recall, sensitivity, specificity, F1 score, and area under the curve (AUC) are
just some of the measures that can be used to evaluate Multimodal ML algorithms. It is
controversial whether these measures are useful or not when applied to Multimodal data.
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As a result, the use of evaluation criteria that consider the success of each modality and the
overall performance of the model is essential [21–23].

2.3.5. Generalization

Multimodal models are often trained on a specific collection of data and may not
generalize well to new data. To assess how well the model can be generalized, it should be
tested and validated with data that are very different from the training data [21–23].

2.3.6. Interpretability

Because of their complexity and the relationships between multiple modalities, Mul-
timodal ML algorithms can be difficult to understand and even more difficult to explain
and interpret. To decipher the decision process of the model, some tools such as attentional
mechanisms and visualization can be used [21–23,48].

2.3.7. Scalability

In Multimodal Machine Learning, scalability is critical because it enables models to
deal with real-world situations where datasets are large and complex, and the amount of
data is constantly growing. To ensure that the models can cope with the increase in data
volume and complexity in the future, it is necessary to develop models that are scalable
to enable effective training and deployment, reduce computational costs, and scale the
models [25–27,48].

2.4. Multimodal ML and Other Technologies: Borderlines

Multimodal Machine Learning is a new and rapidly growing discipline that focuses on
building models that can learn from a variety of data sources. To distinguish Multimodal
ML from other areas of Machine Learning, its characteristic aspects should be highlighted,
such as the use of many modalities and the need for effective integration of these modalities.
Establishing precise terminology and creating an understandable description of the field
will help to differentiate it from other techniques. However, because it is a relatively new
field, there may be an overlap with other areas of Machine Learning, and it will be critical
to accurately define the boundaries of Multimodal ML as the topic evolves.

2.4.1. Multimodal ML vs. Multimodal Datasets

Multimodal datasets are datasets acquired with different sensors, instruments, tech-
nologies, or devices to observe a common phenomenon, where the acquired data are
considered complementary [49]. Consequently, multimodal datasets define the data itself,
regardless of the identity of the algorithms used to analyze the data, whether they have a
multimodal or unimodal architecture. However, merging multimodal datasets and unify-
ing their representation into a single vector and then analyzing them with an ML model is
considered an early fusion approach that is a type of Multimodal ML.

2.4.2. Multimodal ML vs. Multilabel Models

Multilabel Machine Learning algorithms are used to analyze datasets with more than
one target variable. For example, the output of multilabel classification models consists of
multiple classification labels. Moreover, when performing predictions using multilabel ML
algorithms, a given input may belong to more than one label. For example, predicting the
category of a movie may result in horror, action, science fiction, drama, or some or all of
these categories simultaneously. In other words, multilabel classification associates data
with a set of labels. Classification involves learning from a set of examples associated with
a single label called “l” from a set of disjoint labels called “L”, where |L| > 1. When |L|
= 2, the learning problem is called a binary classification problem, and when |L| > 2, it
is called a multiclass classification problem [50,51]. Thus, Multimodal ML and multilabel
learning differ in the data structure itself, where the former uses data from multiple or
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different sources to obtain a single result, while the latter uses data from only one source to
obtain a single classification result with more than two possible outcomes.

2.4.3. Multimodal ML vs. Ensemble Learning

The goal of ensemble Machine Learning is to improve performance and accuracy by
combining numerous models into a single prediction. When making predictions, ensemble
learning uses multiple interconnected models rather than a single model. Ensemble learning
combines the predictions of many models with the goal that the combined predictions
are more accurate and robust than any single model. There are several types of ensemble
learning techniques, including [52,53]:

• Bagging (Bootstrap Aggregating): is the process of training several models using
random subsets of the training data to minimize overfitting;

• Boosting is a technique in which models are trained progressively, and the weights of
misclassified data points are raised to enhance performance;

• Stacking is the process of training many models and combining their predictions with
another model to obtain the final forecast.

Ensemble Learning has proven useful in a variety of applications, including classifica-
tion, regression, and anomaly detection. Following this, although Ensemble Learning uses
multiple ML models to solve one task, the main difference between these two technologies
is that Multimodal ML is able to analyze more than one dataset with more than one model
to solve a task, while Ensemble Learning uses multiple models for the same dataset to solve
a task. Therefore, unlike Multimodal ML, Ensemble Learning does not perform data fusion
to solve the task. Table 3 below summarizes the comparison between Multimodal ML and
other technologies.

Table 3. Multimodal ML vs. other technologies.

Technology \Specs Definition Main Goal Perform Better
than ML Merge Datasources Merge Models

Multimodal Datasets
Datasets that include
multiple modalities

of data

Enable Multimodal
Machine Learning Not Applicable Yes Not Applicable

Multilabel Learning

A supervised
learning technique in

which an instance
can be assigned to

multiple labels

Accurately label
instances with
multiple labels

Not Applicable No No

Ensemble Learning

Combines multiple
models to improve

the accuracy of
the prediction

Improve prediction
Accuracy Yes No Yes

Multimodal ML

Combines multiple
types of models/data

to improve
performance

and feasibility

Improve
Performance Yes Yes Yes

2.5. Multimodal ML Available Frameworks

Multimodal Machine Learning frameworks provide a systematic approach for devel-
oping models that can learn and integrate information from multiple modalities such as
text, audio, images, and other data types. As more and more data are created across multi-
ple modalities, multimodal frameworks for Machine Learning are becoming increasingly
important. These frameworks enable the integration of diverse information, allowing for a
more comprehensive understanding of complicated events. They’re used in everything
from speech recognition and natural language processing to image and video analysis.
Some of the existing and commonly used Multimodal ML frameworks are:
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• MMF (a framework for multimodal AI models) [54]: is a PyTorch-based modular
framework. MMF comes with cutting-edge vision and language pretrained models,
a slew of ready-to-use standard datasets, common layers and model components,
and training and inference utilities. MMF is also utilized by various Facebook prod-
uct teams for multimodal understanding of use cases, allowing them to swiftly put
research into production;

• TinyM2Net (a flexible system, algorithm co-designed multimodal learning framework
for tiny devices) [55]: a unique multimodal learning framework that can handle multi-
modal inputs of images and audio and can be re-configured for individual application
needs. TinyM2Net also enables the system and algorithm to incorporate fresh sensor
data that are tailored to a variety of real-world settings. The suggested framework is
built on a convolutional neural network, which has previously been recognized as one
of the most promising methodologies for audio and visual data classification;

• A Unified Deep Learning Framework for Multimodal Multi-Dimensional Data [56]:
is a framework capable of bridging the gap between data sufficiency/readiness and
model availability/capability. For successful deployments, the framework is verified
on multimodal, multi-dimensional data sets. The suggested architecture, which serves
as a foundation, may be developed to solve a broad range of data science challenges
utilizing Deep Learning;

• HAIM (unified Holistic AI in Medicine) [57]: It is a framework for developing and
testing AI systems that make use of multimodal inputs. It employs generalizable data
preprocessing and Machine Learning modeling steps that are easily adaptable for
study and application in healthcare settings.

• ML4VocalDelivery [58]: a novel Multimodal Machine Learning technique that uses
pairwise comparisons and a multimodal orthogonal fusing algorithm to create large-
scale objective assessment findings of teacher voice delivery in terms of fluency
and passion;

• Specific Knowledge Oriented Graph (SKOG) [59]: a technique for addressing multimodal
analytics within a single data processing approach in order to obtain a streamlined archi-
tecture that can fully use the potential of Big Data infrastructures’ parallel processing.

2.6. Training and Evaluation of Multimodal ML Algorithms

Multimodal Machine Learning is a technique that combines different modalities in an
attempt to solve a complex task. Given that Multimodal ML is based on the concept of data
fusion [46], the training process of a multimodal model may differ depending on the type
of fusion (early, intermediate, or late fusion). Although it is a Machine Learning concept, it
follows the familiar ML workflow, which would be: data preprocessing, model selection,
model training, evaluation, fine-tuning, and deployment, but different steps may occur
depending on the fusion stage.

First, in the case of early fusion, after preprocessing, the different datasets can be
combined and merged into one modality. Once the data are ready and fused, it can
be fed into the model to be trained, and then the other steps can be performed. In the
second case, called intermediate fusion, the data passed to the same model are merged
after preprocessing, then a single model is trained on the fused dataset, and later, the
result of the refined model is fused with other models if they exist. Finally, in the late
fusion approach, each dataset is passed to a different model after preprocessing, then
the models are trained, evaluated, and fine-tuned, and later, the results are merged into
a single result. The three approaches are shown in Figure 4 below.

On the other hand, the evaluation of the Multimodal ML model is also influenced
by the chosen approach of data fusion. Since data fusion applies a single model to
fused data sources, only a single evaluation is required. In the other two approaches,
intermediate and late fusion, each individual model must be evaluated, and later, the
final model that merges the different models must be evaluated. The performance
measures used to evaluate the Multimodal ML correspond to parameters commonly
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used in the classical ML domain, such as accuracy, precision, recall, sensitivity, specificity,
F1 Score, Area Under Curve (AUC) and others [44]. The evaluation step is also shown in
Figure 4 below.

Figure 4. ML workflows based on Multimodal ML approaches.

3. Results: Multimodal ML in Action

Multimodal Machine Learning is a rapidly growing research area that involves
the use of many modalities to evaluate and interpret complicated data, such as images,
audio, and text [5,47]. Numerous real-world applications, including self-driving vehicles,
voice recognition software, and medical imaging, require the ability to integrate and
analyze data from multiple sources. Multimodal ML is based on the notion that multiple
modalities provide complementary information and that merging these modalities can lead
to more accurate and robust models. Multimodal ML has been a hot topic in the scientific
community in recent years, and researchers have been striving to develop new algorithms
and strategies to improve its performance [5,60–62].

3.1. Multimodal ML: Fields of Implementation

The ability to analyze diverse and complementary data increases the success of Ma-
chine Learning algorithms in solving more complex problems. In this context, Multimodal
ML has proven its success in a variety of domains. Some of the most promising application
areas include [5,60–64]:

• Healthcare: in medical imaging, Multimodal ML can be used to integrate information
from different imaging modalities such as MRI, CT, and PET scans to improve diagno-
sis and treatment planning. It can also be used to classify and predict disease based
on a mix of clinical, genetic, and imaging data;

• Autonomous Vehicles: by combining data from numerous sensors, the Multimodal
ML can help self-driving vehicles better understand their surroundings. This has the
potential to improve object recognition, navigation and safety;

• Natural Language Processing: by blending audio and text data, Multimodal ML can
improve speech recognition and natural language comprehension. This can help voice
assistants, chatbots and other applications improve their accuracy;
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• Robotics: by combining inputs from sensors such as cameras, microphones, and
touch sensors, Multimodal ML can be used to improve robot perception and in-
teraction. This has the potential to improve navigation, object recognition, and
human–robot interaction;

• Education: this technology is used in education to analyze student data from numer-
ous sources, such as exams, quizzes, and essays, to make individualized learning
suggestions and improve student performance;

• Agriculture: this technology can revolutionize agriculture by enabling the optimiza-
tion of farming processes. It can be used for crop yield prediction, pest and disease
detection, precision agriculture, and crop optimization by combining data from multi-
ple sources, such as satellite imagery, weather data, and soil moisture sensors;

• Internet of Things (IoTs): this technology can be used in the context of the Internet of
Things to make better use of data provided by networked devices. Multimodal ML can
enable more accurate and robust models for predicting, monitoring, and managing IoT
systems by incorporating data from many sources, such as sensors, cameras, and audio
recordings, leading to advances in areas such as energy management, transportation,
and smart cities.

3.2. Multimodal ML in Healthcare

Multimodal ML is still in its infancy but has been studied and applied in many areas of
life, including healthcare. Multimodal ML is an effective method for assessing health data
from multiple sources and improving predictive ability due to the inherent heterogeneity of
such information [5,62,64]. To date, there are 128 applications of Multimodal ML in health-
care, with neurology and cancer being the most prevalent, as reported in [5]. Multimodal
machine learning has shown promising results in various medical areas, as illustrated in
Figure 5. While the areas depicted in the figure are the most commonly studied to date,
it is worth noting that the potential applications of multimodal machine learning extend
beyond these domains:

Figure 5. Healthcare sectors where Multimodal ML has been implemented so far.

3.3. Multimodal ML and Cardiovascular Diseases: State-of-the-Art

Cardiovascular Disease, the most deadly disease, is a topic of interest for Multi-
modal ML implementations. For example, in [65], the authors developed a multimodal
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data fusion ML model to predict hypertension. Using a Convolutional Neural Network
(CNN)-based model, they analyzed different Electronic Health Records (EHRs) that
were merged with the multimodal data fusion approach. Their model proved its effi-
ciency with an accuracy that reached 94%. In a similar approach, the authors in [66]
created a multimodal data fusion model to predict 30-day hospital readmission of pa-
tients with heart failure. For this purpose, they developed a Deep Unified Network
(DUNs) trained with EHRs from the Enterprise Data Warehouse (EDW) and the Re-
search Patient Data Repository (RPDR). Their model achieved an accuracy of 76.4%. In
addition, the study [67] also implemented a data fusion model to cluster patients with
hypertension. The authors proposed a novel Hybrid Non-Negative Matrix Factorization
(HNMF) method-based model trained with phenotype and genotype information from
the HyperGen dataset [68]. The accuracy of their proposed model reached up to 96%.
In addition, the authors also developed a data fusion model in [69]. Their goal was
to classify different CVDs, so they developed and trained a Text–Image Embedding
network (TieNet) model with Chest X-Ray and free-text radiology clinical reports ex-
tracted from ChestX-Ray14 [70] and OpenI [71] Chest X-Rays datasets. The proposed
model had an Area Under Curve (AUC) of 0.9, as they mentioned. In the same context,
the solution proposed in [72] is a data fusion model developed to classify patients at
potential cardiovascular risk. The model was based on Recurrent Neural Networks and
trained on EHR data, achieving 96% accuracy.

Other implementations proposed model fusion or hybrid multimodal ML architec-
tures to solve their problems. For example, in [73], the authors proposed a hybrid fusion
multimodal ML to predict various cardiac diseases such as atelectasis, pleural effusion,
cardiomegaly and edema. They created several ML models to analyze radiographs and
associated reports obtained from MIMIC-CXR [74] and OpenI [71] Chest X-Ray datasets.
Their proposed solution proved to be better than old implementations in terms of accu-
racy. Similarly, in [75], a multimodal unsupervised learning approach was proposed for
Cardiometabolic Syndrome Detection. The authors applied multimodal hybrid fusion by
combining unsupervised ML models to analyze fused data from metabolome, microbiome,
genetics, and advanced imaging. Furthermore, in [76], the authors proposed a multimodal
fusion-based ML model for stroke prediction. They fused both 3D Convolutional Neural
Network and Multilayer Perceptron models to analyze neuroimaging information and
clinical metadata extracted from the Hotter [77] dataset, which proved to be efficient and
powerful with an AUC of 0.90. In addition, the solution proposed in [78] was used to
predict Pulmonary Embolism (PE) by fusing multiple ML models trained with Computed
Tomography Pulmonary Angiography scans and EHRs. Their model recorded an AUC of
0.947. Furthermore, in [79], the authors developed a Recurrent Neural Network model with
Bidirectional Long-Term Memory (BiLSTM) to predict cardiovascular risk. Their model
was trained with EHR data extracted from the Second Manifestations of ARTerial Disease
(SMART) Study [80] and recorded an AUC of 0.847.

Similarly, in [81], the authors developed a data fusion model to predict Acute Ischemic
Stroke. They used a series of cardiac CT images with EHR recordings to train a Gradient
Boosting classifier that achieved an AUC of 0.856. Similarly, the study [82] proposed a Deep
Convolutional Neural Network (DCNN) data fusion model to analyze Electrocardiograph
(ECG) and Chest X-Ray images to efficiently predict Accessory Pathways (APs) syndrome.
Finally, in [83], the authors proposed a novel tensor-based dimensionality reduction method
using Naive Bayes, SVM, Random Forest, Adaboost, and LUCCK models. The created
models were trained with fused data composed of Salient Physiological Signals and EHR
data. Their solution was able to predict Hemodynamic Decompensation with an AUC
value of 0.89. Table 4 below summarizes and presents the Multimodal ML implementations
in CVDs.



Electronics 2023, 12, 1558 16 of 30

Table 4. Multimodal ML implementations in Cardiovascular Disease diagnosis and prediction.

Ref Year Type Parameter Studied Predicted Outcome Model Architecture Datasets Used Performance

[65] 2017 Classification EHR Data Hypertension Convolutional Neural Network Data Fusion Private Data Accuracy: 94.8%

[66] 2018 Classification EHR Data Thirty-day readmission risk for
heart failure patients Deep Unified Networks (DUNs) Data Fusion

Enterprise Data
Warehouse (EDW)
Research Patient Data
Repository (RPDR)

Accuracy: 76.4%

[67] 2018 Clustering Phenotype and Genotype Information Hypertension Hybrid Non-Negative Matrix Factorization
(HNMF) model Data Fusion HyperGEN dataset [68] Accuracy: 96%

[69] 2018 Classification
Chest X-Ray
Clinical Free-Text Radiological
Report Scan

Several CVDs Text-Image Embedding network (TieNet) Data Fusion ChestX-Ray14 dataset [70]
OpenI Chest X-Ray dataset [71] AUC: 0.9

[72] 2019 Classification EHR Data Cardiovacsular Risk Prediction Recurrent Convolutional Neural Network Data Fusion obtained from a grade-A hospital
of second class in Wuhan Accuracy: 96%

[73] 2020 Classification MIMIC-CXR Radiographs and
Associated Reports

Atelectasis, Pleural Effusion,
Cardiomegaly, Edema

four pre-trained Vision+Language models:
LXMERT / VisualBERT / UNIER / PixelBERT Hybrid Fusion

MIMIC-CXR Chest X-Ray
Dataset [74]
OpenI Chest X-Ray Dataset [71]

Enhanced accuracy
of classification

[75] 2020 Clustering

Metabolome
Microbiome
Genetics
Advanced Imaging

Cardiometabolic Syndrome Combianation of unsupervised ML Models Hybrid Fusion Private Data -

[76] 2020 Classification Neuroimaging Information
Clinical Metadata Stroke

3D Convolutional Neural
Network
Multilayer Perceptron

Model Fusion Hotter Dataset [77] AUC: 0.90

[78] 2020 Classification
Computed Tomography Pulmonary
Angiography Scans
EHR

Pulmonary Embolism (PE) Combination of ML Models Hybrid Fusion
Data obtained from Stanford
University Medical
Center (SUMC)

AUC: 0.947

[79] 2020 Classification EHR Data Cardiovascular Risk Bidirectional Long Short-Term
Memory (BiLSTM) Recurrent Neural Network Hybrid Fusion

Second Manifestations of
ARTerial Disease
(SMART) Study [80]

AUC: 0.847

[81] 2020 Classification Different Cardiac CT Images and EHR
Data Acute Ischemic Stroke Gradient Boosting Classifiers Data Fusion

obtained from Department
of Neuroradiology
at Heidelberg University
Hospital (Heidelberg, Germany)

AUC: 0.856

[82] 2021 Classification Electrocardiograph (ECG)
Chest X-Ray

Cardiac Accessory Pathways
(APs) Syndrome Deep Convolutional Neural Network (DCNN) Data Fusion Private Data -

[83] 2021 Classification Salient Physiological Signals
EHR Data Hemodynamic Decompensation

Used a novel tensor-based dimensionality
reduction with the below models:
Naive Bayes
SVM
Random Forest
Adaboost
LUCCK

Data Fusion Collected retrospectively from
Michigan Medicine data systems AUC: 0.89
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3.4. Multimodal ML and CVDs: Discussion

Multimodal ML is a method for training different modalities using heterogeneous
data that may not fit the same structure, format, or type that can be used for traditional
ML algorithms. In the field of disease diagnosis, Multimodal ML could be used to train
models on a huge distributed dataset of patient data from different hospitals or clinics.
This method allows information and knowledge to be fused to solve complex problems.
Using a larger, more diverse dataset also allows for more accurate and robust models.
However, the implementation of Multimodal Machine Learning for disease prediction,
especially Cardiovascular Disease, can be discussed from different angles, which are
detailed in this section.

3.4.1. Models Performance: Competition between Multimodal and Classical ML

Data collection is the starting point for the operation of the established pipeline in the
classical ML. It is generally accepted that more data can be used to increase the accuracy of
an already trained Machine Learning model. It is generally accepted that due to the ability
of Multimodal ML to analyze heterogeneous data, the accuracy of the models far exceeds
that of typical ML models where more data are analyzed simultaneously.

In this context, the results presented in Table 4 reflect the high feasibility and
accuracy that Multimodal ML cope with the diagnosis and prediction of Cardiovascular
Disease. For example, the studies [65,67,72] achieved high accuracy records, with the
first recording 94.8% and the other two, 96%. These results are highly comparable to
the state of the art of conventional ML models used for the detection and prediction of
CVDs and cerebrovascular events, with the highest recorded accuracy reaching 91.80%,
as shown in [84]. In addition, the studies [69,76,78] recorded high values for Area Under
Curve (AUC), with the first and second reaching a value of 0.9 and the third up to 0.95
for this parameter. These values demonstrate the high feasibility of these studies, which
are consistent with and even exceed conventional ML algorithms. Moreover, the authors
mention in [73] that their results show improved classification accuracy compared to
conventional ML algorithms.

On the other hand, the results in [66] failed to outperform or even match conventional
ML algorithms, where the recorded accuracy was 76.4%, which is lower than the values
obtained by the latest ML algorithms in predicting ML models [84]. In addition, the
studies [79,81,83] obtained different AUC values of 0.85, 0.86, and 0.89, respectively. These
values are high and feasible, but they are close to but do not exceed the highest results
obtained with classical ML models. Finally, the studies [75,82] did not mention the results
obtained, which makes it impossible to compare their results with the classical ML models
in the field of CVD diagnosis.

Overall, of the thirteen studies presented in Table 4, seven exceeded the results of the
classical ML in terms of accuracy, three matched those results, and only one was obviously
lower than them, and the other two are not comparable because they did not report their
results. In this context, these figures help to confirm the hypothesis that the ability to
analyze heterogeneous data increases the performance and accuracy of the models, which
is a major strength in the field of multimodal ML since more than three-quarters of the
Multimodal ML algorithms either match or exceed the results of the classic ML in the
diagnosis of Cardiovascular Disease.

3.4.2. Real World vs. Research Implementations

The concept of Multimodal ML can be traced back to the early 2000s in the technology
field, where authors in [85] suggested using this concept because the combination of
communication modalities and acquisition devices can produce a wide range of unimodal
and multimodal interface techniques. However, advances in computer technologies, data
transmission, communication techniques, and other aspects have helped to increase the
efficiency of Multimodal ML technology.
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As a result, studies [65,75,85] have used their own data. Although these datasets are
not publicly available, the authors assured that the data are real datasets collected from
various health centers in compliance with medical standards and norms. This confirms that
these studies can be classified as real-world studies. The same is true for [66,72,78,81,83],
where each study used a dataset collected in different medical facilities in compliance with
standard medical norms, making these studies real-world implementations.

On the other hand, the studies [67,69,73,76,79] used publicly available datasets, which
are listed in Table 4. Although these datasets were collected under real-world conditions
and obtained from patients, the study itself cannot be described as a real-world implemen-
tation. Real-world use of multimodal ML models in healthcare can provide a number of
significant benefits, including:

• Improved Diagnostic Accuracy: Multimodal ML models can evaluate multiple sources
of patient data, such as medical imaging, electronic health records, and genetic infor-
mation, to make more accurate and thorough diagnoses. This can help physicians
identify diseases and conditions at an early stage when they are more curable;

• Personalized Treatment: multimodal ML models can be trained on large data sets to
identify trends and predict outcomes for individual patients. This can help physicians
tailor treatments and therapies to the unique needs of each patient, leading to better
outcomes and fewer side effects;

• Efficient Resource Allocation: Multimodal ML models can help physicians allocate
resources more efficiently by identifying patients who are at higher risk for poor
outcomes or need more intensive care. This has the potential to reduce healthcare
costs while improving overall system efficiency;

• Improved patient experience: Multimodal ML models can help clinicians identify
patients who need more individualized care or are at risk for problems or adverse
events. This can help improve patient satisfaction and overall quality of care.

Overall, real-world adoption of Multimodal ML models in healthcare has the potential
to enhance patient outcomes, lower costs, and improve healthcare delivery efficiency.
However, it is critical that these models be created and used in an ethical manner, with
proper protections for patient privacy and data security. That being said, the progress of
Multimodal ML implementations and their real-world execution are promising where most
of the carried applications are applied outside of labs, with real data, which enhances the
trust in this technology and assists its adoption in the production stages.

3.4.3. Use of Smart Wearables and IoTs

Continuous monitoring of patients’ heart rate, blood pressure and other biomet-
ric data through smart wearables and Internet of Things devices could revolutionize
medical treatment. This has the potential to enable earlier detection of medical prob-
lems, more accurate diagnosis, and more personalized treatment approaches. Wearable
technologies that can monitor and interact with the user’s health could enable individ-
uals to participate more fully in their treatment. In addition, Internet of Things (IoT)
devices can enable physicians to monitor patients remotely and deliver treatments more
effectively, reducing demand on healthcare systems and improving access to care for
people in underserved or extremely remote and isolated areas. Smart wearables and In-
ternet of Things (IoT) devices could increase hospital efficiency, save costs, and improve
patient outcomes [86,87].

Consequently, only studies [67,75] considered the use of smart wearables or IoTs
devices in their implementations. The other studies used data collected with other devices.
Therefore, there is a lot of catching up to do in the implementation of multimodal ML
in wearables and IoTs for CVD detection and prediction. Considering the fact that these
technologies can revolutionize healthcare, as mentioned earlier, there is a great need to
increase the use of wearables and IoTs in this field. In Table 5 below, the comparison
between the performance of Multimodal ML and classical ML, the validation in practice,
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and the use of smart wearables and IoTs for the state of the art in predicting CVDs with
Multimodal ML is summarized.

Table 5. Key findings in state-of-the-art of Multimodal ML in CVDs diagnosis.

Ref# Multimodal ML Beats
ML (Performance)

Real-World
Implementation

Smart Wearables/IoTs
Included

[65] Yes Yes No
[66] No Yes No
[67] Yes Public Dataset(s) Yes
[69] Yes Public Dataset(s) No
[72] Yes Yes No
[73] Yes Public Dataset(s) No
[75] Not Available Yes Yes
[76] Yes Public Dataset(s) No
[78] Results Match Yes No
[79] Results Match Public Dataset(s) No
[81] Results Match Yes No
[82] Not Available Yes No
[83] Results Match Yes No

3.4.4. Limitations in the Use of Multimodal ML for Disease Prediction

From this perspective, the use of Multimodal Machine Learning for the diagnosis and
prognosis of CVDs is still in its infancy. Apart from the fact that not all implementations
of Multimodal Machine Learning are superior to traditional ML models, vivid real-world
examples can be observed when discussing this topic. Moreover, it has been rare to see FL
researchers using smart wearables or IoTs in their experiments. This highlights the need
to further investigate the use of such technologies due to their high degree of practicality
and applicability in the field. Other limitations and difficulties encountered in the field
of multimodal ML and its applications in disease prediction are discussed in Section 4.1,
which can also be seen below.

3.5. Multimodal ML in CVDs: A Technical Overview

In Multimodal Machine Learning technology, the main goal is to analyze differ-
ent data with different structures, such as merging EHR data with medical images to
predict the occurrence of Cardiovascular Disease. In this context, each Multimodal ML
implementation follows its own workflow and goes through its own steps to achieve its
goal. In the aforementioned implementations of Cardiovascular Disease detection using
Multimodal ML, different workflows, model structures, and hyperparameters were used
for different implementations. All the related data provided by the authors are listed in
Table 6 below.

Table 6. Technical details for Multimodal models used in the prediction of CVDs.

Ref# Model Workflow Description Training Parameters

[65]
CNN-Based Multimodal
Disease Risk Prediction
(CNN-MDRP) Algorithm

1. Data Representation: text is represented in the form of vector
2. Convolution Layer: perform convolution operation on vectors of 5
words
3. Pool Layer: use the max pooling (1-max pooling) operation on the
input of the convolution layer
4. Full Connection Layer: pooling layer is connected with a fully
connected neural network
5. Classifier: the full connection layer links to a softmax classifier

Iterations: 200
Sliding Window: 7
Running Time: 1637.2 s

[66] Deep Unified Networks
(DUNs)

1. All inner layers of DUNs can learn the prediction task from the training
data to avoid over-fitting
2. The DUNs architecture has horizontally shallow and vertically deep
layers to prevent gradient vanishing and explosion
3. There are only two horizontal layers from the data unit nodes to the
output node, regardless of how many layers deep the architecture is
vertically
4. Only the harmonizing and decision units have learning parameters

Number of epochs: 100
Number of inner layers: 5
Number of inner neurons: 759
Number of maxout: –
Activation function: Sigmoid
Dropout rate of: input layer: 0.397/inner layers
0.433
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Table 6. Cont.

Ref# Model Workflow Description Training Parameters

[67]
Hybrid Non-Negative
Matrix Factorization
(HNMF) model

1. Impute missing values in the phenotypic variables
2. For genetic variants, first annotate the variants and then keep those
that are likely gene disruptive (LGD)
3. The preprocessed phenotypic measurements and genetic variants are
then used as input to the HNMF model
4. The patient factor matrix is then used as the feature matrix to perform
regression analysis to predict main cardiac mechanistic outcomes

Up to 50 iterations

[69] Text–Image Embedding
Network (TieNet)

1. Data Preprocessing and word embedding
2. Training TieNet model
3. Joint Learning for results fusion
4. Evaluation

Dropout: 0.5
L2 Regularization: 0.0001 for.
Adam optimizer with a mini-batch size of 32
Learning Rate of: 0.001
Hidden Layer with 350 units

[72] Recurrent Convolutional
Neural Network

1. Structured Data: extract relevant data, supplement missing data, make
correlation analysis to look for the relation among data and apply
dimension reduction to obtain corresponding structured features
2. Unstructured Textual Data: first, use numerical values to present
unstructured textual data based on work embedding. Then, the features
of textual data are extracted based on RCNN
3. Use Deep Belief Network (DBN) to fuse features and predict disease
risks

up to 200 iterations

[73] VisualBERT, UNITER,
LXMERT, and PixelBER

1. The feature map (7 × 7 × 1024) of CheXNet is first flattened by spatial
dimensions (49 × 1024) then down-sampled to 36 1024-long visual
features
2. Models are then trained with the data
3. Results are fused

Epochs: PixelBERT: 18 / other 3 models 6
SGD optimizer
weight decay 5 × 10−4

learning rate 0.01
Each model can be fit into 1 Tesla K40 GPU when
using a batch size of 16

[75] Collection of
unsupervised ML models

1. Data collection and data features
2. Data preprocessing
3. Network analysis
4. Key biomarker selection and Markov network construction
5. Stratifying individuals with similar biomarker signatures
6. Validation cohort

-

[76]
3D Convolutional Neural
Network
Multilayer Perceptron

All models were trained on a binary classification task using binary
cross-entropy loss

Loss function: Binary cross-entropy loss
Adam optimizer
Initial weights were sampled from a Glorot
uniform distribution
Output layer activation function: Softmax
function
Early stopping used to prevent over-fitting

[78] Different ML models Seven different workflows based on the difference between models Batch Size: 256
Epochs: 200

[79]

Bidirectional Long
Short-Term
Memory (BiLSTM)
Recurrent Neural Network

1. Embedding Layer: To extract the semantic information of radiology
reports
2. Bidirectional-LSTM Layer: to achieve another representation of
radiology reports
3. Dropout
4. Concatenation Layer
5. Dense Layers

Embedding dimension (d): 500
#neurons in LSTM layer: 100
CNN filter size: 5
filters in CNN: 128
neurons in dense layers: 64
Dropout rate: 0.2
Recurrent dropout rate: 0.2
Batch size: 64
epochs: 20
Optimization method ADAM

[81] Gradient Boosting
Classifiers

Integrative assessment of clinical, multimodal imaging, and angiographic
characteristics with Machine Learning
Allowed to accurately predict the clinical outcome following
endovascular treatment for acute ischemic stroke

-

[82] Deep Convolutional
Neural Networks (DCNN)

First Model to analyze ECG
———————————————–
1. Convolutional Neural Network (CNN)
2. A one-dimensional CNN model was used to input the ECG data
3. The network model contained 16 convolution layers
Followed by a fully connected layer
4. Then a Softmax layer, which calculated the probability of each of the
four as the output in the last layer

Second Model to analyze X-Ray images
———————————————–
1. A two-dimensional CNN model

Then apply fusion to merge results

First Model Parameters: Adamax optimizer with
the default parameters β1= 0.9, β2 = 0.999, and a
mini-batch size of 32
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Table 6. Cont.

Ref# Model Workflow Description Training Parameters

[83]

Random Forest
Naive Bayes
Support Vector Machine
Adaboost
Learning Using Concave
and Convex Kernels
(LUCCK)

1. Apply feature extraction on fused data composed of Salient
Physiological Signals and EHR data
2. Apply Tensor reduction functionality
3. Train the Machine Learning model

Naive Bayes: (NB) no hyperparameter tuning was
trained
Support Vector Machines: used linear, radial basis
function (RBF), and 3rd-order polynomial kernels
Random Forest: number of trees: 50, 75, and
100/minimum leaf size: 1, 5, 10, 15, and 20/node
splitting criterion: cross entropy and Gini
impurity/number of predictors to sample: [10, 20,
. . . , 100]/maximum number of decision splits for
the decision trees: 0.25, 0.50, 0.75, or 1.0
Adaboost: learning rate: 1

4. Discussion: Challenges and Future Perspectives

Recently, Multimodal Machine Learning (ML) has emerged as an effective method
for studying and analyzing complex data from multiple sources and modalities. How-
ever, dealing with diverse data presents researchers with unique challenges that must be
overcome for efficient analysis and interpretation to increase the feasibility and usability
of multimodal ML [10,48,49,62]. Unifying and standardizing multiple data sources and
establishing links between them are significant obstacles. In addition, data must be normal-
ized and preprocessed to ensure reliability and accuracy. However, future research could
take several approaches to mitigate these challenges and overcome future obstacles. This
section addresses these issues and identifies future perspectives needed to overcome them
and improve multimodal FL.

4.1. Challenges

Multimodal Machine Learning still struggles with various challenges arising from
the use of heterogeneous data with different structures and formats. Moreover, the fusion
process, whether applied to the data itself or to different trained models to recognize a
single result, is a challenging process that requires further research. Therefore, the most
common challenges can be summarized in the following points [10,48,49,62].

4.1.1. Data Availability and Quality

To efficiently train multimodal ML models, large amounts of high-quality data
are needed. However, collecting and processing large amounts of high-quality data in
healthcare can be challenging, especially for rare or complex diseases. Data scarcity or
poor data quality can lead to biased or unreliable models, compromising the accuracy of
predictions and treatment decisions. To develop more robust and effective multimodal
ML models for healthcare, researchers must seek to identify and address data quality
and quantity issues.

4.1.2. Data Representation

Multimodal ML promotes the use of data from multiple sources for presentation. As
a result, there is a high likelihood of dealing with heterogeneous data, which presents a
number of problems. For example, it may be difficult to merge heterogeneous data that do
not overlap in common characteristics or overlap only in a very limited area. In addition,
data from different sources may need to be processed to different extents, especially with
respect to noise reduction and missing data management. This hurdle is clearly reflected in
the fact that until recently, most multimodal representations were simply the concatenation
of unimodal ones [88]. Smoothness, temporal and spatial coherence, sparsity, and natural
grouping have been cited by authors in [89] as qualities for excellent data representation.

4.1.3. Data Integration and Interoperability

Multimodal Machine Learning models are used to integrate and analyze data from
multiple sources, such as electronic health records, medical imaging, and genetic data.
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However, data from different sources may use different formats, standards, or terminolo-
gies, posing significant challenges for data integration and interoperability. Medical images,
for example, may use different file formats or imaging techniques, making it difficult to
compare and analyze data from different studies or sources.

4.1.4. Fusion

It is not easy to learn the ability to merge information from two modalities and
determine the optimal fusion strategy. This is due to the different predictive capacities and
noise structures of the different information coming from different senses. In addition, the
ability to deal with missing data at different levels has a significant impact on the ability to
perform fusion tasks.

4.1.5. Translation

The challenge in translation is not only the heterogeneity of data but also the relation-
ships between modalities. The translation or mapping of data is subjective; for example,
two models may describe the same image in more than one correct way, and a perfect or
uniform translation or mapping may not exist. Several studies argue that while translations
can be quite broad and modality-specific, they still have a number of unifying features.
Accordingly, there are two forms of translation, namely the “Example-Based” and the
“Generative” models. The former relies on a dictionary to translate data across modalities,
while the latter relies on the creation of a model that manages translation according to
uniform or at least explicit standards.

4.1.6. Alignment

Finding connections and correspondences between subelements from two or more
different modalities is called multimodal alignment. This also involves distinguishing
between these linear connections rather than just recognizing them. In this context, there
are few data sets with obvious and identifiable correlations. Therefore, it is challenging to
perform similarity measurements across modalities. Moreover, there may be numerous
alignments without being able to select the optimal one, and not all components in one
modality may match in another.

4.1.7. Explainability and Interpretability

Multimodal Machine Learning models (ML) have shown great promise in health-
care by enabling more accurate and tailored diagnosis and treatment recommendations.
However, these models can be very complicated and difficult to understand, making it
difficult for physicians to understand how the models arrived at a particular decision or
recommendation. The lack of interpretability and openness of these models can affect their
clinical acceptance and confidence.

4.1.8. Co-Learning

Merging different modalities, such as images, text, and sensor data, can increase
model performance and enable more comprehensive analysis of complicated data in
Multimodal Machine Learning. However, there are significant hurdles to this fusion,
including the difficulty of transferring knowledge, representation, and predictive models
across modalities. Each modality has its own characteristics and advantages, and it can
be difficult to successfully integrate these aspects into a coherent representation. In
addition, different modalities may require different strategies for feature engineering,
preprocessing, and modeling.

4.1.9. Increased Computation Cost

When multiple modalities and features are introduced into a Multimodal Machine
Learning model, the complexity of the model may increase, and the performance of the
model may degrade due to the increased difficulty in computing the desired outcome.
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Complex models have higher processing requirements, which can increase inference times
and memory consumption. The complexity of a model makes it more difficult to optimize,
which can lead to an increased risk of over- or under-fitting the data.

4.1.10. Regulatory and Ethical Considerations

Apart from the technical hurdles in developing and implementing multimodal ML
models in healthcare, there are also legal and ethical factors to consider. Depending
on their intended use, these models may be subject to regulatory restrictions, such as
the European Union’s General Data Protection Regulation (GDPR) [90], China’s Cyber
Security Law of the People’s Republic of China [91], the General Principles of the Civil
Law of the People’s Republic of China [92], the PDPA in Singapore [93], and hundreds
of principles that apply around the world. In addition, researchers and clinicians must
ensure that these models are created and used in an ethical manner and that patient
privacy and data security are adequately protected. For example, patient data must be
de-identified and protected from illegal access or disclosure. In addition, maintaining
the fairness and openness of these models is critical to minimize bias and discrimination.
Responsible development and adoption of multimodal ML models therefore require
careful evaluation of these legal and ethical factors to ensure that they deliver safe,
effective, and fair outcomes for patients.

4.1.11. Implementation and Adoption

To fully deliver on their promise to improve healthcare, Multimodal Machine Learning
models (ML) must be integrated into current healthcare processes and systems. However,
several barriers stand in the way of this integration, such as technological, organizational,
and cultural. In addition to the technical challenges mentioned above, resistance to change,
lack of stakeholder participation, and concerns about accountability and obligations are all
examples of organizational and cultural hurdles that may arise.

These challenges give rise to the study questions in the list below (the abbreviation
RQ in the list below refers to the term “research question”):

• RQ1: Multimodal ML needs sufficient data to be trained. Are the needed data sets
available? And is their quality acceptable?

• RQ2: Multimodal ML deals with heterogeneous data that has different formats and
structures. What approaches can be taken to represent the data used in this technology?

• RQ3: How can the heterogeneous data used in Multimodal ML be integrated and shared?
• RQ4: What are the best approaches for fusion, and how to choose between the different

options available?
• RQ5: Given that different models can lead to the same result in different ways, how

does one choose the optimal path?
• RQ6: How to align and link two different modalities, especially in the middle and late

fusion cases?
• RQ7: The Multimodal ML is known for its black box identity. Is there a way to explain

the methods by which a model arrives at its result?
• RQ8: In Multimodal ML, different models can be integrated to solve a complex

task. What techniques can be applied to ensure efficient knowledge transfer between
these models?

• RQ9: Heterogeneity and diversity in both models and data add to computational
costs. How can this problem be dealt with to improve the usability and feasibility of
the models?

• RQ10: How to ensure data exchange between multimodal ML facilities to comply
with existing regulations and laws?

• RQ11: How can trust in multimodal ML be strengthened to promote its adoption in
different areas of life?
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4.2. Future Perspectives

The challenges faced in Multimodal Machine Learning can be solved through different
approaches and perspectives. These solutions have either already been considered but
should be more widely used in the field of Cardiovascular Disease prediction to improve
and increase their usability and feasibility. In this context, the following solutions can serve
as future recommendations.

4.2.1. Use Convenient Tools to Collect More Data

Modern technology has changed the method of data collection and analysis. The use
of smart wearables and Internet-of-Things (IoT) devices has enabled the real-time collection
of vast amounts of data [33,39,86,87]. These data can provide useful insights in a variety
of areas, particularly in healthcare. In addition to these new data sources, current data
sources should be used to create more complete databases. Researchers can gain access
to larger and more diverse data sets by collaborating with other institutions, which can
help them identify patterns and correlations that would not be obvious with smaller data
sets. Collaboration between different institutions could be achieved using a variety of
techniques such as Federated Machine Learning technology, which can help train Machine
Learning models by sharing parameters rather than the data itself [9].

4.2.2. Automate and Boost Data Preprocessing

Creating larger and more comprehensive datasets could help improve the quality of
Machine Learning models but is not yet sufficient. To gain valuable insights, data must
be processed and analyzed using advanced techniques. These techniques include artifact
automation and noise removal, as performed in [94,95]. In addition, it may be necessary
to use techniques such as data augmentation [96] or data normalization [97] and data
resampling [98] to ensure that the data are balanced and ready for model training and to
improve the quality of the overall process.

4.2.3. Employment of Advanced Data Integration Tools

To address the problems posed by the diversity of data formats and structures,
improved methods for data harmonization [99], standardization [100], and normaliza-
tion [97] need to be developed, as well as the use of AI and ML algorithms to automate
these processes. Multimodal ML has the potential to revolutionize healthcare by enabling
thorough and tailored analysis of patient data from numerous sources if these barriers
are overcome.

4.2.4. Embedding Modern Techniques to Enhance Explainability

To address the problems associated with the black-box nature of multimodal ML
models, more explainable and interpretable models are needed that give healthcare
professionals insight into how the models arrive at their judgments. Approaches such
as feature relevance ranking [101], model visualization [102], decision rules [103], prob-
abilistic [104] and neuro-fuzzy approaches [105], and many others can improve the
interpretability of multimodal ML models so that interested parties can make more
informed and confident treatment decisions. In the list below, a brief definition for each
of these tools is presented:

• Feature relevance ranking: include methods such as permutation significance and
partial dependency plots to give insights into the importance and correlations of input
variables, allowing for a better understanding of the model’s decision-making process
and boosting transparency and interpretability in healthcare applications;

• Model visualization: such as decision trees and heatmaps that provide a graphical rep-
resentation of the model’s decision-making process, allowing for better understanding
of the factors that influence the model’s predictions and increasing the transparency
and interpretability of the technology;
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• Decision rules: by providing clear and understandable rationales for the model’s pre-
dictions, decision rules that specify explicit decision criteria based on the input data im-
prove the interpretability and transparency of machine learning models in healthcare.

• Probabilistic approach: employ probabilistic reasoning to represent and manage the
uncertainty inherent in medical data allowing for transparent decision-making that
can be easily understood by healthcare practitioners;

• Neuro-fuzzy techniques: combine the benefits of neural networks and fuzzy logic to
generate more interpretable models that can deal with imprecise and uncertain inputs.

4.2.5. Implementing Necessary Methods to Guarantee Knowledge Transfer

The diversity of datasets and models in the field of multimodal ML can lead to
knowledge transfer problems. Therefore, researchers need to develop novel strate-
gies for multimodal feature selection [106], fusion [46], and modeling that can capture
complementary information from many modalities while minimizing redundancy or
overfitting. Overcoming these obstacles will allow for more robust and accurate multi-
modal ML models that will lead to improved diagnosis, treatment, and patient outcomes
in healthcare settings.

4.2.6. Reducing Computation Cost

Reducing computational costs in multimodal ML is a critical issue. Therefore, re-
searchers need to explore methods for model compression [107] and optimization [108]
that can reduce the computational complexity of the model without compromising its
performance. As an added bonus, Multimodal Machine Learning can benefit from efficient
hardware and software implementations, such as specialized hardware accelerators and
distributed computing frameworks, that can reduce computational load. The use of such
techniques can help build multimodal ML models that are more robust, efficient, and
scalable, and therefore applicable to a wider variety of health problems, leading to faster
and more accurate solutions.

4.2.7. Increase Trust and Feasibility to Raise the Technology Adoption

Researchers, clinicians, information technology experts, and healthcare administrators
must work together to increase confidence in multimodal ML technology. In addition,
cultural and organizational barriers can be reduced by promoting trust and transparency
through open dialog and training. The best way to improve patient outcomes and revo-
lutionize healthcare delivery is to properly integrate multimodal ML models into current
healthcare delivery processes and systems.

The results of the mapping of challenges and solutions can be summarized in the fol-
lowing topics (the symbol TR in the list below refers to the term “Trending Research Topic”):

• TR1: Data collection tools such as smart wearables and IoTs are very helpful in
augmenting the data collected for multimodal ML algorithms;

• TR2: Data harmonization, standardization, and normalization are highly feasible for
integrating heterogeneous data in the multimodal ML domain;

• TR3: Multimodal feature selection and modeling are techniques that can help ensure
knowledge transfer between different modalities in a multimodal ML system;

• TR4: For better explainability and interpretability of a multimodal ML model, de-
cision rules, feature relevance ranking, and model visualization are practical and
feasible methods;

• TR5: Model compression and optimization are great tools for reducing computational
costs in multimodal ML;

• TR6: Current and trending ML topics, such as Federated Machine Learning, can help
overcome privacy and confidentiality issues in the Multimodal ML domain;

• TR7: Increasing feasibility, improving performance, and implementation in real-
world scenarios are all factors that can help expand the adoption of multimodal ML
technology in healthcare and, in particular, in Cardiovascular Disease detection.
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Finally, the challenges that hinder the progress of Multimodal Machine Learning
techniques, along with the solutions and future perspectives that could be pursued, are
presented in Figure 6 below.

Figure 6. Multimodal machine learning challenges–solutions mapping.

5. Conclusions

In summary, Multimodal ML is a new technique that enables the simultaneous use
of multiple models and data types in the creation of complex ML and DL models. Multi-
modal ML has the potential to significantly improve the accuracy and effectiveness of AI
applications, especially in healthcare, where it has already become an important part of
everyday patient care by addressing the problem of data heterogeneity. In particular, the
technical features of Multimodal ML, such as data fusion and workflows, were covered,
and the differences with other technologies, such as Ensemble Learning, were high-
lighted. In addition, an overview of the application of Multimodal ML in the diagnosis
and prediction of Cardiovascular Disease was provided, highlighting the encouraging
results to date and the room for growth in this area. Privacy, bias, and interpretability of
results are just some of the remaining difficulties that need to be addressed, as with any
rapidly evolving technology. However, it is likely that these obstacles can be addressed
through further research and development and that multimodal ML will continue to
play an important role in the development of AI applications in a variety of sectors,
particularly healthcare.
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