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Abstract: Autonomous unmanned systems have become an attractive vehicle for a myriad of military
and civilian applications. This can be partly attributed to their ability to bring payloads for utility,
sensing, and other uses for various applications autonomously. However, a key challenge in realizing
autonomous unmanned systems is the ability to perform complex group missions, which require
coordination and collaboration among multiple platforms. This paper presents a cooperative navigat-
ing task approach that enables multiple unmanned surface vehicles (multi-USV) to autonomously
capture a maneuvering target while avoiding both static and dynamic obstacles. The approach adopts
a hybrid multi-agent deep reinforcement learning framework that leverages heuristic mechanisms to
guide the group mission learning of the vehicles. Specifically, the proposed framework consists of
two stages. In the first stage, navigation subgoal sets are generated based on expert knowledge, and
a goal selection heuristic model based on the immune network model is used to select navigation
targets during training. Next, the selected goals’ executions are learned using actor-critic proximal
policy optimization. The simulation results with multi-USV target capture show that the proposed
approach is capable of abstracting and guiding the unmanned vehicle group coordination learning
and achieving a generally optimized mission execution.

Keywords: multi-agent reinforcement learning; multi-USV system; cooperative control; target
capture; deep RL; unmanned systems

1. Introduction

The important technological developments in unmanned vehicles have greatly in-
fluenced the number of real-world applications that are suitable for unmanned vehicle
deployment. Hence, in the last decade, the application of autonomous unmanned vehicles
in military and civilian operations, such as search and rescue, patrolling, monitoring, and
surveillance tasks, has witnessed a tremendous increase [1–6]. One key challenge in the
effective deployment of autonomous unmanned vehicles is the ability to perform complex
group missions, which require coordination and collaboration among multiple vehicles.
On the other hand, many real-world tasks require a group of agents to work together. Com-
pared with a single agent, multi-agent systems have the advantages of strong adaptability
and fault tolerance. In the robotics and autonomous unmanned vehicles contexts, a single
platform or controller of an unmanned vehicle can be regarded as an agent. Through divi-
sion and cooperation, each platform can perceive the environment and acquire information
about the task area quickly and more accurately to accelerate the completion of missions
and improve the efficiency of the group.

Unmanned vehicles can be categorized into four types based on their mode of op-
eration. These include the unmanned aerial vehicle (UAV), unmanned ground vehicle
(UGV), unmanned surface vehicle (USV), and autonomous underwater vehicle (AUV) [7].
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In the last few decades, the robotics community has extended its interest to the study of
cooperative decision making and controlling unmanned vehicles. A group of unmanned
vehicles working together in a shared environment can be regarded as a multi-agent system.
In cooperative multi-agent systems, a collective scheme is required to enable the group of
agents to work together to complete a common task and coordinate in time and space.

Traditionally, group mission strategies for multi-robot systems were created using
predefined rules and algorithms [8–10], but these methods can be rigid and not easily
adaptable to changes in the environment or mission objectives. Consequently, there has
been a growing interest in using reinforcement learning techniques that enable multiple
robots to learn group mission strategies in a more flexible and adaptable way. To achieve
coordination in autonomous multi-robot systems across different application domains,
various control architectures have been proposed [11,12]. Deep reinforcement learning
(DRL) has emerged as a promising technique in this area [13,14]. DRL has been integrated
with multi-agent systems (MAS) to create multi-agent DRL, which has been extensively
studied in the literature. For example, the multi-agent deep deterministic policy gradient
(MADDPG) [15] has been developed as a centralized training framework with decentralized
execution to enable multi-agent teams to cooperate or compete during task execution. The
multi-agent hierarchical deep deterministic policy gradient has been introduced as an
extension of the MADDPG to address search and exploration problems with numerous
robotic agents [16]. Additionally, proximal policy optimization (PPO) and its variants
have been proposed and applied to various group missions to generate sophisticated
behaviors [17–21]. These and similar frameworks and approaches have been utilized to
tackle the challenge of cooperative mission execution with multi-agent systems, such as the
multi-agent pursue evasion (MPE) problems, using unmanned vehicles [17,22–24].

The MPE problem is commonly known as target encirclement and capture. When
dealing with MPE environments, the targets are evasive and try to avoid capture. They
can be faster than the pursuers, and multiple agents are employed to capture an intruder
or evader(s) who attempt to evade capture. The main goal of the MPE is to minimize the
time required to capture the evasive intruder or target. Due to its practical significance in
military applications, such as missile avoidance and interception, surveillance, criminal
pursuit, reconnaissance, and rescue operations, several variations of MPE games have been
extensively studied [25–29].

Several approaches in the literature assume unstructured environments. For example,
the authors in [30] proposed a region-based relay pursuit scheme for pursuers to capture a
single evader that adopts the pure evasion strategy. An RL-based method that employs the
MADDPG algorithm to realize a pursuit strategy for the MPE game was considered in [31].
However, this approach is not suitable with an increased number of agents. A classical
single pursuer and single evader pursuit-evasion game based on Apollonius partitions
with Q-learning was studied in [32]. A decentralized learning approach [33] was explored
where the pursuers were modeled as learning automata, while a new fuzzy reinforcement
learning algorithm was proposed in [23] to solve the MPE with a single superior evader.
Additionally, the authors in [34] studied the MPE from the view of the behavior-based
control method and adopted a motor schema-based reactive control architecture based on
the Apollonius circle to solve the MPE differential game with a superior evader.

In contrast, while some works tackle the MPE problem in a more general form, other
studies consider specific applications using unmanned systems with DRL and other frame-
works. For instance, a cooperative pursuit of unauthorized UAVs in urban airspace via
MARL was presented in [35], Zhang et al. [36] focused on the pursuit-evasion game of
a multiquadcopter in an obstacle environment with online motion planning by deep re-
inforcement learning, an approach using multiple autonomous underwater vehicles in
3D water volumes with and without obstacles was studied in [37], and Wei et al. [29]
designed an unmanned target hunting system for a swarm of unmanned underwater
vehicles (UUVs) to hunt a target with high maneuverability, while a collaborative strategy
of a UAV/UGV heterogeneous system was proposed to derive a pursuit-evasion game
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in a complex three-dimensional environment in [38]. In addition, a distributed, partially
observable multi-target hunting proximal policy optimization (DPOMH-PPO) algorithm
for multi-unmanned surface vehicle (USV) target hunting was proposed in [17], and a
DRL approach for multi-vehicle pursuit in urban environments was presented in [24]. The
authors in [39] considered a decentralized DRL method for pursuing an omnidirectional
target with multiple agents, while a method for enabling a multi-robot system to encircle a
target and avoid collisions was studied in [40]. Another proposed approach is a distributed
transferable policy network framework based on DRL which employs a graph communica-
tion mechanism for robotic agents’ interaction to tackle the problem of single-target capture
with collision avoidance [41].

However, some of these approaches may not be effective in cases where the target has a
strong escape strategy, as they do not consider predicting the target’s movement trajectories.
Additionally, in many DRL approaches, each agent receives information in a lumped vector
without leveraging human knowledge of the target or the natural spatial structures of the
environments. This is important because while multi-agent RL can be a very powerful tool,
especially for achieving autonomous cooperative behavior of unmanned systems, several
challenges exist when utilizing RL in the multi-vehicle cooperative capture of mobile targets
in complicated multi-intersection and restricted moving spaces.

The first issue has to do with the state of agents and its effects on learning convergence.
It is usually unrealistic to assume a completely observable and noise-free state. This means
that aside from the fact that a learning agent might not be able to determine accurately
its state, convergence becomes an issue. Additionally, a significantly different state might
appear to be very similar. Hence, to facilitate the training and learning of cooperation for
multi-robot group missions, designers can use filters of human guidance to help agents
estimate the true state of the vehicle or to guide the learning process of the group.

This paper presents a human-guided environment transition model approach for
coordination training in an environment where the adversaries or task transition model can
be observed and modeled. The key idea in this approach is to utilize human knowledge of
the observed mission environment to generate a transition model that can be initialized
to guide the overall coordination of the multi-agent system in different situations by
generating goals that will lead to a successful mission completion of unmanned vehicle
groups. More specifically, the contributions of this paper include the following:

• A novel formulation of the MPE problem as a multi-USV operation in a floating city
environment that can be applied in target pursuit in multi-intersection urban areas.

• We develop a hybrid deep reinforcement learning framework that leverages heuristic
mechanisms to guide group mission learning of multiple unmanned surface vehicles.
The proposed framework consists of subgoal generation in the form of navigation
targets based on the knowledge of the environment, and a goal selection heuristic
model based on immune network models is used to select subgoals for execution by
an actor-critic proximal policy optimization model.

• A simulation experiment is conducted to analyze the performance of the proposed
framework in realizing the target-capturing behavior of a multi-USV group.

The rest of the paper is organized as follows. Section 2 introduces some key prelim-
inaries related to the MARL model and algorithm. Section 3 describes the multi-agent
USV cooperative problem and the target decision model. Next, the proposed approach is
presented in Section 4, followed by the experiment and results in Section 5.

2. Preliminaries
2.1. Multi-Agent Observation Models

The observation and states of agents in decentralized multi-agent systems are localized.
In this case, the interaction between agents is defined by a graph G = (V, E), where
V = {v1, v2, ..., vN} is the set of agents and E is the set of edges representing agent
interactions. This interaction E ⊂ V ×V is represented by undirected edges in the form of
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{vi, vj}, where agents i and j are neighbors. Hence, the set of neighbors of agent i within
which agent i can sense local information about others is given by

Ni(G) = {j|{vi, vj} ∈ E} (1)

If the set of nodes or edges changes over time, then G can be regarded as a dynamic
graph. The information shared by agent i to agent j is a function of the states of agent i
about agent j, namely oij = f (si, sj), where oij ∈ Oi and si, sj ∈ Si. Here, Oi is the complete
information set agent i receives from all its neighbors, and Si is the set of states of all
neighbor agents of i. The observation oij is only available to agent i if agent j is in the
neighborhood of agent i.

2.2. Partially Observable Stochastic Games

Multi-agent decision making can generally be classified as partially observable stochas-
tic games (POSGs) since the agents have incomplete or noisy observations. Thus, MARL in
multi-robot cooperative tasks, such as target capture, can be modeled as partially observ-
able. The POSG is an extension of the stochastic Markov decision process (MDP), where
rewards or punishments and transitions between agents’ states are determined by the
agents’ joint actions, regardless of the possible conflicting goals of agents. In POSGs, partial
observation of agents’ states is assumed.

Theorem 1. A POSG is a tuple < S, A1...An, O1...On, f , R1...Rn > where the following apply:

• n is the number of agents (controller agents or USVs);
• S is the finite set of states;
• Ai, i = 1, ..., n are the finite set of actions available to the agents which form the joint action

set A = A1 × A2 × ...× An;
• Oi, i = 1, ..., n are the finite set of observations of the agents. The joint observation is denoted

as o = {o1, ..., ‘on};
• f : S×A× S′ → [0, 1] is the Markovian state transition function, where f (s′|s, a) denotes

the probability of reaching state s′ after the joint action a in state s. The joint action of all
agents a at a stage t is denoted as at = [a1,t, ..., an,t]> at ∈ A, ai,t ∈ Ai;

• Ri : S×A→ R, i = 1, ..., n are the reward functions of the agents.

A reward of agent i after taking action ai,t ∈ Ai in stage t toward completing task ci is
denoted as ri,t+1. The individual controller hi : S× Ai → [0, 1] of the agents forms the joint
coordination controller (policy) h. Since the reward of each agent in a team depends on the
joint action, the respective agents’ rewards depend on the joint controller:

Rh
i (s) = E

[
T

∑
t=0

γtri,t+1|s0 = s, h

]
(2)

where γ is the discounting factor and T is the length of the horizon. Because each agent
has its own reward function that shows the agent’s preferences, POSGs model multi-agent
systems that are self-interested. The multi-agent system becomes cooperative when all
agents have the same reward function preferences (∀i,jRi = Rj). In this case, the multi-
agent system is modeled as a decentralized, partially observable Markov decision process
(Dec-POMDP) [42].

Proximal Policy Optimization

In recent years, research on policy gradient methods has produced algorithms such
as trust region policy optimization [43] methods that show state-of-the-art performance
over Q-learning. Among the core algorithms in the policy gradient and actor-critic field
is the proximal policy optimization (PPO) algorithm [44,45]. PPO is a minimal version
of the trust region policy optimization algorithm that aims to solve the problem of low
data utilization of traditional gradient policy algorithms with simpler implementation,
execution, and sampling methods. Both trust region policy optimization and PPO use the
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actor-critic structure, which combines the pros of traditional value-based and policy-based
approaches. The actor-critic model employs two deep neural networks: the actor for taking
the action and the critic for handling rewards. Specifically, to promote small policy updates,
PPO proposes a clipped surrogate loss function and combines the policy surrogate and a
value function error term as shown in Equation (3) [44].

LCLIP+V+S(θ) = Ê[LCLIP(θ)− χ1LV(θ) + χ2Sπθ ] (3)

where LCLIP is a clipped surrogate objective put forward in [44] as shown in Equation (4).
Moreover, χ1 and χ2 are coefficients, LV constitutes the squared error loss of the value
function, and S denotes an entropy loss:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (4)

In Equation (4), ε and rt(θ) denote a hyperparameter and the probability ratio, re-
spectively, where rt(θ) = πθ(at|st)/πθold

(at|st). This clips the probability ratio r at 1 + ε or
1− ε for a positive or negative advantage, respectively, forming the clipped objective after
multiplying the advantage approximator Ât [46].

2.3. The Artificial Immune Network

The immune network theory is a critical theory of the artificial immune system that
exhibits characteristics of adaptivity. The immune network hypothesis, proposed by
Jerne [47], is based on Burnet’s clonal selection theory. The hypothesis suggests that
different types of antibodies and lymphocytes communicate with each other and maintain
a stable network equilibrium through an interaction mechanism between network cells.
This network is self-regulating through stimulatory and suppressive interactions among B
cells, antigen epitopes, antibody idiotope, and antibody paratope. In the robotics domain, a
computational model of Jerne’s idiotypic network theory was proposed in [48] as a means
of inducing adaptive behavior mediation, and it demonstrated some encouraging results.

3. Problem Formulation
3.1. Description of the Multi-USV Target Capture

We consider a problem where a team of unmanned surface vehicles is deployed in
an floating environment to provide internal security by monitoring the activities of other
boats within the area. The multi-USV team detects and finds intruder boats and captures
them by entrapment or chasing them out of the environment. This scenario is an extension
of multi-agent region surveillance and pursuit-evasion, which have been studied in the
literature. The environment consists of multiple intersection pathways for easy navigation
of USVs in the floating environment.

We assume dual pathways that are narrow and that the USVs cannot make a U-turn
on a pathway. We further assume that there are a few exits and entrance points into and
out of the environment. Additionally, the environment contains civilian boats that go about
their business. We consider the case where an intruder is to be detected and chased by the
multi-USV team with the objective to capture or chase the intruder out of the boundary
as fast as possible. Here, capture means the pursuing USVs cross the pathway of the
intruder boat.

In this case, the intruder is assumed to know the positions and detection ranges
of the multi-USV team. The intruder boat is also assumed to be faster and have higher
maneuverability compared with the multi-USV team. As an important requirement, we
develop a competitive intruder’s decision-making strategy, which is further used to provide
the initial policy for the multi-USV team. Moreover, the intruder boat becomes visible to
some of the USVs in the multi-USV team at some time (i.e., some of the USVs detect and
obtain the planar coordinates of the intruder boat after a certain moment in time). Figure 1
shows an example mission scenario of USVs (blue) performing the monitoring mission with
an intruder boat (red) and civilian boats in the environment. This problem can be directly
extended to multiple unmanned ground vehicle target captures in urban city settings.
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Figure 1. Example floating market or community environment map. The rectangular shapes represent
floating structures.

Furthermore, the USVs are equipped with various sensors, including GPS, radar, and
communication equipment for intruder and other sensory detection, as well as communi-
cation capabilities. However, USVs have limited observation ability and can only detect
or communicate within their sensing and communication ranges, denoted as Rs and Cr,
respectively. The multi-USVs are trained to make their own navigation and maneuvering
decisions in a decentralized way (i.e., each USV navigates independently and has infor-
mation about the current coordinates of the USVs in its neighborhood and the intruder
boat through sensing and communication). The exact position of the intruder boat is only
known to the USVs that have it within their detection range Rs.

However, the other USVs in the team can acquire the last location through commu-
nication from other USVs. Here, the goal for the multi-USV team is to coordinate their
movement to constrain the intruder boat such that its movement can be directed according
to the direction the multi-USV team wants, leading to the multi-USV team catching the
intruder or the intruder escaping through one of the exit points within the environment. In
doing so, the multi-USV team must also avoid collisions with each other and other static
structures within the environment. The intruder is said to be captured if it is trapped be-
tween two or more of the multi-USV teams. The objective is to train the multi-USV system
to perform cooperative intruder boat detection and entrapment within the environment.

3.2. The Multi-USV Learning Formulation

Formally, we consider a multi-agent assignment Markov decision process for a team
of agents (multi-USV) that must learn to cooperatively perform a given navigation task
 in an adversarial environment D ⊂ Rn. In executing the task, the agent team selects a
navigation destination or goal from a set ( C() = {c1, c2, c3, ..., cn}) that is generated as
subtasks or goals toward executing , based on an expert- or designer-modeled transition
function. In this case, agents select and navigate to a location in a dynamic environment
with collision avoidance and the minimum time cost. The team MDP can be defined as
< N, O, A, P, R >, where N is the number of agents, A is the set of actions, O is the global
environment observation made up of the local states SN of the agents and a goal map, and
P : SN × AN × S′N → [0, 1] is the transition probability model that enables the transition
from SN to S′N , driven by the joint actions taken by the team AN . The navigation targets can
be dynamic at different times during the mission due to the dynamics of the environment
and task. In this formulation, the actions toward achieving a goal are of the same speed
and direction such that at = [vt, vr], where at is the action taken at time t.
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Each agent uses the same policy µ : H→ A defined for each subgoal (in this case, a
navigation policy), which maps local observations’ histories H and actions of agents to a
new action at to be executed. Hence, agents can share their policy during training. If η is
denoted as a horizon of an agent history space, then H = Sη

n × Aη
n, where An is the local

actions of agent n. The reward function R of the team depends on the global state and all
actions of the team (i.e., R : SN × AN → R). Even though this formulation focuses on
navigation target selection, the proposed framework can be customized for any scenario
where a set of goals can be defined to achieve the cooperative mission.

Reward Function

The reward function provides guidance for the multi-USV system to achieve optimal
task performance policies, which are implemented as the training objective. In order to
optimize the performance of the multi-USV system, we consider the various situations
that USVs will encounter in the mission environment when designing a reward function.
Equation (5) shows the shared reward RUSVi to be maximized by the multi-USV system
at time t. Here, rt

dist,i is the negative displacements between agent i and its selected task,
tt
elapsedi

is the time elapsed, γ is a bound constant, and ct
collidei

is a discounted penalty if
agent i collides, with a penalty factor of −0.5:

RUSV = γ
1

telapsed
+

M

∑
i
(ct

collide,i + rt
dist,i) (5)

3.3. Intruder Boat Policy Strategy

To design a human-competitive policy for the intruder, we developed a probability
map model that the intruder used to make its maneuvering decisions. To apply the
probability map model for intruder decision making, we divided the monitoring area into
equally sized cells and associated each cell with the probability or likelihood of the intruder
being captured if it were in that particular cell, thus forming the probability map of the
entire monitoring area. Based on this, we designed navigation rules for the intruder boat
with which it made its movement decisions. In addition to the strategy for exiting, the
direction of movements of the intruder was biased toward less probable cells of capture, as
shown in Figure 2. In this strategy, there is a 30% chance of the intruder trying to move
out of the community through the closest exit point, with a 70% aim at staying in the
environment and evading the multi-USV team. Cells closer to and between structures
are riskier, depending on the location and direction of the multi-USV team. The cells size
depends on the speed specified for the intruder at the beginning of the simulation.

Figure 2. Demonstration of intruder strategy model. The darker the grid, the higher the capture probability.
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4. Approach

This study proposes a hybrid multi-agent training and reinforcement learning ap-
proach based on a human-guided transition model for cooperative task execution in envi-
ronments where the adversaries or task transition model can be observed and modeled.
The key idea in this approach is to utilize human knowledge of the observed mission
environment to generate a transition model that can be initialized to guide the overall
coordination of the multi-agent system. This is achieved by generating goals or subtasks
that will lead to successful completion of the mission by the multi-agent team.

4.1. Framework Design

The backbone of this framework consists of a goal or subtask generation model
designed to provide a goal map to guide the learning model, reducing the coordination
problem to goal selection and execution. This methodology is based on the premise that
high-level subtasks that lead to the ultimate mission objective at any time during the
mission’s execution can be observed and abstracted, and a subgoal generation model of
such processes can be developed by mapping abstract situations to appropriate subtasks.
This idea corresponds well with multi-agent operations in certain environments, such as
target pursuit or tracking in urban road networks with multiple intersections.

As shown in Figure 3, the methodology consists of two main stages. In the first stage,
observation and domain analysis are performed to identify all potential situations that are
disadvantageous to the adversaries, and a transition model for these situations is developed.
This is performed based on the knowledge and constraints of the opponents or based on the
limitations placed by the structure of the environment. In order to complete the first stage,
we need a goal generation model that outputs abstract goals or subtasks whose optimal
execution will facilitate successful mission execution for the training agents. In this study,
the subtask generation model is represented by a graph of vertices GC() = {vi ∈ V}, with
vi representing an intersection and the {vi, vj} ∈ E pathway representing the edges. Thus,
depending on the direction, node, or edge where the intruder finds itself, the goal map
consisting of the set of nodes connected to the current node or edge can be generated to
guide the multi-USV system.

Figure 3. Structure diagram of the proposed framework.

During training, the strategy generation model is executed at certain time steps to
produce a goal map or set of subtasks for the decision system to execute or learn to execute.
The strategy generator is an intermediate module that encodes the goal generation model
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for subgoal generation to guide the decision-making sequence among the multi-agent
system to achieve a high degree of team coordination. This module can be replaced by
other algorithms or learning algorithms in the absence of an expert-guided task generation
model, making it plugable.

An agent then selects a task from the set of subtasks to execute or learn. In this work,
we propose a heuristic-based approach as the transition model encoding for realizing
goal selection during training. Our ultimate goal is to learn a coordinated policy for the
multi-agent system to perform a cooperative mission, taking advantage of our knowledge
of the adversaries or environment constraints to generate abstract goals and leading to a
successful mission. The framework implements an actor-critic PPO for learning the selected
subtasks from the goal map generation model. The learning objective guides and measures
the collective performance of the multi-agent system on the mission. The preference defines
constraints or priorities that can be specified for tasks, behaviors, goals, or low-level actions
during training.

4.2. Goal Selection Algorithm

In order to realize optimal subgoal selection, we adopted a heuristic immune network
model. Prior to the immune process, the state of the agent is used by a strategy generator to
generate subgoals. The generated subgoals are then evaluated, and an appropriate subgoal
is selected by each agent based on the heuristic immune process. Algorithm 1 presents the
dynamic navigation point selection of agents which can be customized to fit other mission
scenarios by employing different models to compute the affinity and activation of subgoals.

Algorithm 1: Subgoal (navigation point) selection algorithm
Data: Goal map
Result: Optimal target

1 Actc ← ∅ { initialize empty list of activation values};
2 for For every navigation position j ∈ goalmap do
3 Sn ← S {get current local state of neighbors } ;
4 st ← Sm {get own state } ;
5 A f fN(a) ← {the set of current neighbors’ (N(a)) affinity } ;
6 Determine own affinity A f fa using Equation (6) ;
7 Compute the suitability of selecting j, i.e, Bact value of the agent using

Equation (7) ;
8 Actc ← Bact { add to list of activation values};

9 maxBact ← argmax(Actc, random(Actc)) ;
10 Return the corresponding subgoal of maxBact as the suitable navigation position.

At every decision step, the goal selection algorithm updates its navigation position
preference based on Equation (6) and selects the most attractive goal position. Each agent
reevaluates all the available goal positions when the goal map changes and selects the
strongest, most suitable subgoal. This process continues until the system terminates.
Hence, after receiving the goal map generated from the transition model, the algorithm
computes the suitability of each navigation position in the goal map to select the optimal
subgoal point:

A f fa =
1

N(a)
∗

N(a)

∑
i=1

1
(|~pa − ~pi|)2 ∗ ε (6)

where pa represents the relative location of vehicle a, whose activation is being determined,
and pi is the positions of other vehicles, while ~pa − ~pi is the orientation from a to i and
ε ∈ [0.2, 1] is a factor that indicates if obstacles are located in the direction of the goal
position:
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Bact = (A f fa + ε ∗ A f f j,a)− (A f f j,a + ρ ∗ A f fa) (7)

The decision of an agent to move and select a particular goal is determined using
Equation (7). In this equation, the first term represents the stimulation effect of the current
agent with respect to the target location being considered, while the second term represents
the suppressive effects of its neighbors. Here, A f fa and A f f j,a are the affinity of the current
agent with respect to its neighbors’ (N(a)) states, respectively, and vice versa. Additionally,
ε and ρ are both scaling factors, where {ε, ρ ∈ [0.2, 1]} and ρ < ε. The navigation location
with the highest activation value is selected, and control is passed to the task execution
policy learning.

4.3. Task Execution Policy Learning

After the agent selects a target location, the appropriate policy should be executed to
achieve the agent-selected goal. In this case, a navigation policy is implemented, which
uses proximal policy optimization [44,45] with the actor-critic method to optimize the
navigation goal execution based on the collective experiences of all controller agents. After
the target locations are selected by controller agents, each controller agent obtains its local
state Sn and selects an action from its action space An, following the stochastic policy πθ .
For the navigation policy, the input of the training algorithm consists of the poses and
velocities of the agent’s physical model. The inputs include some noise to account for the
various sensor noises present in the real world. These additional noises are incorporated
using a set of dynamic parameters Λ within the range of Γ ∈ [0.02, 0.2] for the position and
orientation noises. Finally, the actor-critic model implements neural networks for learning.

Algorithm 2: Proximal policy optimization training

1 Initialize the neural network πθ ;
2 Set number of episodes K ;
3 while current_episode ≤ number_of_episodes do
4 Reset training environment to initial state S0 ;
5 Uniformly sample the dynamics parameters Λ from a range Γ ;
6 for agent i = 1, 2, 3, ... do
7 Get current state of i, si

t Get goal position sg,i
t using Algorithm 1 ;

8 Sample an action from Ai, ai
t ← πθ(ai

t|si
t) ;

9 Collect state si
t, reward ri

t and ai
t for Ti time steps ;

10 Compute the advantage estimates Âi
1, ..., Âi

T ;

11 Optimize surrogate loss with respect to θ for k epochs ;
12 Set θold ← θ ;
13 Optimize value loss with respect to q for number of episodes;
14 Set qold ← q ;

Figure 2 shows the summarized algorithm for training the navigation policy. At the
beginning of training, the network is initialized. With a given number of episodes, the
environment is reset at beginning of an episode. For each episode, the dynamics parameters
Λ from a given range Γ are sampled. Next, the current state si

t of the vehicle in the training
environment is collected. The target location is obtained by executing Algorithm 1. Based
on the current state, the agent’s action ai

t ← πθ(ai
t|si

t) is obtained. Next, to compute the
estimated advantage, the state si

t, reward ri
t, and ai

t are collected. The advantage estimates
are performed in a manner similar to the work in [46]. Finally, the surrogate loss and
value loss with respect to the vector of parameters θ and q are constructed and updated,
respectively [44].
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5. Experiment and Results

To evaluate this approach, we implemented a simulation system of the multi-USV
target capture in a novel floating community. The simulation was a modification of the one
presented in [49]. This section describes the details of the training environment set’s set-up
and experimental results. Figure 4 shows the simulation training set-up of the multi-USV
target capture.

Figure 4. Simulation environment set-up.

5.1. USV Physical Model

The basic USV model has a diverse set of onboard sensors. Hence, the USV physical
model in the simulation environment was equipped with sensors (radar) that were used to
map the surrounding environment while executing missions. The basic radar model had
a 360 degree field of view with a radius r which determined its range. Additionally, an
onboard inertial measurement unit (IMU) model was used to provide the linear acceleration,
orientation, and rotational velocity data and estimate the poses of the USVs. To find the
exact positions and orientations of the USVs with respect to the global frame, the USVs
each had an onboard global positioning system (GPS). The radar was partitioned into
virtual sensors of the same range by assigning a reach for each virtual sensor based on
the configuration provided. These virtual sensors returned the relative positions and
normalized distance of other objects in the scene. A relational virtual sensor returns
information about how a USV is situated to and from other objects, while a velocity sensor
returns the velocity of objects within the detection range of the USV. The basic inputs and
controls include the heading and velocity controls for motion. The communication of USVs
was modeled based on the reach of the communication range.

5.2. USV Dynamic Model

Considering the USV movement dimension in six-DOF, the simulated USV model was
based on Fossen’s six-DOF model for marine vehicles [50]. Figure 5 shows the USV motions
in six DOF. This model expresses the resultant movement of a USV as the combined effect
of five main forces as shown in Equation (8):

τRF = τhs f + τhyd f + τwind + τwaves + τ (8)
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where τhs f is the hydrostatic forces, τhyd f is the hydrodynamic forces, τ is the control and
propulsion forces, and τwind and τwaves are the wind and wave forces, respectively. The
kinematic and kinetic model with wind and wave disturbances is defined in Equation (9).{

η̇ = J(η)ν
MRBν̇ + CRB(ν)ν + MAν̇r + CA(νr)νr + D(νr)νr + g(η) = τE + τ

(9)

where the following definitions apply:

• η = [x, y, z, φ, θ, ψ]T is a vector of the position and Euler angles in the m-frame;
• ν = [u, v, w, p, q, r]T is a vector of the linear and angular velocities in the d-frame;
• vr is the hydrodynamic terms of the relative velocities vector (i.e., the difference

between the vessel velocity relative to the fluid velocity and the marine currents
expressed in the reference frame);

• τE represents the forces and moments of environmental disturbances of superimposed
wind, currents, and waves;

• The parameters J, M, D, and C are the rotational transformation, inertia, damping,
and coriolis and centric fugal matrices, respectively.

Figure 5. USV motion in six DOF.

5.3. Experimental Settings

The experiment was conducted with teams of two, three, and five USVs in a simulated
floating city environment. The initial positions of the teams were spread apart from each
other to cover a large area. At the beginning of each episode, the intruder was invisible
to the USV group, so the task generation module generated random target points near
the intruder. The idea was to detect the intruder if the USVs were to move to these
locations. Subsequently, the goal map was generated based on the location of the intruder,
as mentioned in Section 4.1, which predicted the possible navigation direction. In the
experiment, the USVs could communicate with each other, and the detection range of the
USVs was set to 300 m. The length of an episode was set to 1000 simulation steps, and
5000 episodes were run.

The observation space of the agents included the general goal map, the local state of the
USV, all the other USVs of the team within the USV communication range, and the distance
and headings to the collision points. The action space consisted of a probability distribution
over the action space of speed in [0, 1] and a direction of [−1, 0, 1]. The actor implemented
a three-hidden-layer network. The input state used 3 fully connected hidden layers of 256,
128, and 64 rectifier units. The output layer was a fully connected layer of five units, and
different activation functions were used for different parts of the action space.
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The critic part was the state value function V(st) and was designed as a two-hidden-
layer neural network, including two fully connected layers with 128 and 64 rectifier units.
The output layer had only one unit to generate the value with linear activation.

The k update epochs were set to 20 for the surrogate loss update and 15 for the value
loss. Both the surrogate loss and value losses were optimized with the Adam optimizer,
with learning rates of 0.0001 and 0.0015, respectively. The parameter for clipping was 0.2.

5.4. Experimental Results

To evaluate the effectiveness of the approach, the experimental results with a multi-
USV team against a high-speed intruder on one hand and a slow intruder with the same
speed as the multi-USV team on the other hand are presented. The USVs used a fixed speed
of 3 m·s−1, while the intruder’s speed was set to 3 m·s−1 and 4 m·s−1 for the slow and fast
intruder, respectively. We plotted the average rewards for the different scenario settings.

Figures 6–8 show the average episode rewards for two, three, and five USVs and one
intruder during training. The performance of the algorithm clearly improved over the
course of training within a short period of time, as shown in the training graphs. From these
graphs, it is evident that the approach can easily guide the multi-USV team not only to
learn a navigation policy but also to dynamically assign the goals generated by the strategy
generator to the USVs. Moreover, the results also show the influence of the intruder type,
since there was a different average reward return with different speeds for the intruder.

Figure 6. Average episode rewards for two USVs and one intruder.

Figure 7. Average episode rewards for three USVs and one intruder.
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Figure 8. Average episode rewards for five USVs and one intruder.

In order to test the performance of the final controllers, 100 simulations with the
best-performing controllers for two scenarios with different navigation target speeds were
run. In this experiment, the USVs used a fixed speed of 5 m·s−1, while the intruder speed
was set to 5 m·s−1 and 7.5 m·s−1 for the slow and fast intruder, respectively.The detection
radius for the former was 200 m, while 350 m was used for the latter. Here, the higher speed
made it more difficult for the USVs to make turns at intersections, even if the evaluation
and training environments were similar. Figures 9 and 10 show the success rate of the USVs
capturing the intruder as opposed to the intruder exiting the environment. The intruder
was said to exit if it was not captured within the simulation episode length. Despite the
higher speed of the USVs, the system still achieved about 86% and 77% successful capture
rates with 5 and 2 USV teams, respectively, as can be seen in Figure 9. On the other hand,
there is a decline in capture performance in Figure 10, with 80% and 60% success rates
for a similar number of USVs, which can be attributed to the higher speed of the intruder
boat. From these graphs, it is evident that more USVs led to more successful captures.
In addition, the speed of the intruder affected the success rate of the coordination team.
Figure 11 shows a sample capture process of three USVs at increasing time steps. Here,
the speed was 3 m·s−1 for both the USVs and intruder with a 200 m detection radius.
Figure 11a shows the configuration of USVs after 50 ts with a USV to the front (USV1), back
(USV2) and right (USV3) of the intruder boat. In Figure 11b, USV1 executes a direct chase,
while USV2 and USV3 execute left and right turns, respectively. In Figure 11c, USV3 is now
performing the chase, USV2 makes a left turn a the next intersection to cover one of the
possible exits of the intruder while USV2 makes a left turn at the second intersection ahead
it. Finally, after 350 ts, the target is capture since all the exit points are covered by the team
as shown in Figure 11d. From the trajectories of the USVs, it can be found that the USVs
were able to capture the target within 350 simulation time steps.

Figure 9. Success rate of USVs when intruder and USV speeds are same (USV speed = 5 m·s−1, USV
detection radius = 200 m, and intruder speed = 5 m·s−1).
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Figure 10. Success rate of USVs in capturing intruder (USV speed = 5 m·s−1, USV detection radius =
350 m, and intruder speed= 7.5 m·s−1).

Figure 11. Sample capture process of three-USV team at different time steps (ts) with speed of 3 m·s−1

for both USVs and intruder and a 200 meter detection radius.

6. Conclusions

This paper presents a training mechanism for a multi-agent controller that utilizes
a human-guided task generation model for generating abstract subgoals based on the
observed situations of an environment or opponents. This approach is applied in a novel
floating multi-intersection environment for multiple unmanned surface vehicles (USVs),
dynamically selecting a navigation goal generated based on the knowledge of the environ-
ment layout and learning navigation control for target capturing. To provide a realistic
and competitive intruder policy, a probability model used by the intruder was adopted
to make its maneuvering decisions. The multi-USV system employs an immune network
and dynamics to achieve two main objectives: collaborative task assignment and proximal
policy optimization (PPO) for navigation policy learning of the USV team. The performance
of the system during training showed an improvement in the rewards received within a
few episodes of the simulation. The evaluation results with 2, 3, and 5 USVs show that the



Electronics 2023, 12, 1523 16 of 18

approach can be applied for multi-agent navigation and target capture in multi-intersection
environments and is capable of achieving a success rate of over 80% with 5 USVs and over
60% with 2 USVs. Thus, the proposed method has the potential for practical trajectory
design and application in a multi-vehicle environment with multiple intersections and,
by extension, in multi-vehicle scenarios where the environment and task structure can be
leveraged to guide the training and execution process. For instance, this approach can be
directly applied to target pursuit in an urban city environment by simply replacing the
USVs with UGVs or UAVs.

However, this approach assumes independent subgoals that are performed concur-
rently by the multi-agent system. Additionally, the experiments conducted were limited
to a single intruder that adopted a somewhat regularized escape strategy. Hence, the
proposed approach needs further investigation and experiments in different and more
practical applications with other types of unmanned vehicles where the generated tasks are
coupled and need to be performed sequentially.
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